Five-Axis Printing of Continuous Fibers on the Mold
Abstract
:1. Introduction
1.1. Hardware in Multi-Axis Printing
1.2. Software in Multi-Axis Printing
1.3. Motivation
2. Materials and Methods
2.1. Manufacturing Concept
2.2. Material Selection for Mold
2.3. Printing Process
2.4. Mechanical Tests
2.5. Five-Axis Slicing
2.6. Five-Axis Toolpath Planning
3. Results and Discussion
3.1. Printing Process
3.2. Three-Point Bending
3.3. Surface Quality
3.4. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFRTPC | Continuous Fiber-Reinforced Thermoplastic Composite |
FFF | Fused Filament Fabrication |
Appendix A
Appendix A.1
Appendix A.2
Filament | Weak Adhesion | Moderate Adhesion | Strong Adhesion |
---|---|---|---|
Standard | Recreus PP3D | Formfutura Tough PLA Raise3D PLA addnorth PETG evo-tech ABS Formfutura TitanX | Markforged Nylon |
Flexible | colorFabb Varioshore TPU Recreus Reciflex Black Filamentum Flexifill PEBA | Nanovia Istroflex DSM TPC Arnitel | Sainsmart TPU 3D Jake TPU A95 |
Support | - | Kuraray Mowiflex 3D 2000 | Innofil3D InnoSolve Polymaker PolySupport XYZ Printing PVA |
Short-fiber | - | - | Markforged Onyx Jabil PA 4535 CF PA Jabil PA 4035 CF PA12 Fiberthree F3 PA-CF Pro |
References
- Cheng, P.; Peng, Y.; Li, S.; Rao, Y.; Le Duigou, A.; Wang, K.; Ahzi, S. 3D printed continuous fiber reinforced composite lightweight structures: A review and outlook. Compos. Part B Eng. 2023, 250, 110450. [Google Scholar] [CrossRef]
- Shahar, F.S.; Hameed Sultan, M.T.; Lee, S.H.; Jawaid, M.; Md Shah, A.U.; Safri, S.N.A.; Sivasankaran, P.N. A review on the orthotics and prosthetics and the potential of kenaf composites as alternative materials for ankle-foot orthosis. J. Mech. Behav. Biomed. Mater. 2019, 99, 169–185. [Google Scholar] [CrossRef] [PubMed]
- Michalec, P.; Schusser, M.; Weidner, R.; Brandstötter, M. Designing Hand Orthoses: Advances and Challenges in Material Extrusion. Appl. Sci. 2024, 14, 9543. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, Y.; Yu, L.; Ji, K.; Li, D. A review on the tooling technologies for composites manufacturing of aerospace structures: Materials, structures and processes. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106762. [Google Scholar] [CrossRef]
- Gellrich, S.; Groetsch, T.; Maghe, M.; Creighton, C.; Varley, R.; Wilde, A.S.; Herrmann, C. Concept for Predictive Quality in Carbon Fibre Manufacturing. J. Manuf. Mater. Process. 2024, 8, 272. [Google Scholar] [CrossRef]
- Rousseau, G.; Wehbe, R.; Halbritter, J.; Harik, R. Automated Fiber Placement Path Planning: A state-of-the-art review. Comput.-Aided Des. Appl. 2019, 16, 172–203. [Google Scholar] [CrossRef]
- Li, N.; Link, G.; Wang, T.; Ramopoulos, V.; Neumaier, D.; Hofele, J.; Walter, M.; Jelonnek, J. Path-designed 3D printing for topological optimized continuous carbon fibre reinforced composite structures. Compos. Part B Eng. 2020, 182, 107612. [Google Scholar] [CrossRef]
- Mohammadizadeh, M.; Fidan, I. Tensile Performance of 3D-Printed Continuous Fiber-Reinforced Nylon Composites. J. Manuf. Mater. Process. 2021, 5, 68. [Google Scholar] [CrossRef]
- Zhang, X.; Chi, X.; Ji, C. Discrete path planning of carbon fiber patch placement with complex surface. Text. Res. J. 2023, 93, 4010–4022. [Google Scholar] [CrossRef]
