Performance Analysis of FFF-Printed Carbon Fiber Composites Subjected to Different Annealing Methods
Abstract
:1. Introduction
2. Methodology
2.1. Material and Manufacturing Process
2.2. Annealing Methods
2.3. Measurements and Experimental Testing
3. Results and Discussions
3.1. Dimensional Analysis
3.2. Surface Roughness Analaysis
3.3. Tensile Testing
3.4. Hardness Testing
3.5. Flexural Testing
4. Material Quality Characterization
5. Conclusions
- Sand annealing provided better dimensional stability to all the composites (except PLA-CF due to its low thermal stability), whereas oven annealing showed deviations along the z-axis as high as 18% for ABS-CF, compared to 7.58% observed for sand annealing at the highest annealing temperature of 125 °C.
- The controlled and uniform heating of oven annealing demonstrated better surface finish compared to sand annealing. The surface roughness values increased with increasing annealing temperatures for oven annealing, but sand annealing showed consistent albeit higher values for all the composites.
- Tensile testing demonstrated the effectiveness of oven annealing over sand annealing with higher tensile strengths in all cases. For the semi-crystalline materials, the tensile strength increased with increasing annealing temperature. However, the amorphous materials showed a decline at the highest annealing temperature as excessive temperature can soften the material without significantly increasing strength.
- The difference between the two annealing methods in terms of hardness values is minimal, indicating their effectiveness in enhancing this aspect for the composites at all temperatures.
- Oven annealing showed higher flexural strength for all the four composites that increased with increasing annealing temperatures. Sand annealing also demonstrated a similar pattern albeit with lower values, compared to oven annealing.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kanishka, K.; Acherjee, B. Revolutionizing manufacturing: A comprehensive overview of additive manufacturing processes, materials, developments, and challenges. J. Manuf. Process. 2023, 107, 574–619. [Google Scholar] [CrossRef]
- Butt, J.; Mohaghegh, V. Combining digital twin and machine learning for the fused filament fabrication process. Metals 2022, 13, 24. [Google Scholar] [CrossRef]
- Butt, J.; Onimowo, D.A.; Gohrabian, M.; Sharma, T.; Shirvani, H. A desktop 3D printer with dual extruders to produce customised electronic circuitry. Front. Mech. Eng. 2018, 13, 528–534. [Google Scholar] [CrossRef]
- Bahnini, I.; Rivette, M.; Rechia, A.; Siadat, A.; Elmesbahi, A. Additive manufacturing technology: The status, applications, and prospects. Int. J. Adv. Manuf. Technol. 2018, 97, 147–161. [Google Scholar] [CrossRef]
- First Metal Part 3D Printed in Space. Available online: https://phys.org/news/2024-09-metal-3d-space.html#:~:text=Additive%20manufacturing%20in%20space%20will,relying%20on%20resupplies%20and%20redundancies (accessed on 24 September 2024).
- How Barrelhand Is Using Additive Manufacturing to Redefine Space Tools—Interview with Karel Bachand. Available online: https://www.3printr.com/how-barrelhand-is-using-additive-manufacturing-to-redefine-space-tools-interview-with-karel-bachand-3274073/ (accessed on 24 September 2024).
- ISO/ASTM 52900:2021; Additive Manufacturing—General Principles—Fundamentals and Vocabulary; International Organization for Standardization: Geneva, Switzerland, 2021.
