Pressure-Less Liquid-Phase Sintering of Aluminum-Based Materials
Abstract
:1. Introduction
2. Methodology
2.1. Sample Preparation
2.2. Sintering Parameters Optimization
2.3. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Totten, G.E.; MacKenzie, D.S. (Eds.) Handbook of Aluminum: Vol. 1: Physical Metallurgy and Processes; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar] [CrossRef]
- M.P. Research Cognitive Market, Non Ferrous Metals Market Size Was USD 711.02 Billion in 2022! Cognitive Market Research. Available online: https://www.cognitivemarketresearch.com/non-ferrous-metals-market-report (accessed on 12 December 2024).
- Qian, M.; Schaffer, G.B. Sintering of aluminium and its alloys. In Sintering of Advanced Materials; Elsevier: Amsterdam, The Netherlands, 2010; pp. 291–323. [Google Scholar] [CrossRef]
- Davis, J.R. Alloying: Understanding the Basics; ASM International: Almere, The Netherlands, 2001. [Google Scholar] [CrossRef]
- Ahmed, M.S.; Anwar, M.S.; Islam, M.S.; Arifuzzaman, M. Experimental study on the effects of three alloying elements on the mechanical, corrosion and microstructural properties of aluminum alloys. Results Mater. 2023, 20, 100485. [Google Scholar] [CrossRef]
- Godbole, K.; Bhushan, B.; Narayana Murty, S.V.S.; Mondal, K. Al-Si controlled expansion alloys for electronic packaging applications. Prog. Mater. Sci. 2024, 144, 101268. [Google Scholar] [CrossRef]
- Judge, W.; Kipouros, G. Powder Metallurgy Aluminum Alloys: Structure and Porosity. In Encyclopedia of Aluminum and Its Alloys, Two-Volume Set (Print); CRC Press: Boca Raton, FL, USA, 2018; ISBN 978-1-351-04563-6. [Google Scholar]
- Schaffer, G.B.; Sercombe, T.B.; Lumley, R.N. Liquid phase sintering of aluminium alloys. Mater. Chem. Phys. 2001, 67, 85–91. [Google Scholar] [CrossRef]
- Mosher, W.G.; Kipouros, G.J.; Caley, W.F.; Donaldson, I.W.; Bishop, D.P. On development of hypoeutectic aluminium-silicon powder metallurgy alloy. Powder Metall. 2011, 54, 432–439. [Google Scholar] [CrossRef]
- Wu, L.; Yu, Z.; Liu, C.; Ma, Y.; Huang, Y.; Wang, T.; Yang, L.; Yan, H.; Liu, W. Microstructure and tensile properties of aluminum powder metallurgy alloy prepared by a novel low-pressure sintering. J. Mater. Res. Technol. 2021, 14, 1419–1429. [Google Scholar] [CrossRef]
- Arribas, I.; Martín, J.M.; Castro, F. The initial stage of liquid phase sintering for an Al-14Si-2.5Cu-0.5Mg (wt%) P/M alloy. Mater. Sci. Eng. A 2010, 527, 3949–3966. [Google Scholar] [CrossRef]
- German, R.M. Liquid Phase Sintering; Springer International Publishing: Cham, Switzerland, 2013; ISBN 978-1-4899-3599-1. [Google Scholar]
- Su, S.S. Development of Hypereutectic A1-Si Based P/M Alloys; University of Birmingham: Birmingham, UK, 2012. [Google Scholar]
- Angadi, B.M.; Hiremath, C.R.; Reddy, A.C.; Katti, V.V.; Kori, S.A. Studies on the thermal properties of hypereutectic Al–Si alloys by using transient method. J. Mech. Eng. 2014, 2, 536–544. [Google Scholar]
- Cuzacq, L.; Atchi, I.; Bobet, J.-L.; Lu, Y.; Silvain, J.-F. Pressureless sintering of Al/diamond materials using AlSi12 liquid phase. Mater. Lett. 2025, 381, 137788. [Google Scholar] [CrossRef]
- Vora, P.; Mumtaz, K.; Todd, I.; Hopkinson, N. AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Addit. Manuf. 2015, 7, 12–19. [Google Scholar] [CrossRef]
- Li, W.-Y.; Zhang, C.; Guo, X.P.; Zhang, G.; Liao, H.L.; Coddet, C. Deposition characteristics of Al–12Si alloy coating fabricated by cold spraying with relatively large powder particles. Appl. Surf. Sci. 2007, 253, 7124–7130. [Google Scholar] [CrossRef]
- Vanzetti, M.; Pavel, M.J.; Williamson, C.J.; Padovano, E.; Pérez-Andrade, L.I.; Weaver, M.; Brewer, L.N.; Bondioli, F.; Fino, P. Design and Characterization of Innovative Gas-Atomized Al-Si-Cu-Mg Alloys for Additive Manufacturing. Metals 2023, 13, 1845. [Google Scholar] [CrossRef]
- Mohammed, S.H.; Noori, F.T.M. Effect of Cooling Rates and rapidly quenched on Al-Si alloy. Al-Mustansiriyah J. Sci. 2022, 33, 77–81. [Google Scholar] [CrossRef]
- Guo, J.; Wang, F.; Zhang, S.; Zhou, Y.; Zhu, L. Effect of High-Frequency Electric Pulse on the Solidification Microstructure and Properties of Hypoeutectic Al-Si Alloy. Materials 2024, 17, 468. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.M.M.; Elkady, O.A.; Abdelhameed, A.W. Effect of Alumina Particles Addition on Physico-Mechanical Properties of AL-Matrix Composites. Open J. Met. 2013, 3, 72–79. [Google Scholar] [CrossRef]
