Microstructure Characterization and Mechanical Properties of Al6061 Alloy Fabricated by Laser Powder Bed Fusion
Abstract
:1. Introduction
2. Methodology
2.1. Powder Feedstock
2.2. L-PBF Process Conditions
2.3. Microstructural Analysis and Phase Identification
2.4. Density Measurement
2.5. Mechanical Properties
3. Results and Discussion
3.1. Powder Characterization
3.2. Characterization of Process-Induced Defects
3.3. Crystallographic Characterization
3.4. Density
3.5. Microstructure and Crystallographic Texture
3.6. Microhardness
3.7. Tensile Mechanical Properties
3.8. Predictions on the Hot Cracking Sensitivity of Al6061
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DebRoy, T.; Wei, H.L.; Zuback, J.S.; Mukherjee, T.; Elmer, J.W.; Milewski, J.O.; Beese, A.M.; Wilson-Heid, A.d.; De, A.; Zhang, W. Additive manufacturing of metallic components–process, structure and properties. Prog. Mater. Sci. 2018, 92, 112–224. [Google Scholar] [CrossRef]
- Phutela, C.; Bosio, F.; Li, P.; Aboulkhair, N.T. Correlating the microstructure and hardness of AlSi10Mg powder with additively-manufactured parts upon in-situ heat-treatments in laser beam powder bed fusion. Addit. Manuf. Lett. 2023, 7, 100168. [Google Scholar] [CrossRef]
- Liu, H.; Gu, D.; Shi, K.; Zhang, H.; Li, L.; Zhang, Y.; Li, J.; Qi, J. High-strength aluminum alloy processed by micro laser powder bed fusion (μ-LPBF): Coordination of laser formability, microstructure evolution, and mechanical properties. J. Mater. Process. Technol. 2024, 332, 118580. [Google Scholar] [CrossRef]
- Sun, S.; Brandt, M.; Easton, M. Powder Bed Fusion Processes: An Overview, Laser Additive Manufactur-ing: Materials, Design, Technologies, and Applications. 2017. [Google Scholar]
- Dixit, S.; Liu, S. Laser additive manufacturing of high-strength aluminum alloys: Challenges and strategies. J. Manuf. Mater. Process. 2022, 6, 156. [Google Scholar] [CrossRef]
- Liu, T.S.; Chen, P.; Qiu, F.; Yang, H.Y.; Jin, N.T.Y.; Chew, Y.; Wang, D.; Li, R.; Jiang, Q.C.; Tan, C. Review on laser directed energy deposited aluminum alloys. Int. J. Extrem. Manuf. 2024, 6, 022004. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, H.; Yang, T.; Liu, T.; Liao, W. Printability assessment with porosity and solidification cracking susceptibilities for a high strength aluminum alloy during laser powder bed fusion. Addit. Manuf. 2021, 46, 102103. [Google Scholar] [CrossRef]
- Rometsch, P.A.; Zhu, Y.; Wu, X.; Huang, A. Review of high-strength aluminium alloys for additive manufacturing by laser powder bed fusion. Mater. Des. 2022, 219, 110779. [Google Scholar] [CrossRef]
- Wu, C.; Wen, J.; Zhang, J.; Song, B.; Shi, Y. Additive manufacturing of heat-resistant aluminum alloys: A review. Int. J. Extrem. Manuf. 2024, 6, 062013. [Google Scholar] [CrossRef]
- Galy, C.; Le Guen, E.; Lacoste, E.; Arvieu, C. Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences. Addit. Manuf. 2018, 22, 165–175. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, Q.; Liang, X.; Wang, X.; Li, G.; Vanmeensel, K.; Xie, J. Alloy design for laser powder bed fusion additive manufacturing: A critical review. Int. J. Extrem. Manuf. 2023, 6, 022002. [Google Scholar] [CrossRef]
- Bi, J.; Wang, K.; Wu, C.; Liu, B.; Chi, J.; Qin, X.; Chen, W.; Starostenkov, M.D.; Dong, G.; Chen, X.; et al. Microstructure, mechanical properties and multiphase synergistic strengthening mechanisms of LPBF fabricated AlZnMgZr alloy with high Zn content. Addit. Manuf. 2024, 89, 104305. [Google Scholar] [CrossRef]