- Sarfraz, M.S.; Hong, H.; Kim, S.S. Recent developments in the manufacturing technologies of composite components and their cost-effectiveness in the automotive industry: A review study. Compos. Struct. 2021, 266, 113864. [Google Scholar] [CrossRef]
- Faller, L.M.; Varsavas, S.D.; Ali, A.M.J.; Michalec, P.; Gidugu, S.L.; Spintzyk, S.; Riemelmoser, F.O. iLEAD–Intelligent lightweight functional and hybrid 3D-printing for medical assistive devices: Current status focusing on the multi-material aspect. Mater. Today Proc. 2022, 70, 512–518. [Google Scholar] [CrossRef]
- Shah, J.; Snider, B.; Clarke, T.; Kozutsky, S.; Lacki, M.; Hosseini, A. Large-scale 3D printers for additive manufacturing: Design considerations and challenges. Int. J. Adv. Manuf. Technol. 2019, 104, 3679–3693. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, T.; Jiang, Q.; He, L.; Bismarck, A.; Hu, Q. Recent progress of 3D printed continuous fiber reinforced polymer composites based on fused deposition modeling: A review. J. Mater. Sci. 2021, 56, 12999–13022. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, Y.; Lin, L.; Corker, J.; Fan, M. Overview of 3D additive manufacturing (AM) and corresponding AM composites. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106114. [Google Scholar] [CrossRef]
- Peng, X.; Kong, L.; Fuh, J.Y.H.; Wang, H. A Review of Post-Processing Technologies in Additive Manufacturing. J. Manuf. Mater. Process. 2021, 5, 38. [Google Scholar] [CrossRef]
- Srinivas, G.L.; Pawel, M.; Laux, M.; Faller, L.M. Supportless 5-Axis 3D-Printing and Conformal Slicing: A Simulation-based Approach. In Proceedings of the 2023 24th International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), Graz, Austria, 16–19 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Milewski, J.O.; Lewis, G.K.; Thoma, D.J.; Keel, G.I.; Nemec, R.B.; Reinert, R.A. Directed light fabrication of a solid metal hemisphere using 5-axis powder deposition. J. Mater. Process. Technol. 1998, 75, 165–172. [Google Scholar] [CrossRef]
- Lee, K.; Jee, H. Slicing algorithms for multi-axis 3-D metal printing of overhangs. J. Mech. Sci. Technol. 2015, 29, 5139–5144. [Google Scholar] [CrossRef]
- Kim, C.; Espalin, D.; Cuaron, A.; Perez, M.A.; Lee, M.; MacDonald, E.; Wicker, R.B. Cooperative tool path planning for wire embedding on additively manufactured curved surfaces using robot kinematics. J. Mech. Robot. 2015, 7, 021003. [Google Scholar] [CrossRef]
- Wu, R.; Peng, H.; Guimbretière, F.; Marschner, S. Printing arbitrary meshes with a 5DOF wireframe printer. ACM Trans. Graph. TOG 2016, 35, 1–9. [Google Scholar] [CrossRef]
- Gardner, J.A.; Nethercott-Garabet, T.; Kaill, N.; Campbell, R.I.; Bingham, G.A.; Engstrøm, D.S.; Balc, N.O. Aligning material extrusion direction with mechanical stress via 5-axis tool paths. In Proceedings of the Conference: Solid Free Form Fabrication Symposium, University of Texas at Austin, Austin, TX, USA, 13–15 August 2018. [Google Scholar] [CrossRef]
