A Review of Magnetic Abrasive Finishing for the Internal Surfaces of Metal Additive Manufactured Parts
Abstract
:1. Introduction
2. Research Progress on MAF
2.1. Current Advances in the Research of MAF Devices
2.2. Current Advances in the Mechanisms of MAF
2.3. Current Advances in the Magnetic Abrasive Preparation
2.4. Current Advances in the MAF Process for Internal Surfaces
3. Conclusions
- Magnetic field and motion generation devices for MAF on complex internal surfaces still require significant improvement and optimization. Future research should focus on exploring innovative devices requiring assistance from multiple fields of physics.
- There is still room for further exploration in the mechanism analysis of MAF. Many studies focus on simple workpieces, such as flat surfaces, circular cross-section tubes, and annular cross-section tubes. However, there is limited published research on the mechanisms of MAF for complex internal surfaces. Additionally, the interactions between magnetic abrasives are often overlooked, particularly in complex internal cavities. Future research should focus on exploring the dynamics of magnetic abrasives under complex working conditions and their material removal mechanisms.
- In light of increasingly stringent internal surface finishing requirements, it is essential to develop new, efficient, and high-quality magnetic abrasives, optimize the preparation process parameters, and improve grinding performance.
- With the rapid development of additive manufacturing technology, the internal cavity structures of irregularly shaped parts requiring finishing are becoming increasingly complex, with higher precision requirements. In this context, single-method finishing solutions may have limitations. Therefore, composite finishing techniques that synergize multiple advanced processes are a crucial direction for further exploration in this field.
Funding
Conflicts of Interest
References
- Gu, D.; Shi, X.; Poprawe, R.; Bourell, D.L.; Setchi, R.; Zhu, J. Material-structure-performance integrated laser-metal additive manufacturing. Science 2021, 372, 932–947. [Google Scholar] [CrossRef] [PubMed]
- Murr, L.E. Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: An overview. J. Mater. Res. Technol. 2020, 9, 1087–1103. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, M.; Chohan, J.S. The role of additive manufacturing for biomedical applications: A critical review. J. Manuf. Process. 2021, 64, 828–850. [Google Scholar] [CrossRef]
- Rasiya, G.; Shukla, A.; Saran, K. Additive manufacturing: A review. Mater. Today Proc. 2021, 47, 6896–6901. [Google Scholar] [CrossRef]
- Cooke, S.; Ahmadi, K.; Willerth, S.; Herring, R. Metal additive manufacturing: Technology, metallurgy and modelling. J. Manuf. Process. 2020, 57, 978–1003. [Google Scholar] [CrossRef]
- Armstrong, M.; Mehrabi, H.; Naveed, N. An overview of modern metal additive manufacturing technology. J. Manuf. Process. 2022, 84, 1001–1029. [Google Scholar] [CrossRef]
- Madhavadas, V.; Srivastava, D.; Chadha, U.; Raj, S.A.; Sultan, M.T.H.; Shahar, F.S.; Shah, A.U.M. A review on metal additive manufacturing for intricately shaped aerospace components. CIRP J. Manuf. Sci. Technol. 2022, 39, 18–36. [Google Scholar] [CrossRef]