- Stopyra, W.; Gruber, K.; Smolina, I.; Kurzynowski, T.; Kuźnicka, B. Laser powder bed fusion of AA7075 alloy: Influence of process parameters on porosity and hot cracking. Addit. Manuf. 2020, 35, 101270. [Google Scholar] [CrossRef]
- Riener, K.; Pfalz, T.; Funcke, F.; Leichtfried, G. Processability of high-strength aluminum 6182 series alloy via laser powder bed fusion (LPBF). Int. J. Adv. Manuf. Technol. 2022, 119, 4963–4977. [Google Scholar] [CrossRef]
- Yang, H.; Sha, J.; Zhao, D.; He, F.; Ma, Z.; He, C.; Shi, C.; Zhao, N. Defects control of aluminum alloys and their composites fabricated via laser powder bed fusion: A review. J. Mater. Process. Technol. 2023, 319, 118064. [Google Scholar] [CrossRef]
- Liu, T.S.; Qiu, F.; Du, S.; Su, J.; Yang, H.Y.; Chen, P.; Ng, F.L.; Chew, Y.; Jiang, Q.C.; Tan, C. Tailored porosity in additive manufacturing of 7075 aluminum alloy for crack suppression and high strength. J. Mater. Process. Technol. 2024, 334, 118620. [Google Scholar] [CrossRef]
- Kotadia, H.; Gibbons, G.; Das, A.; Howes, P. A review of Laser Powder Bed Fusion Additive Manufacturing of aluminium alloys: Microstructure and properties. Addit. Manuf. 2021, 46, 102155. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, X.; Kong, L.; Dong, G.; Remani, A.; Leach, R. Defect inspection technologies for additive manufacturing. Int. J. Extrem. Manuf. 2021, 3, 022002. [Google Scholar] [CrossRef]
- Sonawane, A.; Roux, G.; Blandin, J.J.; Despres, A.; Martin, G. Cracking mechanism and its sensitivity to processing conditions during laser powder bed fusion of a structural aluminum alloy. Materialia 2021, 15, 100976. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Simonelli, M.; Parry, L.; Ashcroft, I.; Tuck, C.; Hague, R. 3D printing of Aluminium alloys: Additive Manufacturing of Aluminium alloys using selective laser melting. Prog. Mater. Sci. 2019, 106, 100578. [Google Scholar] [CrossRef]
- Qi, T.; Zhu, H.; Zhang, H.; Yin, J.; Ke, L.; Zeng, X. Selective laser melting of Al7050 powder: Melting mode transition and comparison of the characteristics between the keyhole and conduction mode. Mater. Des. 2017, 135, 257–266. [Google Scholar] [CrossRef]
- Kaufmann, N.; Imran, M.; Wischeropp, T.M.; Emmelmann, C.; Siddique, S.; Walther, F. Influence of process parameters on the quality of aluminium alloy EN AW 7075 using selective laser melting (SLM). Phys. Procedia 2016, 83, 918–926. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. The effect of selective laser melting process parameters on the microstructure and mechanical properties of Al6061 and AlSi10Mg alloys. Materials 2018, 12, 12. [Google Scholar] [CrossRef] [PubMed]
- Montero-Sistiaga, M.L.; Mertens, R.; Vrancken, B.; Wang, X.; Van Hooreweder, B.; Kruth, J.P.; Van Humbeeck, J. Changing the alloy composition of Al7075 for better processability by selective laser melting. J. Mater. Process. Technol. 2016, 238, 437–445. [Google Scholar] [CrossRef]
- Yu, W.; Xiao, Z.; Zhang, X.; Sun, Y.; Xue, P.; Tan, S.; Wu, Y.; Zheng, H. Processing and characterization of crack-free 7075 aluminum alloys with elemental Zr modification by laser powder bed fusion. Mater. Sci. Addit. Manuf. 2022, 1, 4. [Google Scholar] [CrossRef]
- Parsons, E.M.; Shaik, S.Z. Additive manufacturing of aluminum metal matrix composites: Mechanical alloying of composite powders and single track consolidation with laser powder bed fusion. Addit. Manuf. 2022, 50, 102450. [Google Scholar] [CrossRef]
- Li, X.; Li, G.; Zhang, M.X.; Zhu, Q. Novel approach to additively manufacture high-strength Al alloys by laser powder bed fusion through addition of hybrid grain refiners. Addit. Manuf. 2021, 48, 102400. [Google Scholar] [CrossRef]
