Stainless Steel 316L Fabricated by Fused Deposition Modeling Process: Microstructure, Geometrical and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Model Fabrication
2.2. Debinding and Sintering Processes
2.3. Characterization
3. Results and Discussion
3.1. Ultrafuse 316L Filament
3.2. Printing and Post-Processing
3.3. Microstructural Analysis
3.4. Mechanical Properties
3.5. Thermodynamic Modeling
3.6. Complex Part Manufacturing and Comparison of Geometric Dimension
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Sufiiarov, V.; Borisov, E.; Polozov, I.; Masaylo, D. Study of microstructure and properties of 316L steel after selective laser melting. In Proceedings of the METAL 2016—25th Anniversary International Conference on Metallurgy and Materials, Brno, Czech Republic, 25–27 May 2016; pp. 659–663. [Google Scholar]
- Ramazani, H.; Kami, A. Metal FDM, a new extrusion-based additive manufacturing technology for manufacturing of metallic parts: A review. Prog. Addit. Manuf. 2022, 7, 609–626. [Google Scholar] [CrossRef]
- Nelson, A.T. Prospects for additive manufacturing of nuclear fuel forms. Prog. Nucl. Energy 2023, 155, 104493. [Google Scholar] [CrossRef]
- Sufiiarov, V.; Popovich, A.; Borisov, E.; Polozov, I. Layer thickness influence on the Inconel 718 alloy microstructure and properties under selective laser melting. Tsvetnye Met. 2016, 1, 81–86. [Google Scholar] [CrossRef]
- Sufiiarov, V.; Polozov, I.; Kantykov, A.; Khaidorov, A. Binder jetting additive manufacturing of 420 stainless steel: Densification during sintering and effect of heat treatment on microstructure and hardness. Mater. Today Proc. 2019, 30, 592–595. [Google Scholar] [CrossRef]
- Ren, L.; Zhou, X.; Song, Z.; Zhao, C.; Liu, Q.; Xue, J.; Li, X. Process parameter optimization of extrusion-based 3D metal printing utilizing PW-LDPE-SA binder system. Materials 2017, 10, 305. [Google Scholar] [CrossRef]
- Zhang, Y.; Bai, S.; Riede, M.; Garratt, E.; Roch, A. A comprehensive study on fused filament fabrication of Ti-6Al-4V structures. Addit. Manuf. 2020, 34, 101256. [Google Scholar] [CrossRef]
- Hasib, A.G.; Niauzorau, S.; Xu, W.; Niverty, S.; Kublik, N.; Williams, J.; Chawla, N.; Song, K.; Azeredo, B. Rheology scaling of spherical metal powders dispersed in thermoplastics and its correlation to the extrudability of filaments for 3D printing. Addit. Manuf. 2021, 41, 101967. [Google Scholar] [CrossRef]
- Santamaria, R.; Salasi, M.; Bakhtiari, S.; Leadbeater, G.; Iannuzzi, M.; Quadir, M.Z. Microstructure and mechanical behaviour of 316L stainless steel produced using sinter-based extrusion additive manufacturing. J. Mater. Sci. 2022, 57, 9646–9662. [Google Scholar] [CrossRef]
- Watson, A.; Belding, J.; Ellis, B.D. Characterization of 17-4 PH Processed via Bound Metal Deposition (BMD). In Proceedings of the TMS 2020 149th Annual Meeting & Exhibition Supplemental Proceedings, San Diego, CA, USA, 23–27 February 2020; The Minerals, Metals & Materials Series 2020; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Galati, M.; Minetola, P. Analysis of Density, Roughness, and Accuracy of the Atomic Diffusion Additive Manufacturing (ADAM) Process for Metal Parts. Materials 2019, 12, 4122. [Google Scholar] [CrossRef]
- Wagner, M.A.; Hadian, A.; Sebastian, T.; Clemens, F.; Schweizer, T.; Rodriguez-Arbaizar, M.; Carreño-Morelli, E.; Spolenak, R. Fused filament fabrication of stainless steel structures-from binder development to sintered properties. Addit. Manuf. 2022, 49, 102472. [Google Scholar] [CrossRef]
- Nocheseda, C.J.C.; Liza, F.P.; Collera, A.K.M.; Caldona, E.B.; Advincula, R.C. 3D printing of metals using biodegradable cellulose hydrogel inks. Addit. Manuf. 2021, 48, 102380. [Google Scholar] [CrossRef]