- Kumar, S.; Mote, V.D.; Prakash, R.; Kumar, V. X-ray Analysis of α-Al2O3 Particles by Williamson–Hall Methods. Mater. Focus 2016, 5, 545–549. [Google Scholar] [CrossRef]
- Jang, S.; Gun Oh, D.; Kim, H.; Hyun Kim, K.; Khivantsev, K.; Kovarik, L.; Hun Kwak, J. Controlling the Phase Transformation of Alumina for Enhanced Stability and Catalytic Properties. Angew. Chem. Int. Ed. 2024, 63, e202400270. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Kim, H.S.; Park, N.-K.; Lee, T.J.; Kang, M. Low temperature synthesis of α-alumina from aluminum hydroxide hydrothermally synthesized using [Al(C2O4)x(OH)y] complexes. Chem. Eng. J. 2013, 230, 351–360. [Google Scholar] [CrossRef]
- Ungar, T. Microstructural parameters from X-ray diffraction peak broadening. Scr. Mater. 2004, 51, 777–781. [Google Scholar] [CrossRef]
- Bruno, G.; Efremov, A.M.; Levandovskyi, A.N.; Clausen, B. Connecting the macro- and microstrain responses in technical porous ceramics: Modeling and experimental validations. J. Mater. Sci. 2011, 46, 161–173. [Google Scholar] [CrossRef]
- Soares, E.; Bouchonneau, N.; Alves, E.; Alves, K.; Araújo Filho, O.; Mesguich, D.; Chevallier, G.; Laurent, C.; Estournès, C. Microstructure and Mechanical Properties of AA7075 Aluminum Alloy Fabricated by Spark Plasma Sintering (SPS). Materials 2021, 14, 430. [Google Scholar] [CrossRef]
- Ho, C.Y.; Powell, R.W.; Liley, P.E. Thermal Conductivity of the Elements. J. Phys. Chem. Ref. Data 1972, 1, 279–421. [Google Scholar] [CrossRef]
- Mujahid, M.; Engel, N.N.; Chia, E.H. Effect of alloying elements on the conductivity of aluminum alloys. Scr. Metall. 1979, 13, 887–893. [Google Scholar] [CrossRef]
- Zhang, A.; Li, Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16, 2972. [Google Scholar] [CrossRef] [PubMed]
- Razin, A.A.; Ahammed, D.S.-S.; Khan, A.A.; Kaiser, M.S. THERMOPHYSICAL PROPERTIES OF HYPOEUTECTIC, EUTECTIC AND HYPEREUTECTIC Al-Si AUTOMOTIVE ALLOYS UNDER AGEING TREATMENT. J. Chem. Technol. Metall. 2024, 59, 673–682. [Google Scholar] [CrossRef]
- Kong, Z.; Huang, H.; Li, Y.; Yu, B.; Chen, B.; Li, R. Effect of sintering process on microstructure and properties of Al–Si alloy made by powder metallurgy for electronic packaging application. Mater. Res. Express 2023, 10, 66506. [Google Scholar] [CrossRef]
- Pichumani, S.; Srinivasan, R.; Venkatraman Ramamoorthi, S. Investigation on mechanical behavior and material characteristics of various weight composition of SiCp reinforced aluminium metal matrix composite. In Proceedings of the International Conference on Advances in Materials and Manufacturing Applications (IConAMMA-2017), Bengaluru, India, 17–19 August 2017. [Google Scholar] [CrossRef]
- Tirth, V.; Arabi, A. Effect of liquid forging pressure on solubility and freezing coefficients of cast aluminum 2124, 2218 and 6063 alloys. Arch. Metall. Mater. 2020, 65, 357–366. [Google Scholar] [CrossRef]
- Hatti, G.; Vishwanath, V.H.; Dinesh, K.R. Effect of Silicon Content on wear and Hardness of Al-Si Alloys. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1065, 12010. [Google Scholar] [CrossRef]
- Jayasheel Kumar, J.K.K.; Ramesha, C.M. Evaluation of Vickers Hardness Number of Al-Si Alloy Under Heat Treated Conditions. Int. J. Eng. Adv. Technol. 2021, 10, 222–227. [Google Scholar] [CrossRef]
- Saravanan, R.; Sellamuthu, R. Determination of the Effect of Si Content on Microstructure, Hardness and Wear Rate of Surface-Refined Al-Si Alloys; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; pp. 1348–1354. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sucgang, A.T.; Cuzacq, L.; Bobet, J.-L.; Lu, Y.; Silvain, J.-F. Pressure-Less Liquid-Phase Sintering of Aluminum-Based Materials. J. Manuf. Mater. Process. 2025, 9, 4. https://doi.org/10.3390/jmmp9010004
Sucgang AT, Cuzacq L, Bobet J-L, Lu Y, Silvain J-F. Pressure-Less Liquid-Phase Sintering of Aluminum-Based Materials. Journal of Manufacturing and Materials Processing. 2025; 9(1):4. https://doi.org/10.3390/jmmp9010004
Chicago/Turabian StyleSucgang, Ana Teresa, Laurent Cuzacq, Jean-Louis Bobet, Yongfeng Lu, and Jean-François Silvain. 2025. "Pressure-Less Liquid-Phase Sintering of Aluminum-Based Materials" Journal of Manufacturing and Materials Processing 9, no. 1: 4. https://doi.org/10.3390/jmmp9010004
APA StyleSucgang, A. T., Cuzacq, L., Bobet, J.-L., Lu, Y., & Silvain, J.-F. (2025). Pressure-Less Liquid-Phase Sintering of Aluminum-Based Materials. Journal of Manufacturing and Materials Processing, 9(1), 4. https://doi.org/10.3390/jmmp9010004