- Qu, M.; Guo, Q.; Escano, L.I.; Nabaa, A.; Fezzaa, K.; Chen, L. Nanoparticle-enabled increase of energy efficiency during laser metal additive manufacturing. Addit. Manuf. 2022, 60, 103242. [Google Scholar] [CrossRef]
- Maamoun, A.H.; Xue, Y.F.; Elbestawi, M.A.; Veldhuis, S.C. Effect of selective laser melting process parameters on the quality of al alloy parts: Powder characterization, density, surface roughness, and dimensional accuracy. Materials 2018, 11, 2343. [Google Scholar] [CrossRef] [PubMed]
- Uddin, S.Z.; Murr, L.E.; Terrazas, C.A.; Morton, P.; Roberson, D.A.; Wicker, R.B. Processing and characterization of crack-free aluminum 6061 using high-temperature heating in laser powder bed fusion additive manufacturing. Addit. Manuf. 2018, 22, 405–415. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Everitt, N.M.; Ashcroft, I.; Tuck, C. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit. Manuf. 2014, 1, 77–86. [Google Scholar] [CrossRef]
- Roberts, C.E.; Bourell, D.; Watt, T.; Cohen, J. A novel processing approach for additive manufacturing of commercial aluminum alloys. Phys. Procedia 2016, 83, 909–917. [Google Scholar] [CrossRef]
- Opprecht, M.; Garandet, J.P.; Roux, G.; Flament, C.; Soulier, M. A solution to the hot cracking problem for aluminium alloys manufactured by laser beam melting. Acta Mater. 2020, 197, 40–53. [Google Scholar] [CrossRef]
- Melek, G.; Eloi, P.; Blandin, J.J.; Pascal, C.; Donnadieu, P.; De Geuser, F.; Lhuissier, P.; Desrayaud, C.; Martin, G. Optimization of the strength vs. conductivity trade-off in an aluminium alloy designed for laser powder bed fusion. Mater. Sci. Eng. A 2022, 858, 144139. [Google Scholar]
- Chen, H.H.; Lo, Y.L.; Hsu, Y.Y.; Lai, K.L. Systematic optimization of L-PBF processing parameters for Al alloy 6061 with YSZ nanoparticles. Opt. Laser Technol. 2023, 167, 109676. [Google Scholar] [CrossRef]
- Mehta, A.; Zhou, L.; Huynh, T.; Park, S.; Hyer, H.; Song, S.; Bai, Y.; Imholte, D.D.; Woolstenhulme, N.E.; Wachs, D.M.; et al. Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion. Addit. Manuf. 2021, 41, 101966. [Google Scholar] [CrossRef]
- Yusuf, S.M.; Gao, N. Influence of energy density on metallurgy and properties in metal additive manufacturing. Mater. Sci. Technol. 2017, 33, 1269–1289. [Google Scholar] [CrossRef]
- Khalid, M.; Peng, Q. Investigation of printing parameters of additive manufacturing process for sustainability using design of experiments. J. Mech. Des. 2021, 143, 032001. [Google Scholar] [CrossRef]
- Tura, A.D.; Mamo, H.B. Characterization and parametric optimization of additive manufacturing process for enhancing mechanical properties. Heliyon 2022, 8, e09759. [Google Scholar] [CrossRef]
- Smith, C.; Hommer, G.; Keeler, M.; Gockel, J.; Findley, K.; Brice, C.; Clarke, A.; Klemm-Toole, J. Assessing volumetric energy density as a predictor of defects in laser powder bed fusion 316L stainless steel. JOM 2024. [Google Scholar] [CrossRef]
- Giovagnoli, M.; Silvi, G.; Merlin, M.; Di Giovanni, M.T. Optimisation of process parameters for an additively manufactured AlSi10Mg alloy: Limitations of the energy density-based approach on porosity and mechanical properties estimation. Mater. Sci. Eng. A 2021, 802, 140613. [Google Scholar] [CrossRef]
- ASTM B962-23; ASTM International Committee B09 on Metal Powders and Metal Powder Products, Standard Test Methods for Density of Compacted or Sintered Powder Metallurgy (PM) Products Using Archimedes’ Principle 2023. ASTM International: West Conshohocken, PA, USA, 2023.