- Gu, D.D.; Shen, Y.F. Balling phenomena in direct laser sintering of stainless steel powder: Metallurgical mechanisms and control methods. Mater. Des. 2009, 30, 2903–2910. [Google Scholar] [CrossRef]
- Strano, G.; Hao, L.; Everson, R.M.; Evans, K.E. Surface roughness analysis, modelling and prediction in selective laser melting. J. Mater. Process. Technol. 2013, 213, 589–597. [Google Scholar] [CrossRef]
- Liu, S.; Yang, W.; Shi, X.; Li, B.; Duan, S.; Guo, H.; Guo, J. Influence of laser process parameters on the densification, microstructure, and mechanical properties of a selective laser melted AZ61 magnesium alloy. J. Alloys Compd. 2019, 808, 151160. [Google Scholar] [CrossRef]
- Wu, S.C.; Hu, Y.N.; Yang, B.; Zhang, H.O.; Guo, H.P.; Kang, G.Z. Review on defect characterization and structural integrity assessment method of additively manufactured materials. J. Mech. Eng. 2021, 57, 3–34. [Google Scholar]
- Kim, U.S.; Park, J.W. High-quality surface finishing of industrial three-dimensional metal additive manufacturing using electrochemical polishing. Int. J. Precis. Eng. Manuf. Green Technol. 2019, 6, 11–21. [Google Scholar] [CrossRef]
- Gao, H.; Li, S.C.; Fu, Y.Z. Abrasive flow polishing of lattice parts in metal additive manufacturing. Acta Aeronaut. Astronaut. Sin. 2017, 38, 231–239. [Google Scholar]
- Nesli, S.; Yilmaz, O. Surface characteristics of laser polished Ti-6Al-4V parts produced by electron beam melting additive manufacturing process. Int. J. Adv. Manuf. Technol. 2021, 114, 271–289. [Google Scholar] [CrossRef]
- Dong, G.Y.; Julien, M.F.; Zhao, Y.Y. Investigation of electrochemical post-processing procedure for Ti-6Al-4V lattice structure manufactured by direct metal laser sintering (DMLS). Int. J. Adv. Manuf. Technol. 2019, 104, 3401–3417. [Google Scholar] [CrossRef]
- Tyagi, P.; Goulet, T.; Riso, C.; Stephenson, R.; Chuenprateep, N.; Schlitzer, J.; Benton, C.; Garcia-Moreno, F. Reducing the roughness of internal surface of an additive manufacturing produced 316 steel component by chempolishing and electropolishing. Addit. Manuf. 2019, 25, 32–38. [Google Scholar] [CrossRef]
- Nagalingam, A.P.; Yeo, S.H. Controlled hydrodynamic cavitation erosion with abrasive particles for internal surface modification of additive manufactured components. Wear 2018, 414–415, 89–100. [Google Scholar] [CrossRef]
- Nagalingam, A.P.; Yuvaraj, H.K.; Yeo, S.H. Synergistic effects in hydrodynamic cavitation abrasive finishing for internal surface-finish enhancement of additive-manufactured components. Addit. Manuf. 2020, 33, 101110. [Google Scholar] [CrossRef]
- Nagalingam, A.P.; Thiruchelvam, V.C.; Yeo, S.H. A novel hydrodynamic cavitation abrasive technique for internal surface finishing. J. Manuf. Process. 2019, 46, 44–58. [Google Scholar] [CrossRef]
- Wei, H.; Peng, C.; Gao, H.; Wang, X.; Wang, X. On establishment and validation of a new predictive model for material removal in abrasive flow machining. Int. J. Mach. Tools Manuf. 2019, 138, 66–79. [Google Scholar] [CrossRef]
- Wang, C.W.; Ding, J.F.; Yuan, J.L.; Xu, Y.C.; Zhang, K.H.; Lu, H.B. Research on uniformity precise finishing process of abrasive grain flow for ellipse inner cavity surface. J. Mech. Eng. 2022, 58, 306–314. [Google Scholar]
- Wang, L.; Wu, Y.; Zhao, J.; Lu, B. Research progresses of finishing technology for inner channel of additive manufacturing parts. China Mech. Eng. 2023, 34, 757–769. [Google Scholar]