- Oleff, A.; Küster, B.; Stonis, M.; Overmeyer, L. Process monitoring for material extrusion additive manufacturing: A state-of-the-art review. Prog. Addit. Manuf. 2021, 6, 705–730. [Google Scholar] [CrossRef]
- Butt, J.; Bhaskar, R.; Mohaghegh, V. Investigating the influence of material extrusion rates and line widths on FFF-printed graphene-enhanced PLA. J. Manuf. Mater. Process. 2022, 6, 57. [Google Scholar] [CrossRef]
- Kallel, A.; Koutiri, I.; Babaeitorkamani, E.; Khavandi, A.; Tamizifar, M.; Shirinbayan, M.; Tcharkhtchi, A. Study of bonding formation between the filaments of PLA in FFF process. Int. Polym. Process. 2019, 34, 434–444. [Google Scholar] [CrossRef]
- Butt, J.; Bhaskar, R.; Mohaghegh, V. Investigating the effects of extrusion temperatures and material extrusion rates on FFF-printed thermoplastics. Int. J. Adv. Manuf. Technol. 2021, 117, 2679–2699. [Google Scholar] [CrossRef]
- Butt, J.; Bhaskar, R.; Mohaghegh, V. Analysing the effects of layer heights and line widths on FFF-printed thermoplastics. Int. J. Adv. Manuf. Technol. 2022, 121, 7383–7411. [Google Scholar] [CrossRef]
- Shakeri, Z.; Benfriha, K.; Shirinbayan, M.; Ahmadifar, M.; Tcharkhtchi, A. Mathematical modeling and optimization of fused filament fabrication (FFF) process parameters for shape deviation control of polyamide 6 using Taguchi method. Polymers 2021, 13, 3697. [Google Scholar] [CrossRef]
- Vidakis, N.; Kechagias, J.D.; Petousis, M.; Vakouftsi, F.; Mountakis, N. The effects of FFF 3D printing parameters on energy consumption. Mater. Manuf. Process. 2023, 38, 915–932. [Google Scholar] [CrossRef]
- Heidari-Rarani, M.; Rafiee-Afarani, M.; Zahedi, A.M. Mechanical characterization of FDM 3D printing of continuous carbon fiber reinforced PLA composites. Compos. Part B Eng. 2019, 175, 107147. [Google Scholar] [CrossRef]
- Yu, S.; Hwang, Y.H.; Hwang, J.Y.; Hong, S.H. Analytical study on the 3D-printed structure and mechanical properties of basalt fiber-reinforced PLA composites using X-ray microscopy. Compos. Sci. Technol. 2019, 175, 18–27. [Google Scholar] [CrossRef]
- Abderrafai, Y.; Mahdavi, M.H.; Sosa-Rey, F.; Hérard, C.; Navas, I.O.; Piccirelli, N.; Lévesque, M.; Therriault, D. Additive manufacturing of short carbon fiber-reinforced polyamide composites by fused filament fabrication: Formulation, manufacturing and characterization. Mater. Des. 2022, 214, 110358. [Google Scholar] [CrossRef]
- Chicos, L.A.; Pop, M.A.; Zaharia, S.M.; Lancea, C.; Buican, G.R.; Pascariu, I.S.; Stamate, V.M. Infill density influence on mechanical and thermal properties of short carbon fiber-reinforced polyamide composites manufactured by FFF process. Materials 2022, 15, 3706. [Google Scholar] [CrossRef] [PubMed]
- Arjun, P.; Bidhun, V.K.; Lenin, U.K.; Amritha, V.P.; Pazhamannil, R.V.; Govindan, P. Effects of process parameters and annealing on the tensile strength of 3D printed carbon fiber reinforced polylactic acid. Mater. Today Proc. 2022, 62, 7379–7384. [Google Scholar] [CrossRef]
- Bhandari, S.; Lopez-Anido, R.A.; Gardner, D.J. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit. Manuf. 2019, 30, 100922. [Google Scholar] [CrossRef]
- Seok, W.; Jeon, E.; Kim, Y. Effects of annealing for strength enhancement of FDM 3D-printed ABS reinforced with recycled carbon fiber. Polymers 2023, 15, 3110. [Google Scholar] [CrossRef]
- Bambu Filament: PLA-CF. Available online: https://cdn.shopify.com/s/files/1/0584/7236/6216/files/Bambu_PLA-CF_Technical_Data_Sheet_V3.pdf (accessed on 25 September 2024).
- Bambu Filament: PAHT-CF. Available online: https://cdn.shopify.com/s/files/1/0584/7236/6216/files/Bambu_PAHT-CF_Technical_Data_Sheet_V2.pdf (accessed on 25 September 2024).
- Bambu Filament: PETG-CF. Available online: https://cdn.shopify.com/s/files/1/0584/7236/6216/files/Bambu_PETG-CF_Technical_Data_Sheet_V2.pdf (accessed on 25 September 2024).