- Kaill, N.; Campbell, R.I.; Pradel, P.; Bingham, G.A. A comparative study between 3-axis and 5-axis additively manufactured samples and their ability to resist compressive loading. In Proceedings of the Conference: Solid Free Form Fabrication Symposium, University of Texas at Austin, Austin, TX, USA, 12–14 August 2019. [Google Scholar] [CrossRef]
- Reeser, K.; Doiron, A.L. Three-Dimensional Printing on a Rotating Cylindrical Mandrel: A Review of Additive-Lathe 3D Printing Technology. 3D Print. Addit. Manuf. 2019, 6, 293–307. [Google Scholar] [CrossRef]
- Coulter, F.B.; Coulter, B.S.; Papastavrou, E.; Ianakiev, A. Production Techniques for 3D Printed Inflatable Elastomer Structures: Part II—Four-Axis Direct Ink Writing on Irregular Double-Curved and Inflatable Surfaces. 3D Print. Addit. Manuf. 2018, 5, 17–28. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, D.; Huang, T.; Hu, Q.; Lammer, H. Three-Dimensional Printing of Continuous Flax Fiber-Reinforced Thermoplastic Composites by Five-Axis Machine. Materials 2020, 13, 1678. [Google Scholar] [CrossRef]
- Zhang, H.; Lei, X.; Hu, Q.; Wu, S.; Aburaia, M.; Gonzalez-Gutierrez, J.; Lammer, H. Hybrid Printing Method of Polymer and Continuous Fiber-Reinforced Thermoplastic Composites (CFRTPCs) for Pipes through Double-Nozzle Five-Axis Printer. Polymers 2022, 14, 819. [Google Scholar] [CrossRef] [PubMed]
- Chu, G.; Tian, H.; Deng, X.; Wang, W.; Qiao, J.; Li, L. Assembly-free fabrication of the deformable system composed by continuous fiber embedded 4D printing actuators. J. Manuf. Process. 2024, 110, 238–251. [Google Scholar] [CrossRef]
- Kipping, J.; Nettig, D.; Kallai, Z.; Schüppstuhl, T. A Robotic Printer for Nonplanar Additive Manufacturing of Carbon Fiber Reinforced Polymers. In Proceedings of the 56th International Symposium on Robotics, Stuttgart, Germany, 26–27 September 2023. [Google Scholar]
- Fang, G.; Zhang, T.; Huang, Y.; Zhang, Z.; Masania, K.; Wang, C.C.L. Exceptional mechanical performance by spatial printing with continuous fiber: Curved slicing, toolpath generation and physical verification. Addit. Manuf. 2024, 82, 104048. [Google Scholar] [CrossRef]
- Kabir, S.M.F.; Mathur, K.; Seyam, A.F.M. A critical review on 3D printed continuous fiber-reinforced composites: History, mechanism, materials and properties. Compos. Struct. 2020, 232, 111476. [Google Scholar] [CrossRef]
- Huang, Y.; Tian, X.; Zheng, Z.; Li, D.; Malakhov, A.V.; Polilov, A.N. Multiscale concurrent design and 3D printing of continuous fiber reinforced thermoplastic composites with optimized fiber trajectory and topological structure. Compos. Struct. 2022, 285, 115241. [Google Scholar] [CrossRef]
- Dai, C.; Wang, C.C.L.; Wu, C.; Lefebvre, S.; Fang, G.; Liu, Y.J. Support-free volume printing by multi-axis motion. ACM Trans. Graph. TOG 2018, 37, 1–14. [Google Scholar] [CrossRef]
- Fry, N.R.; Richardson, R.C.; Boyle, J.H. Robotic additive manufacturing system for dynamic build orientations. Rapid Prototyp. J. 2020, 26, 659–667. [Google Scholar] [CrossRef]
- Chen, X.; Fang, G.; Liao, W.H.; Wang, C.C.L. Field-based toolpath generation for 3D printing continuous fibre reinforced thermoplastic composites. Addit. Manuf. 2022, 49, 102470. [Google Scholar] [CrossRef]
- Liu, G.; Xiong, Y.; Zhou, L. Additive manufacturing of continuous fiber reinforced polymer composites: Design opportunities and novel applications. Compos. Commun. 2021, 27, 100907. [Google Scholar] [CrossRef]