- Committee, A.H. Properties of Wrought Aluminum and Aluminum Alloys, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials. ASM Handb. 1990, 2, 62–122. [Google Scholar]
- ASTM E8/E8M; ASTM International Committee E28 on Mechanical Testing, Standard Test Methods for Tension Testing of Metallic Materials 2024. ASTM International: West Conshohocken, PA, USA, 2024.
- Nathaniel, J.E., II; Lang, A.C.; El-Atwani, O.; Suri, P.K.; Baldwin, J.K.; Kirk, M.A.; Wang, Y.; Taheri, M.L. Toward high-throughput defect density quantification: A comparison of techniques for irradiated samples. Ultramicroscopy 2019, 206, 112820. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.A.; Veldhuis, S.C. A study of thermal expansion coefficients and microstructure during selective laser melting of Invar 36 and stainless steel 316L. Addit. Manuf. 2018, 24, 405–418. [Google Scholar] [CrossRef]
- Yakout, M.; Elbestawi, M.; Veldhuis, S.C. Density and mechanical properties in selective laser melting of Invar 36 and stainless steel 316L. J. Mater. Process. Technol. 2019, 266, 397–420. [Google Scholar] [CrossRef]
- Han, C.J.; Zou, Y.J.; Hu, G.L.; Dong, Z.; Li, K.; Huang, J.M.; Li, B.Y.; Zhou, K.; Yang, Y.Q.; Wang, D. Effect of process parameters on microstructure and mechanical properties of a nickel-aluminum-bronze alloy fabricated by laser powder bed fusion. J. Cent. South Univ. 2024, 31, 2944–2960. [Google Scholar] [CrossRef]
- AlMangour, B.; Grzesiak, D.; Cheng, J.; Ertas, Y. Thermal behavior of the molten pool, microstructural evolution, and tribological performance during selective laser melting of TiC/316L stainless steel nanocomposites: Experimental and simulation methods. J. Mater. Process. Technol. 2018, 257, 288–301. [Google Scholar] [CrossRef]
- Boswell, J.; Jones, J.; Barnard, N.; Clark, D.; Whittaker, M.; Lancaster, R. The effects of energy density and heat treatment on the microstructure and mechanical properties of laser additive manufactured Haynes 282. Mater. Des. 2021, 205, 109725. [Google Scholar] [CrossRef]
- Qbau, N.; Nam, N.; Ca, N.; Hien, N. The crack healing effect of scandium in aluminum alloys during laser additive manufacturing. J. Manuf. Process. 2020, 50, 241–246. [Google Scholar] [CrossRef]
- Dong, Z.; Han, C.; Liu, G.; Zhang, J.; Li, Q.; Zhao, Y.; Wu, H.; Yang, Y.; Wang, J. Revealing anisotropic mechanisms in mechanical and degradation properties of zinc fabricated by laser powder bed fusion additive manufacturing. J. Mater. Sci. Technol. 2024, 214, 87–104. [Google Scholar] [CrossRef]
- Sundman, B.; ANSARA, I. The Gulliver–Scheil method for the calculation of solidification paths. In The SGTE Casebook; Elsevier: Amsterdam, The Netherlands, 2008; pp. 343–346. [Google Scholar] [CrossRef]
- Kou, S. A criterion for cracking during solidification. Acta Mater. 2015, 88, 366–374. [Google Scholar] [CrossRef]