- Fu, Y.; Gao, H.; Yan, Q.; Wang, X. A new predictive method of the finished surface profile in abrasive flow machining process. Precis. Eng. 2019, 60, 497–505. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, H. Magnetically driven internal finishing of AISI 316L stainless steel tubes generated by laser powder bed fusion. J. Manuf. Process. 2022, 76, 155–166. [Google Scholar] [CrossRef]
- Verma, G.C.; Kala, P.; Pandey, P.M. Experimental investigations into internal magnetic abrasive finishing of pipes. Int. J. Adv. Manuf. Technol. 2016, 88, 1657–1668. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, J.; Wang, H.; Kumar, A.S.; Chaudhari, A. A novel magnetically driven polishing technique for internal surface finishing. Precis. Eng. 2018, 54, 222–232. [Google Scholar] [CrossRef]
- Sun, Z.; Tian, Y.; Fan, Z.; Qian, C.; Ma, Z.; Li, L.; Yu, H.; Guo, J. Experimental investigations on enhanced alternating-magnetic field-assisted finishing of stereolithographic 3D printing zirconia ceramics. Ceram. Int. 2022, 48, 36609–36619. [Google Scholar] [CrossRef]
- Guo, J.; Au, K.H.; Sun, C.N.; Goh, M.H.; Kum, C.W.; Liu, K.; Wei, J.; Suzuki, H.; Kang, R. Novel rotating-vibrating magnetic abrasive polishing method for double-layered internal surface finishing. J. Mater. Process. Technol. 2019, 264, 422–437. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.M.; Deng, C.; Han, B. Application of V-shaped magnet in polishing the inner surface of the SUS304 tubing. J. Mech. Eng. 2014, 50, 187–191. [Google Scholar] [CrossRef]
- Yao, Y.S.; Zhou, R.G.; Zhang, C.L. Surface polishing technology for complex metal components in additive manufacturing. Acta Aeronaut. Astronaut. Sin. 2022, 43, 244–256. [Google Scholar]
- Li, N.; Fan, P.; Zhu, Q.; Cui, B.; Silvain, J.F.; Lu, Y.F. Femtosecond laser polishing of additively manufactured parts at grazing incidence. Appl. Surf. Sci. 2023, 612, 155833. [Google Scholar] [CrossRef]
- Acquesta, A.; Monetta, T. Green Approach for Electropolishing Surface Treatments of Additive Manufactured Parts: A Comprehensive Review. Metals 2023, 13, 874–898. [Google Scholar] [CrossRef]
- Liu, H.; Ye, M.; Shen, X.; Ye, Z.; Wang, L.; Wang, G.; Xu, P.; Wang, C. Improving surface electrochemical polishing quality of additive manufactured AlSi10Mg by reconstituting the Si phase. Surf. Coat. Technol. 2024, 479, 130549. [Google Scholar] [CrossRef]
- Basha, S.M.; Sankar, M.R.; Venkaiah, N. Experimental investigation on the surface topographical improvement of selective laser melted SS316L using abrasive flow finishing. J. Manuf. Process. 2024, 131, 844–860. [Google Scholar]
- Kang, S.; Sun, Y.; Chen, F.; Wang, L.; Zhang, G.; Guo, J.; Zuo, D. Experimental study on magnetic ball-assisted magnetic abrasive finishing for irregular spherical internal cavity of waveguide formed by selective laser melting. Int. J. Adv. Manuf. Technol. 2024, 133, 1417–1429. [Google Scholar] [CrossRef]
- Zhang, J.; Chaudhari, A.; Wang, H. Surface quality and material removal in magnetic abrasive finishing of selective laser melted 316L stainless steel. J. Manuf. Process. 2019, 45, 710–719. [Google Scholar] [CrossRef]
- Zou, Y.H.; Xie, H.J.; Zhang, Y.L. Study on surface quality improvement of the plane magnetic abrasive finishing process. Int. J. Adv. Manuf. Technol. 2020, 109, 1825–1839. [Google Scholar] [CrossRef]