- IEMAI: ABS-CF Technical Data Sheet. Available online: https://store.iemai3d.com/wp-content/uploads/2024/01/06_CF-ABS-Filament-TDS-1.pdf (accessed on 25 September 2024).
- BS EN ISO 527-2:2012; Plastics—Determination of Tensile Properties–Part 2: Test Conditions for Moulding and Extrusion Plastics; British, European and International Standard: London, UK, 2012.
- BS EN ISO 868:2003; Plastics and Ebonite–Determination of Indentation Hardness by Means of a Durometer (Shore Hardness). British, European and International Standard: London, UK, 2018.
- BS EN ISO 178:2019; Plastics—Determination of Flexural Properties. British, European and International Standard: London, UK, 2019.
- Butt, J.; Bhaskar, R. Investigating the effects of annealing on the mechanical properties of FFF-printed thermoplastics. J. Manuf. Mater. Process. 2020, 4, 38. [Google Scholar] [CrossRef]
- Mitutoyo: SJ-210—Portable Surface Roughness Tester. Available online: https://www.mitutoyo.com/products/form-measurement-machine/surface-roughness/sj-210-portable-surface-roughness-tester-2/ (accessed on 16 September 2024).
- ISO 21920-2:2021; Geometrical Product Specifications (GPS)—Surface Texture: Profile—Part 2: Terms, Definitions and Surface Texture Parameters. International Organization for Standardization (ISO): Geneva, Switzerland, 2021.
- Hart, K.R.; Dunn, R.M.; Sietins, J.M.; Mock, C.M.H.; Mackay, M.E.; Wetzel, E.D. Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing. Polymer 2018, 144, 192–204. [Google Scholar] [CrossRef]
- Cao, M.; Cui, T.; Yue, Y.; Li, C.; Guo, X.; Jia, X.; Wang, B. Preparation and characterization for the thermal stability and mechanical property of PLA and PLA/CF samples built by FFF approach. Materials 2023, 16, 5023. [Google Scholar] [CrossRef] [PubMed]
- Ivey, M.; Melenka, G.W.; Carey, J.P.; Ayranci, C. Characterizing short-fiber-reinforced composites produced using additive manufacturing. Adv. Manuf. Polym. Compos. Sci. 2017, 3, 81–91. [Google Scholar] [CrossRef]
- Alsoufi, M.S.; Elsayed, A.E. How surface roughness performance of printed parts manufactured by desktop FDM 3D printer with PLA+ is influenced by measuring direction. Am. J. Mech. Eng 2017, 5, 211–222. [Google Scholar]
- Garg, A.; Bhattacharya, A.; Batish, A. On surface finish and dimensional accuracy of FDM parts after cold vapor treatment. Mater. Manuf. Process. 2016, 31, 522–529. [Google Scholar] [CrossRef]
- Tate, J.S.; Brushaber, R.P.; Danielsen, E.; Kallagunta, H.; Navale, S.V.; Arigbabowo, O.; Shree, S.; Yaseer, A. Electrical and Mechanical Properties of Fused Filament Fabrication of Polyamide 6/Nanographene Filaments at Different Annealing Temperatures; University of Texas at Austin: Austin, TX, USA, 2019. [Google Scholar]
- Valvez, S.; Reis, P.N.; Ferreira, J.A. Effect of annealing treatment on mechanical properties of 3D-Printed composites. J. Mater. Res. Technol. 2023, 23, 2101–2115. [Google Scholar] [CrossRef]