- Hyer, H.; Zhou, L.; Park, S.; Gottsfritz, G.; Benson, G.; Tolentino, B.; McWilliams, B.; Cho, K.; Sohn, Y. Understanding the laser powder bed fusion of AlSi10Mg alloy. Metallogr. Microstruct. Anal. 2020, 9, 484–502. [Google Scholar] [CrossRef]
- Hyer, H.; Zhou, L.; Park, S.; Huynh, T.; Mehta, A.; Thapliyal, S.; Mishra, R.S.; Sohn, Y. Elimination of extraordinarily high cracking susceptibility of aluminum alloy fabricated by laser powder bed fusion. J. Mater. Sci. Technol. 2022, 103, 50–58. [Google Scholar] [CrossRef]
Sample | Laser Power (W) | Scanning Speed (mm/s) | Hatch Spacing (µm) | Energy Density (J/mm3) |
---|---|---|---|---|
1 | 150 | 600 | 140 | 44.64 |
2 | 150 | 1000 | 120 | 31.25 |
3 | 150 | 1400 | 100 | 26.78 |
4 | 200 | 600 | 120 | 69.44 |
5 | 200 | 1000 | 100 | 50.00 |
6 | 200 | 1400 | 140 | 25.51 |
7 | 250 | 600 | 100 | 104.16 |
8 | 250 | 1000 | 140 | 44.64 * |
9 | 250 | 1400 | 120 | 37.20 |
Element [wt%] | Cr | Cu | Fe | Mg | Mn | Si | Ti | Zn | Al |
---|---|---|---|---|---|---|---|---|---|
Nominal composition | 0.04–0.35 | 0.15–0.4 | ≤0.70 | 0.80–1.20 | ≤0.15 | 0.40–0.80 | ≤0.15 | ≤0.25 | Bal. |
Virgin powder composition | 0.09 | 0.18 | 0.29 | 0.95 | 0.00 | 0.60 | 0.00 | 0.02 | Bal. |
Recycled powder composition | 0.21 | 0.21 | 0.14 | 0.98 | 0.00 | 0.44 | 0.00 | 0.00 | Bal. |
Material | Energy Density () | Hardness (HV) | Ref. |
---|---|---|---|
Al6061-(Preheat = 200) | 50 | 84 | [23] |
Al6061-(Preheat = 200) | 123.3 | 71 | [23] |
Al6061-(Preheat = 200) | 76.9 | 77 | [23] |
Al6061-(Preheat = 500) | 20.41 | 54 | [30] |
Al6061 | 20.41 | 90 | [30] |
Zr-Al6061 | 79.8 | 116 | [34] |
Zr-Al6061 | 64.1 | 88.6 | [36] |
Al6061-(Preheat = 180) | 50 | 100.3 | This work |
Sample | Energy Density (J/mm3) | UTS (MPa) | Elongation (%) |
---|---|---|---|
6 | 25.51 | 67.19 | 1.56 |
3 | 26.78 | 83.37 | 2.54 |
2 | 31.25 | 74.25 | 2.28 |
9 | 37.20 | 52.52 | 1.43 |
1 | 44.64 | 64.35 | 1.56 |
8 | 44.64 * | 45.19 | 1.07 |
5 | 50.00 | 57.60 | 1.81 |
4 | 69.44 | 53.90 | 2.56 |
7 | 104.16 | 48.99 | 1.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hosseini, F.; Asad, A.; Yakout, M. Microstructure Characterization and Mechanical Properties of Al6061 Alloy Fabricated by Laser Powder Bed Fusion. J. Manuf. Mater. Process. 2024, 8, 288. https://doi.org/10.3390/jmmp8060288
Hosseini F, Asad A, Yakout M. Microstructure Characterization and Mechanical Properties of Al6061 Alloy Fabricated by Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing. 2024; 8(6):288. https://doi.org/10.3390/jmmp8060288
Chicago/Turabian StyleHosseini, Faezeh, Asad Asad, and Mostafa Yakout. 2024. "Microstructure Characterization and Mechanical Properties of Al6061 Alloy Fabricated by Laser Powder Bed Fusion" Journal of Manufacturing and Materials Processing 8, no. 6: 288. https://doi.org/10.3390/jmmp8060288
APA StyleHosseini, F., Asad, A., & Yakout, M. (2024). Microstructure Characterization and Mechanical Properties of Al6061 Alloy Fabricated by Laser Powder Bed Fusion. Journal of Manufacturing and Materials Processing, 8(6), 288. https://doi.org/10.3390/jmmp8060288