- Jiang, L.; Zhang, G.; Du, J.; Zhu, P.; Cui, T.; Cui, Y. Processing performance of Al2O3/Fe-based composite spherical magnetic abrasive particles. J. Magn. Magn. Mater. 2021, 528, 167811. [Google Scholar] [CrossRef]
- Babbar, A.; Prakash, C.; Singh, S.; Gupta, M.K.; Mia, M.; Pruncu, C.I. Application of hybrid nature-inspired algorithm: Single and bi-objective constrained optimization of magnetic abrasive finishing process parameters. J. Mater. Res. Technol. 2020, 9, 7961–7974. [Google Scholar] [CrossRef]
- Zhao, Y.; Ratay, J.; Li, K.; Yamaguchi, H.; Xiong, W. Effects of magnetic abrasive finishing on microstructure and mechanical properties of Inconel 718 processed by laser powder bed fusion. J. Manuf. Mater. Process. 2022, 6, 43. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Zhang, G. Predicting polishing performance of magnetic abrasive and optimizing its preparation process parameters based on Taguchi-Ga synergy. J. Hunan Univ. (Nat. Sci.) 2024, 51, 43–53. [Google Scholar]
- Lee, P.H.; Chang, J.Y. A magnetic abrasive finishing (MAF) platform utilizing horizontal transverse magnetic field magnetized by permanent magnets. Microsyst. Technol. 2021, 27, 2499–2506. [Google Scholar] [CrossRef]
- Fan, Z.; Tian, Y.; Zhou, Q.; Shi, C. Enhanced magnetic abrasive finishing of Ti–6Al–4V using shear thickening fluids additives. Precis. Eng. 2020, 64, 300–306. [Google Scholar] [CrossRef]
- Zou, Y.; Xie, H.; Dong, C.; Wu, J. Study on complex micro surface finishing of alumina ceramic by the magnetic abrasive finishing process using alternating magnetic field. Int. J. Adv. Manuf. Technol. 2018, 97, 2193–2202. [Google Scholar] [CrossRef]
- Xie, H.J.; Zou, Y.H. Investigation of the application of a magnetic abrasive finishing process using an alternating magnetic field for finishing micro-grooves. Nanotechnol. Precis. Eng. 2021, 4, 033002. [Google Scholar] [CrossRef]
- Thamir, A.D.; Khamesee, M.B. A stationary apparatus of magnetic abrasive finishing using a rotating magnetic field. Microsyst. Technol. 2016, 23, 5185–5191. [Google Scholar]
- Ji, S.M. Study on machinability of softness abrasive flow based on Preston equation. J. Mech. Eng. 2011, 47, 156–163. [Google Scholar] [CrossRef]
- Barman, A.; Das, M. Toolpath generation and finishing of bio-titanium alloy using novel polishing tool in MFAF process. Int. J. Adv. Manuf. Technol. 2017, 100, 1123–1135. [Google Scholar] [CrossRef]
- Guo, J.; Jong, H.J.H.; Kang, R.; Guo, D. Novel localized vibration-assisted magnetic abrasive polishing method using loose abrasives for V-groove and Fresnel optics finishing. Opt. Express 2018, 26, 11608–11619. [Google Scholar] [CrossRef]
- Guo, J.; Feng, W.; Jong, H.J.H.; Suzuki, H.; Kang, R. Finishing of rectangular microfeatures by localized vibration-assisted magnetic abrasive polishing method. J. Manuf. Process. 2020, 49, 204–213. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, D.; Li, X.; Liu, J.; Li, F. A permanent magnet tool in ultrasonic assisted magnetic abrasive finishing for 30CrMnSi grooves part. Precis. Eng. 2022, 75, 180–192. [Google Scholar] [CrossRef]
- Yun, H.; Han, B.; Chen, Y.; Liao, M. Internal finishing process of alumina ceramic tubes by ultrasonic-assisted magnetic abrasive finishing. Int. J. Adv. Manuf. Technol. 2015, 85, 727–734. [Google Scholar] [CrossRef]