- Venkataraman, N.; Rangarajan, S.; Matthewson, M.J.; Safari, A.; Danforth, S.C.; Yardimci, A. Mechanical and Rheological Properties of Feedstock Material for Fused Deposition of Ceramics and Metals (FDC and FDMet) and Their Relationship to Process Performance. In Proceedings of the 1999 International Solid Freeform Fabrication Symposium Proceedings, Austin, TX, USA, 9–11 August 1999; pp. 351–359. [Google Scholar] [CrossRef]
- Gotman, I. Characteristics of Materials Used in Implants: Metals, Stenting the Urinary System, 2nd ed.; Informa Healthcare: London, UK, 2011; p. 61. ISBN 9781841843872. [Google Scholar]
- Wang, Y.M.; Voisin, T.; McKeown, J.T.; Ye, J.; Calta, N.P.; Li, Z.; Zeng, Z.; Zhang, Y.; Chen, W.; Roehling, T.T. Additively manufactured hierarchical stainless steels with high strength and ductility. Nat. Mater. 2018, 17, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Sadaf, M.; Bragaglia, M.; Nanni, F. A simple route for additive manufacturing of 316L stainless steel via Fused Filament Fabrication. J. Manuf. Process. 2021, 67, 141–150. [Google Scholar] [CrossRef]
- Betts, J.L.; Sampson, B.J.; Lindsey, K.; Brinkley, F.M.; Priddy, M.W. Reduction of Process Induced Porosity for Ultrafuse 316L through Parameter Optimization of Creality Ender 3 V2 and Makerbot Method, X. Crystals 2024, 14, 285. [Google Scholar] [CrossRef]
- Moritzer, E.; Elsner, C.L.; Schumacher, C. Investigation of metal-polymer composites manufactured by fused deposition modeling with regard to process parameters. Polym. Compos. 2021, 42, 6065–6079. [Google Scholar] [CrossRef]
- Dayue Jiang, D.; Ning, F. Anisotropic deformation of 316L stainless steel overhang structures built by material extrusion based additive manufacturing. Addit. Manuf. 2022, 50, 102545. [Google Scholar] [CrossRef]
- Quarto, M.; Carminati, M.; D’Urso, G. Density and shrinkage evaluation of AISI 316L parts printed via FDM process. Mater. Manuf. Process. 2021, 36, 1535–1543. [Google Scholar] [CrossRef]
- Thompson, Y.; Gonzalez-Gutierrez, J.; Kukla, K.; Felfer, P. Fused filament fabrication, debinding and sintering as a low cost additive manufacturing method of 316L stainless steel. Addit. Manuf. 2019, 30, 100861. [Google Scholar] [CrossRef]
- Tosto, C.; Tirillò, J.; Sarasini, F.; Sergi, C.; Cicala, G. Fused Deposition Modeling Parameter Optimization for Cost-Effective Metal Part Printing. Polymers 2022, 14, 3264. [Google Scholar] [CrossRef]
- Liu, B.; Wang, Y.; Lin, Z.; Zhang, T. Creating metal parts by Fused Deposition Modeling and Sintering. Mater. Lett. 2020, 263, 127252. [Google Scholar] [CrossRef]
- Damon, J.; Dietrich, S.; Gorantla, S.; Popp, U.; Okolo, B.; Schulze, V. Process porosity and mechanical performance of fused filament fabricated 316L stainless steel. Rapid Prototyp. J. 2019, 25, 1319–1327. [Google Scholar] [CrossRef]
- Wang, C.; Mai, W.; Shi, Q.; Liu, Z.; Pan, Q.; Peng, J. Effect of Printing Parameters on Mechanical Properties and Dimensional Accuracy of 316L Stainless Steel Fabricated by Fused Filament Fabrication. J. Mater. Eng. Perform. 2023, 1, 1–13. [Google Scholar] [CrossRef]
- Ait-Mansour, I.; Kretzschmar, N.; Chekurov, S.; Salmi, M.; Rech, J. Design-dependent shrinkage compensation modeling and mechanical property targeting of metal FFF. Prog. Addit. Manuf. 2020, 5, 51–57. [Google Scholar] [CrossRef]
- Kasha, A.; Obadimu, S.O.; Kourousis, K.I. Flexural characteristics of material extrusion steel 316L: Influence of manufacturing parameters. Addit. Manuf. Lett. 2022, 3, 100087. [Google Scholar] [CrossRef]
- Carminati, M.; Quarto, M.; D’urso, G.; Giardini, C.; Maccarini, G. Mechanical Characterization of AISI 316L Samples Printed Using Material Extrusion. Appl. Sci. 2022, 12, 1433. [Google Scholar] [CrossRef]
- Spiller, S.; Kolstad, S.O.; Razavi, N. Fabrication and characterization of 316L stainless steel components printed with material extrusion additive manufacturing. Procedia Struct. Integr. 2022, 42, 1239–1248. [Google Scholar] [CrossRef]