- Srinivas, G.L.; Laux, M.; Nair, V.P.; Brandstötter, M. Multi-axis Additive Manufacturing: Development of Slicer and Toolpath for 2.5 D/3D/5D Printing. In Proceedings of the International Conference on Robotics in Alpe-Adria Danube Region, Cluj-Napoca, Romania, 12–14 June 2024; Springer: Berlin/Heidelberg, Germany, 2024; pp. 337–346. [Google Scholar] [CrossRef]
- Abram, A.; Zore, A.; Lipovž, U.; Košak, A.; Gavras, M.; Boltežar, Z.; Bohinc, K. Bacterial Adhesion on Prosthetic and Orthotic Material Surfaces. Coatings 2021, 11, 1469. [Google Scholar] [CrossRef]
- Abas, M.; Awadh, M.A.; Habib, T.; Noor, S. Analyzing Surface Roughness Variations in Material Extrusion Additive Manufacturing of Nylon Carbon Fiber Composites. Polymers 2023, 15, 3633. [Google Scholar] [CrossRef]
- Oberlercher, H.; Heim, R.; Laux, M.; Berndt, A.; Becker, C.; Amancio-Filho, S.T.; Riemelmoser, F.O. Additive manufacturing of continuous carbon fiber reinforced polyamide 6: The effect of process parameters on the microstructure and mechanical properties. Procedia Struct. Integr. 2021, 34, 111–120. [Google Scholar] [CrossRef]
- Zhang, Z.; Long, Y.; Yang, Z.; Fu, K.; Li, Y. An investigation into printing pressure of 3D printed continuous carbon fiber reinforced composites. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107162. [Google Scholar] [CrossRef]
- Huang, Y.; Fang, G.; Zhang, T.; Wang, C.C.L. Turning-angle optimized printing path of continuous carbon fiber for cellular structures. Addit. Manuf. 2023, 68, 103501. [Google Scholar] [CrossRef]
Material | Layer Height [mm] | Print Speed [mm/s] | Nozzle Temp. [°C] | Bed Temp. [°C] |
---|---|---|---|---|
PVA | 0.5 | 1200 | 200 | 60 |
Istroflex | 0.5 | 600 | 245 | 70 |
CFRTPC | 0.125 | 15 | 250 | - |
None-0 | None-0_sq | Solu-0 | Flex-0 | Solu-45 | Flex-45 | Re-Flex-45 | |||||
---|---|---|---|---|---|---|---|---|---|---|---|
Inner | Outer | Inner | Outer | Inner | Outer | Inner | Outer | Inner | Inner | Inner | |
[µm] | 37.63 | 14.50 | 26.90 | 25.30 | 12.53 | 2.20 | 11.87 | 1.90 | 3.50 | 6.80 | 3.83 |
[µm] | 231.67 | 95.50 | 164.90 | 153.53 | 58.57 | 12.77 | 70.93 | 12.37 | 26.23 | 33.87 | 23.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Michalec, P.; Laux, M.; Srinivas, G.L.; Weidner, R.; Brandstötter, M. Five-Axis Printing of Continuous Fibers on the Mold. J. Manuf. Mater. Process. 2025, 9, 17. https://doi.org/10.3390/jmmp9010017
Michalec P, Laux M, Srinivas GL, Weidner R, Brandstötter M. Five-Axis Printing of Continuous Fibers on the Mold. Journal of Manufacturing and Materials Processing. 2025; 9(1):17. https://doi.org/10.3390/jmmp9010017
Chicago/Turabian StyleMichalec, Paweł, Marius Laux, Gidugu Lakshmi Srinivas, Robert Weidner, and Mathias Brandstötter. 2025. "Five-Axis Printing of Continuous Fibers on the Mold" Journal of Manufacturing and Materials Processing 9, no. 1: 17. https://doi.org/10.3390/jmmp9010017
APA StyleMichalec, P., Laux, M., Srinivas, G. L., Weidner, R., & Brandstötter, M. (2025). Five-Axis Printing of Continuous Fibers on the Mold. Journal of Manufacturing and Materials Processing, 9(1), 17. https://doi.org/10.3390/jmmp9010017