- Zhou, C.; Han, B.; Xiao, C.; Chen, Y.; Liu, X. Application of magnetic abrasive particle aided magnetic needles grinding. Surf. Technol. 2019, 48, 275–282. [Google Scholar]
- Han, B.; Deng, C.; Chen, Y. The spherical magnet processing of inner surface of bending pipe by magnetic abrasive finishing. Tribology 2013, 33, 565–570. [Google Scholar]
- Arrazola, P.J.; Özel, T.; Umbrello, D.; Davies, M.; Jawahir, I.S. Recent advances in modelling of metal machining processes. CIRP Ann. Manuf. Technol. 2013, 62, 695–718. [Google Scholar] [CrossRef]
- Jayswal, S.C.; Jain, V.K.; Dixit, P.M. Modeling and simulation of magnetic abrasive finishing process. Int. J. Adv. Manuf. Technol. 2005, 26, 477–490. [Google Scholar] [CrossRef]
- Jain, V.K.; Jayswal, S.C.; Dixit, P.M. Modeling and simulation of surface roughness in magnetic abrasive finishing using non-uniform surface profiles. Mater. Manuf. Process. 2007, 22, 256–270. [Google Scholar] [CrossRef]
- Singh, A.K.; Jha, S.; Pandey, P.M. Mechanism of material removal in ball end magnetorheological finishing process. Wear 2013, 302, 1180–1191. [Google Scholar] [CrossRef]
- Heng, L.; Kim, J.S.; Tu, J.F.; Mun, S.D. Fabrication of precision meso-scale diameter ZrO2 ceramic bars using new magnetic pole designs in ultra-precision magnetic abrasive finishing. Ceram. Int. 2020, 46, 17335–17346. [Google Scholar] [CrossRef]
- Kumar, S.; Jain, V.K.; Sidpara, A. Nanofinishing of freeform surfaces (knee joint implant) by rotational-magnetorheological abrasive flow finishing (R-MRAFF) process. Precis. Eng. 2015, 42, 165–178. [Google Scholar] [CrossRef]
- Misra, A.; Pandey, P.M.; Dixit, U.S.; Roy, A.; Silberschmidt, V.V. Modeling of finishing force and torque in ultrasonic-assisted magnetic abrasive finishing process. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2017, 233, 411–425. [Google Scholar] [CrossRef]
- Wani, A.M.; Yadava, V.; Khatri, A. Simulation for the prediction of surface roughness in magnetic abrasive flow finishing (MAFF). J. Mater. Process. Technol. 2007, 190, 282–290. [Google Scholar] [CrossRef]
- Paswan, S.K.; Bedi, T.S.; Singh, A.K. Modeling and simulation of surface roughness in magnetorheological fluid based honing process. Wear 2017, 376, 1207–1221. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.; Zhang, G.; Yin, F.; Zhang, H. Modeling of material removal in magnetic abrasive finishing process with spherical magnetic abrasive powder. Int. J. Mech. Sci. 2020, 177, 105601. [Google Scholar] [CrossRef]
- Alam, Z.; Jha, S. Modeling of surface roughness in ball end magnetorheological finishing (BEMRF) process. Wear 2017, 376–377, 194–202. [Google Scholar] [CrossRef]
- Shukla, V.C.; Pandey, P.M.; Dixit, U.S.; Roy, A.; Silberschmidt, V. Modeling of normal force and finishing torque considering shearing and ploughing effects in ultrasonic assisted magnetic abrasive finishing process with sintered magnetic abrasive powder. Wear 2017, 390–391, 11–22. [Google Scholar] [CrossRef]
- Misra, A.; Pandey, P.M.; Dixit, U.S. Modeling and simulation of surface roughness in ultrasonic assisted magnetic abrasive finishing process. Int. J. Mech. Sci. 2017, 133, 344–356. [Google Scholar] [CrossRef]
- Kala, P.; Sharma, V.; Pandey, P.M. Surface roughness modelling for double disk magnetic abrasive finishing process. J. Manuf. Process. 2017, 25, 37–48. [Google Scholar] [CrossRef]