- Safka, J.; Ackermann, M.; Machacek, J.; Seidl, M.; Vele, F.; Truxova, V. Fabrication process and basic material properties of the BASF Ultrafuse 316LX material. MM Sci. J. 2020, 5, 4216–4222. [Google Scholar] [CrossRef]
- Piscopo, G.; Iuliano, L. Evaluating the Effect of Deposition Strategy on Mechanical Characteristics of 316L Parts Produced by Laser Powder Directed Energy Deposition Process. Lasers Manuf. Mater. Process. 2024, 11, 419–436. [Google Scholar] [CrossRef]
- Nie, H.; Liu, H.; Wang, C.; Wu, Y.; Zhu, S.; Luo, J. A new laser remelting strategy for direct energy deposition of 316L stainless steel. Proceedings of the Institution of Mechanical Engineers. Part B J. Eng. Manuf. 2024. [Google Scholar] [CrossRef]
- Huang, R.; Wu, Y.; Huang, L.; Pan, C.; Sun, Y.; Tian, S.; Wang, D.; Yang, Y. Scanning strategies for the 316L part with lattice structures fabricated by selective laser melting. Int. J. Adv. Manuf. Technol. 2024, 133, 3165–3178. [Google Scholar] [CrossRef]
- Lee, G.; Jeong, S.G.; Kwon, J.; Ahn, S.Y.; SaGong, M.J.; Lee, K.-A.; Kim, H.S. Shear deformation behavior of additively manufactured 316L stainless steel lattice structures. Addit. Manuf. 2024, 93, 104425. [Google Scholar] [CrossRef]
- Suryawanshi, J.; Prashanth, K.G.; Ramamurty, U. Mechanical behavior of selective laser melted 316L stainless steel. Mater. Sci. Eng. 2017, 696, 113–121. [Google Scholar] [CrossRef]
- Gong, H.; Snelling, D.; Kardel, K.; Carrano, A. Comparison of Stainless Steel 316L Parts Made by FDM- and SLM-Based Additive Manufacturing Processes. Miner. Met. Mater. Soc. 2019, 71, 880–885. [Google Scholar] [CrossRef]
- Kedziora, S.; Decker, T.; Museyibov, E.; Morbach, J.; Hohmann, S.; Huwer, A.; Wahl, M. Strength Properties of 316L and 17-4 PH Stainless Steel Produced with Additive Manufacturing. Materials 2022, 15, 6278. [Google Scholar] [CrossRef]
- Tosto, C.; Tirillò, J.; Sarasini, F.; Cicala, G. Hybrid metal/polymer filaments for fused filament fabrication (FFF) to print metal parts. Appl. Sci. 2021, 11, 1444. [Google Scholar] [CrossRef]
- Naleway, S.E.; Porter, M.M.; McKittrick, J.; Meyers, M.A. Structural Design Elements in Biological Materials: Application to Bioinspiration. Adv. Mater. 2015, 27, 5455–5476. [Google Scholar] [CrossRef]
- Natarajan, B.; Gilman, J.W. Bioinspired Bouligand cellulose nanocrystal composites: A review of mechanical properties. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2018, 376, 20170050. [Google Scholar] [CrossRef]
- Zimmermann, E.A.; Gludovatz, B.; Schaible, E.; Dave, N.K.N.; Yang, W.; Meyers, M.A.; Ritchie, R.O. Mechanical adaptability of the Bouligand-type structure in natural dermal armour. Nat. Commun. 2018, 4, 2634. [Google Scholar] [CrossRef]
- Weaver, J.C.; Milliron, G.W.; Miserez, A.; Evans-Lutterodt, K.; Herrera, S.; Gallana, I.; Mershon, W.J.; Swanson, B.; Zavattieri, P.; DiMasi, E.; et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science 2012, 336, 1275–1280. [Google Scholar] [CrossRef]
- Chen, P.Y.; Lin, A.Y.-M.; McKittrick, J.; Meyers, M.A. Structure and mechanical properties of crab exoskeletons. Acta Biomater. 2008, 4, 587–596. [Google Scholar] [CrossRef]
- Bouligand, Y. Twisted fibrous arrangements in biological materials and cholesteric mesophases. Tissue Cell 1972, 4, 189–217. [Google Scholar] [CrossRef] [PubMed]
- Raabe, D.; Romano, P.; Sachs, C.; Fabritius, H.; Al-Sawalmih, A.; Yi, S.-B.; Servos, G.; Hartwig, H.G. Microstructure and crystallographic texture of the chitin-protein network in the biological composite material of the exoskeleton of the lobster Homarus americanus. Mater. Sci. Eng. A 2006, 421, 143–153. [Google Scholar] [CrossRef]
- Technical Data Sheet. Website BASF. Available online: https://forward-am.com/material-portfolio/ultrafuse-filaments-for-fused-filaments-fabrication-fff/metal-filaments/ultrafuse-316l (accessed on 5 March 2024).