- Nassar, A.; Younis, M.; Elzareef, M.; Nassar, E. Effects of heat-treatment on tensile behavior and dimension stability of 3d printed carbon fiber reinforced composites. Polymers 2021, 13, 4305. [Google Scholar] [CrossRef]
# | Materials | Nozzle Temperature (°C) | Bed Temperature (°C) |
---|---|---|---|
1 | PLA-CF | 230 | 45 |
2 | PAHT-CF | 290 | 100 |
3 | PETG-CF | 255 | 70 |
4 | ABS-CF | 240 | 95 |
Materials | Annealing Temperatures (°C) |
---|---|
PLA-CF | 53 |
63 * | |
73 | |
83 | |
PAHT-CF and PETG-CF | 60 |
70 * | |
80 | |
90 | |
ABS-CF | 95 |
105 * | |
115 | |
125 |
Materials | Annealing Temperature (°C) | Oven Annealing | Sand Annealing | ||||
---|---|---|---|---|---|---|---|
Length (%) | Width (%) | Thickness (%) | Length (%) | Width (%) | Thickness (%) | ||
PLA-CF | 53 | −0.12 | 0.63 | −0.75 | −0.29 | −0.25 | 2.50 |
63 | −0.29 | 1.75 | −1.25 | −1.76 | −0.25 | 2.83 | |
73 | −0.59 | 1.37 | 0.25 | −2.35 | −0.85 | 4.92 | |
83 | −2.35 | −1.23 | 2.75 | −2.94 | −0.60 | 6.92 | |
PAHT-CF | 60 | −0.59 | 2.73 | 2.67 | −0.59 | 2.20 | 1.83 |
70 | −0.59 | 2.33 | 2.75 | −0.59 | 2.58 | 2.33 | |
80 | −0.59 | 1.65 | 3.83 | −0.59 | 2.73 | 2.75 | |
90 | −1.18 | 2.78 | 5.75 | −1.18 | 2.58 | 2.92 | |
PETG-CF | 60 | −0.59 | 0.55 | 1.33 | −0.59 | 0.50 | 0.67 |
70 | −1.18 | 0.23 | 2.33 | −1.18 | 0.18 | 1.50 | |
80 | −2.35 | −0.90 | 3.58 | −1.76 | −0.40 | 2.08 | |
90 | −3.65 | −2.30 | 8.42 | −2.35 | −0.63 | 3.33 | |
ABS-CF | 95 | −1.18 | 0.27 | 2.17 | −1.18 | 0.78 | 0.25 |
105 | −2.94 | −1.02 | 6.58 | −1.18 | 0.52 | 1.42 | |
115 | −5.29 | −3.15 | 14.75 | −2.35 | −1.68 | 7.42 | |
125 | −7.65 | −4.77 | 18.08 | −3.53 | −1.90 | 7.58 |
Annealing Method | Annealing Temperature (°C) | z-Axis (%) | Surface Roughness (μm) | Tensile Strength (MPa) | Hardness (HD) | Flexural Strength (MPa) |
---|---|---|---|---|---|---|
Oven | 70 | 2.75 | 4.6 | 71.4 | 76.6 | 92.8 |
80 | 3.83 | 5.2 | 75 | 77 | 98.4 | |
90 | 5.75 | 5.5 | 77.5 | 77 | 104 | |
Sand | 80 | 2.75 | 6.0 | 66.2 | 75.1 | 89 |
90 | 2.92 | 6.0 | 66.8 | 75.6 | 92.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Butt, J.; Khan, M.A.A.; Adnan, M.; Mohaghegh, V. Performance Analysis of FFF-Printed Carbon Fiber Composites Subjected to Different Annealing Methods. J. Manuf. Mater. Process. 2024, 8, 252. https://doi.org/10.3390/jmmp8060252
Butt J, Khan MAA, Adnan M, Mohaghegh V. Performance Analysis of FFF-Printed Carbon Fiber Composites Subjected to Different Annealing Methods. Journal of Manufacturing and Materials Processing. 2024; 8(6):252. https://doi.org/10.3390/jmmp8060252
Chicago/Turabian StyleButt, Javaid, Md Ashikul Alam Khan, Muhammad Adnan, and Vahaj Mohaghegh. 2024. "Performance Analysis of FFF-Printed Carbon Fiber Composites Subjected to Different Annealing Methods" Journal of Manufacturing and Materials Processing 8, no. 6: 252. https://doi.org/10.3390/jmmp8060252
APA StyleButt, J., Khan, M. A. A., Adnan, M., & Mohaghegh, V. (2024). Performance Analysis of FFF-Printed Carbon Fiber Composites Subjected to Different Annealing Methods. Journal of Manufacturing and Materials Processing, 8(6), 252. https://doi.org/10.3390/jmmp8060252