- He, X.; Jin, H.; Zhou, C.; Gao, C.; Zhang, G.; Shiju, E. Modeling of material removal in magnetic finishing based on Maxwell’s stress tensor theory and its experimental validation. J. Mater. Process. Technol. 2023, 312, 117808. [Google Scholar] [CrossRef]
- Li, W.; Li, X.; Yang, S.; Li, W. A newly developed media for magnetic abrasive finishing process: Material removal behavior and finishing performance. J. Mater. Process. Technol. 2018, 260, 20–29. [Google Scholar] [CrossRef]
- Mosavat, M.; Rahimi, A. Numerical-experimental study on polishing of silicon wafer using magnetic abrasive finishing process. Wear 2019, 424–425, 143–150. [Google Scholar] [CrossRef]
- Qin, P.; Zhang, G.; Zhao, Y.; Jiang, L.; Teng, X.; Liang, J. Study of CBN/Fe-based spherical magnetic abrasive bonding interfacial microstructure prepared by gas atomization with rapid solidification. Adv. Powder Technol. 2020, 31, 1597–1602. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Y.; Meng, J.; Gao, Y.; Song, Z.; Zhang, X.; Liu, Q.; Cao, C. Preparation of Al2O3 magnetic abrasives by combining plasma molten metal powder with sprayed abrasive powder. Ceram. Int. 2022, 48, 21612–21619. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, M.M.; Liu, Z.Q. Study on sintering process of magnetic abrasive particles. Adv. Mater. Res. 2011, 337, 163–167. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Chen, Y.; Li, Y.J.; Zhang, X. Comprehensive performance evaluation of the magnetic abrasive particles. Int. J. Adv. Manuf. Technol. 2013, 68, 631–640. [Google Scholar] [CrossRef]
- Zhang, G.X.; Zhao, Y.G.; Zhao, D.B.; Yin, F.S.; Zhao, Z.D. Preparation of white alumina spherical composite magnetic abrasive by gas atomization and rapid solidification. Scr. Mater. 2011, 65, 416–419. [Google Scholar] [CrossRef]
- Gao, Y.; Zhao, Y.; Zhang, G.; Yin, F.; Zhao, G.; Guo, H. Preparation and characterization of spherical diamond magnetic abrasive powder by atomization process. Diam. Relat. Mater. 2020, 102, 107658. [Google Scholar] [CrossRef]
- Jiang, L.; Chang, T.; Zhu, P.; Zhang, G.; Du, J.; Liu, N.; Chen, H. Influence of process conditions on preparation of CBN/Fe-based spherical magnetic abrasive via gas atomization. Ceram. Int. 2021, 47, 31367–31374. [Google Scholar] [CrossRef]
- Zhang, T.; Jin, Z.J.; Wang, P.C. Study on process of preparing magnetic abrasive by barrel plating. Electroplat. Finish. 2015, 34, 449–453. [Google Scholar]
- Yang, B.; Lu, W.; Feng, W.; Yang, X.; Zuo, D. Adsorption and deposition of micro diamond particles in preparing diamond magnetic abrasives by electroless composite plating. Diam. Relat. Mater. 2017, 73, 137–142. [Google Scholar] [CrossRef]
- Ahn, B.W.; Lee, S.H. Run-to-run process control of magnetic abrasive finishing using bonded abrasive particles. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2012, 226, 1963–1975. [Google Scholar] [CrossRef]
- Zhao, W.Y.; Yang, S.Q.; Bai, X.Y.; Li, X.H.; Yang, S.C.; Hao, Z.M. Preparation technology and experimental study of magnetic abrasive particles by bonding method. China Mech. Eng. 2019, 30, 535–541. [Google Scholar]