- Ultrafuse Metal Filaments. Users Guideline. BASF. Available online: https://move.forward-am.com/hubfs/AES%20Documentation/Metal%20Filaments/Ultrafuse_metal_User_Guideline.pdf (accessed on 11 November 2024).
- DIN EN ISO 6892-1:2019; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Beuth: Berlin, Germany, 2019.
- Golod, V.; Sufiiarov, V. The evolution of structural and chemical heterogeneity during rapid solidification at gas atomization. IOP Conf. Ser. Mater. Sci. Eng. 2017, 192, 012009. [Google Scholar] [CrossRef]
- Miyanaji, H. Binder Jetting Additive Manufacturing Process Fundamentals and the Resultant Influences on Part Quality. Ph.D. Thesis, University of Louisville, Louisville, KY, USA, 2018. [Google Scholar] [CrossRef]
- Sufiyarov, V.; Popovich, A.; Borisov, E.; Polozov, I. Evolution of structure and properties of heat-resistant nickel alloy after selective laser melting; hot isostatic pressing and heat treatment. Tsvetnye Met. 2017, 1, 77–82. [Google Scholar] [CrossRef]
- Rodrigues, T.A.; Escobar, J.D.; Shen, J.; Duarte, V.R.; Ribamar, G.G.; Avila, J.A.; Maawad, E.; Schell, N.; Santos, T.G.; Oliveira, J.P. Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysis. Addit. Manuf. 2021, 48, 102428. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Li, X.; Yan, Z. On hot isostatic pressing sintering of fused filament fabricated 316L stainless steel–Evaluation of microstructure, porosity, and tensile properties. Mater. Lett. 2021, 296, 129854. [Google Scholar] [CrossRef]
C, % | Cr, % | Ni, % | Mn, % | Mo, % | Si, % | Fe, % |
---|---|---|---|---|---|---|
≤0.03 | 16–18 | 10–14 | ≤2 | 2–3 | ≤1 | bal. |
Parameter | Value |
---|---|
Nozzle temperature | 245 °C |
Bed temperature (5 layers) | 105 °C |
Bed temperature | 90 °C |
Layer thickness | 0.1 mm; 0.2 mm |
Extrusion coefficient | 105% |
Hatch distance | 0.5 mm |
Printing speed | 25 mm/s |
Diameter of nozzle | 0.5 mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaitceva, M.; Sotov, A.; Popovich, A.; Sufiiarov, V. Stainless Steel 316L Fabricated by Fused Deposition Modeling Process: Microstructure, Geometrical and Mechanical Properties. J. Manuf. Mater. Process. 2024, 8, 259. https://doi.org/10.3390/jmmp8060259
Zaitceva M, Sotov A, Popovich A, Sufiiarov V. Stainless Steel 316L Fabricated by Fused Deposition Modeling Process: Microstructure, Geometrical and Mechanical Properties. Journal of Manufacturing and Materials Processing. 2024; 8(6):259. https://doi.org/10.3390/jmmp8060259
Chicago/Turabian StyleZaitceva, Maria, Anton Sotov, Anatoliy Popovich, and Vadim Sufiiarov. 2024. "Stainless Steel 316L Fabricated by Fused Deposition Modeling Process: Microstructure, Geometrical and Mechanical Properties" Journal of Manufacturing and Materials Processing 8, no. 6: 259. https://doi.org/10.3390/jmmp8060259
APA StyleZaitceva, M., Sotov, A., Popovich, A., & Sufiiarov, V. (2024). Stainless Steel 316L Fabricated by Fused Deposition Modeling Process: Microstructure, Geometrical and Mechanical Properties. Journal of Manufacturing and Materials Processing, 8(6), 259. https://doi.org/10.3390/jmmp8060259