- Wang, L.; Sun, Y.; Zhang, G.; Wu, P.; Sun, Y.; Zuo, D. Investigation on the preparation and finishing performance of a novel nanoparticle-enhanced bonded magnetic abrasive. Int. J. Adv. Manuf. Technol. 2023, 129, 4631–4642. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Zhang, G.; Wu, P.; Sun, Y.; Zuo, D. Development of a new ecological magnetic abrasive tool for finishing bio-wire material. Materials 2019, 12, 714. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Fan, Z.; Yang, Z.; Tian, Y.; Gao, J. Simulation and modeling of magnetorheological shear thickening polishing processes for slender tube. J. Mater. Res. Technol. 2023, 25, 480–496. [Google Scholar] [CrossRef]
- Shukla, V.C.; Pandey, P.M. Experimental investigations into sintering of magnetic abrasive powder for ultrasonic assisted magnetic abrasive finishing process. Mater. Manuf. Process. 2016, 32, 108–114. [Google Scholar] [CrossRef]
- Gao, Y.W.; Zhao, Y.G.; Zhang, G.G. Preparation of Al2O3 magnetic abrasives by gas-solid two-phase double-stage atomization and rapid solidification. Mater. Lett. 2018, 215, 300–304. [Google Scholar] [CrossRef]
- Meng, L.; Yan, Q.S.; Gao, W.Q. Preparation of bonded magnetic abrasives and their application in grinding and polishing. Mach. Tool Manuf. Technol. 2007, 36, 28–31. [Google Scholar]
- Wang, A.C.; Lee, S.J. Study the characteristics of magnetic finishing with gel abrasive. Int. J. Mach. Tools Manuf. 2009, 49, 1063–1069. [Google Scholar] [CrossRef]
- Kumar, Y.; Singh, H. Experimental investigations on chemo-mechanical magneto-rheological finishing of Al-6061 alloy using composite magnetic abrasive (CIP-Al2O3) developed via microwave-sintering route. J. Manuf. Process. 2023, 99, 765–780. [Google Scholar] [CrossRef]
- Liu, G.; Zhao, Y.; Li, Z.; Yu, H.; Meng, J.; Cao, C.; Zhao, C.; Zhang, H. Synthesis and characterization of environment-friendly spherical cubic boron nitride magnetic abrasives by plasma molten metal powders bonding with hard materials. Int. J. Refract. Met. Hard Mater. 2023, 117, 106387. [Google Scholar] [CrossRef]
- Wang, L.; Sun, Y.; Xiao, Z.; Yao, L.; Guo, J.; Kang, S.; Mao, W.; Zuo, D. Experimental investigation on magnetic abrasive finishing for internal surfaces of waveguides produced by selective laser melting. Materials 2024, 17, 1523. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Sun, X.; Yang, Y.; Fu, Y. A study on using magnetic abrasive finishing with a 6-axis robot to polish the internal surface finishing of curved tubes. Coatings 2023, 13, 1179. [Google Scholar] [CrossRef]
- Liu, W.H.; Chen, Y.; Zhang, D.Y. Magnetic abrasive finishing of ceramic tube inner surface based on low frequency alternating magnetic field. China Surf. Eng. 2021, 34, 146–154. [Google Scholar]
- Liu, J.N.; Zou, Y.H. Study on elucidation of the roundness improvement mechanism of the internal magnetic abrasive finishing process using a magnetic machining tool. J. Manuf. Mater. Process. 2023, 7, 49. [Google Scholar] [CrossRef]
- Kumar, R. Study the effect of concentration ratio (magnetic abrasive powder and castor oil) in magnetic abrasive finishing process. Mater. Today Proc. 2021, 37, 3706–3708. [Google Scholar] [CrossRef]
- Paswan, S.K.; Singh, A.K. Internal magnetorheological finishing of a typical outer race of ball bearing. Mater. Manuf. Process. 2022, 38, 1209–1225. [Google Scholar] [CrossRef]
- Aggarwal, A.; Paswan, S.K.; Singh, A.K. Surface roughness investigation for a novel magnetorheological finishing of cylindrical blind hole surfaces using a single magnetic tool. J. Braz. Soc. Mech. Sci. Eng. 2024, 46, 322–347. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, Y.; Chen, S.; Li, L.B.; Han, B. Finishing internal surface of 6061 aluminum alloy bend pipe based on rotating magnetic field. China Surf. Eng. 2018, 31, 73–81. [Google Scholar]
- Deng, Y.; Zhao, Y.; Zhao, G.; Gao, Y.; Liu, G.; Wang, K. Study on magnetic abrasive finishing of the inner surface of Ni/Ti alloy cardiovascular stents tube. Int. J. Adv. Manuf. Technol. 2021, 118, 2299–2309. [Google Scholar] [CrossRef]
- Heng, L.; Tu, J.F.; Im, H.; Kim, H.J.; Chanchamnan, S.; Kim, J.S.; Mun, S.D. A novel auto-gaping magnetic pole system for inner surface finishing of non-circular pipes using magnetic abrasive finishing process. J. Magn. Magn. Mater. 2023, 580, 170909. [Google Scholar] [CrossRef]
- Qian, C.; Fan, Z.; Tian, Y.; Liu, Y.; Han, J.; Wang, J. A review on magnetic abrasive finishing. Int. J. Adv. Manuf. Technol. 2020, 112, 619–634. [Google Scholar] [CrossRef]
Method | Accessibility | Precision | Efficiency | Sustainability | Adaptability |
---|---|---|---|---|---|
Manual polishing | Weak | Low | Low | Good | External surfaces |
Laser polishing [31] | Weak | High | High | Good | External surfaces |
Chemical polishing [32] | Strong | Low | Low | Poor | Complex internal surfaces |
Electrochemical polishing [33] | Relatively strong | Relatively high | Relatively high | Poor | External or regular internal surfaces |
FCAP [18] | Relatively strong | Relatively high | Low | Relatively good | Regular internal surfaces |
AFM [34] | Relatively strong | Relatively high | Relatively high | Good | Closed and constant cross-sectional channels |
MAF [35] | Strong | High | High | Good | Complex channels with blind cavities or grooves |
Magnetic Abrasive | Bonding Strength | Efficiency | Cost | Preparation Time | Processing Quality | Process Controllability |
---|---|---|---|---|---|---|
Sintered [90] | Strong | High | High | Long | Good | Poor |
RSA [91] | Strong | High | High | Long | Good | Poor |
CCP [80] | Sub-strong | Sub-high | Sub-high | Sub-long | Sub-good | Poor |
Bonded [92] | Sub-strong | High | Low | Short | Good | Good |
SB [84] | Poor | Low | Low | Short | Sub-good | Sub-good |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Sun, Y.; Xiao, Z.; Yang, F.; Kang, S.; Liu, Y.; Zuo, D. A Review of Magnetic Abrasive Finishing for the Internal Surfaces of Metal Additive Manufactured Parts. J. Manuf. Mater. Process. 2024, 8, 261. https://doi.org/10.3390/jmmp8060261
Wang L, Sun Y, Xiao Z, Yang F, Kang S, Liu Y, Zuo D. A Review of Magnetic Abrasive Finishing for the Internal Surfaces of Metal Additive Manufactured Parts. Journal of Manufacturing and Materials Processing. 2024; 8(6):261. https://doi.org/10.3390/jmmp8060261
Chicago/Turabian StyleWang, Liaoyuan, Yuli Sun, Zhongmin Xiao, Fanxuan Yang, Shijie Kang, Yanlei Liu, and Dunwen Zuo. 2024. "A Review of Magnetic Abrasive Finishing for the Internal Surfaces of Metal Additive Manufactured Parts" Journal of Manufacturing and Materials Processing 8, no. 6: 261. https://doi.org/10.3390/jmmp8060261
APA StyleWang, L., Sun, Y., Xiao, Z., Yang, F., Kang, S., Liu, Y., & Zuo, D. (2024). A Review of Magnetic Abrasive Finishing for the Internal Surfaces of Metal Additive Manufactured Parts. Journal of Manufacturing and Materials Processing, 8(6), 261. https://doi.org/10.3390/jmmp8060261