Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Selection
2.2. System Design
2.2.1. Extruder Head
2.2.2. Nozzle Design
2.2.3. Hopper Design
2.2.4. Bracket Design
2.2.5. Mahor Pellet Extruder
2.3. Methodology
2.3.1. Process Flow
2.3.2. G-Code Generation
2.3.3. Sample Generation
3. Analytical Modeling
4. Results and Discussion
4.1. Process Parameters
4.2. Effect of Temperature
4.3. Effect of Gas Pressure
4.4. Effect of Extrusion Speed
4.5. Morphological Observation
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gao, W.; Zhang, Y.; Ramanujan, D.; Ramani, K.; Chen, Y.; Williams, C.B.; Wang, C.C.L.; Shin, Y.C.; Zhang, S.; Zavattieri, P.D. The status, challenges, and future of additive manufacturing in engineering. Comput.-Aided Des. 2015, 69, 65–89. [Google Scholar] [CrossRef]
- Gibson, I.; Rosen, D.W.; Stucker, B. Additive Manufacturing Technologies; Springer: New York, NY, USA, 2010. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen KT, Q.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications, and challenges. Compos. Part B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Spatial. What Is Additive Manufacturing? (Types, Materials, and What to Know). 2023. Spatial Blog. 27 February. Available online: https://blog.spatial.com/what-is-additive-manufacturing (accessed on 5 May 2024).
- Shanmugam, V.; Babu, K.; Kannan, G.; Mensah, R.A.; Samantaray, S.K.; Das, O. The thermal properties of FDM printed polymeric materials: A review. Polym. Degrad. Stab. 2024, 228, 110902. [Google Scholar] [CrossRef]
- Daramwar, V.; Kadam, S. Design and development of multi-material extrusion in FDM 3D printers. Int. J. Adv. Res. Sci. Eng. Technol. 2020. Available online: https://www.irjet.net/archives/V7/i3/IRJET-V7I3731.pdf (accessed on 5 May 2024).
- Ali, M.H.; Kurokawa, S.; Shehab, E.; Nizam, I. Development of a large-scale multi-extrusion FDM printer, and its challenges. Int. J. Eng. Technol. 2023, 19, 123–134. Available online: https://www.sciencedirect.com/science/article/pii/S2588840422000701 (accessed on 6 May 2024). [CrossRef]
- Shaik, Y.P.; Schuster, J.; Shaik, A. A scientific review on various pellet extruders used in 3D printing FDM processes. Open Access Libr. J. 2021, 8, 1–14. Available online: https://www.scirp.org/journal/paperinformation?paperid=110955 (accessed on 6 May 2024). [CrossRef]
- Huang, Y.; Leu, M.C.; Mazumder, J.; Donmez, A. Additive Manufacturing: Current State, Future Potential, Gaps and Needs, and Recommendations. J. Manuf. Sci. Eng. 2014, 137, 014001. [Google Scholar] [CrossRef]
- Campbell, I.; Bourell, D.; Gibson, I. Additive manufacturing: Rapid prototyping comes of age. Rapid Prototyp. J. 2012, 18, 255–258. Available online: https://www.researchgate.net/publication/263593130_Additive_manufacturing_Rapid_prototyping_comes_of_age (accessed on 10 May 2024). [CrossRef]
- Altıparmak, S.C.; Yardley, V.A.; Shi, Z.; Lin, J. Extrusion-based additive manufacturing technologies: State of the art and future perspectives. J. Manuf. Process. 2022, 75, 209–231. Available online: https://www.sciencedirect.com/science/article/pii/S1526612522006521 (accessed on 10 May 2024). [CrossRef]
- Duhduh, A.; Noor, H.; Kundu, A.; Coulter, J. Advanced additive manufacturing of functionally gradient multi-material polymer components with single extrusion head: Melt rheology analysis. In Proceedings of the ANTEC. SPE TECHNICAL CONFERENCE AND EXHIBITION, 2019. Available online: https://www.researchgate.net/publication/339585944 (accessed on 16 July 2024).
- Murr, L.E.; Gaytan, S.M.; Medina, F.; Lopez, H.; Martinez, E.; Machado, B.I.; Hernandez, D.H.; Martinez, L.; Lopez, M.I.; Wicker, R.B.; et al. Next-generation biomedical implants using additive manufacturing of complex, cellular and functional mesh arrays. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2010, 368, 1999–2032. [Google Scholar] [CrossRef] [PubMed]
- Go, J.; Schiffres, S.N.; Stevens, A.G.; Hart, A.J. Rate limits of additive manufacturing by fused filament fabrication and guidelines for high-throughput system design. Addit. Manuf. 2017, 16, 1–11. [Google Scholar] [CrossRef]
- Morin, S.A.; Kwok, S.W.; Lessing, J.; Ting, J.; Shepherd, R.F.; Stokes, A.A.; Whitesides, G.M. Elastomeric tiles for the fabrication of inflatable structures. Adv. Funct. Mater. 2014, 24, 5541–5549. [Google Scholar] [CrossRef]
- Kuraray. Styrene-Ethylene-Butylene-Styrene Thermoplastic Elastomer (SEBS). Kuraray Elastomer. Available online: https://www.elastomer.kuraray.com/us/blog/sebs/ (accessed on 20 June 2024).
- Wevolver. A Comprehensive Guide to PLA Melting Point and How It Influences 3D Printing. Wevolver. Available online: https://www.wevolver.com/article/a-comprehensive-guide-to-pla-melting-point-and-how-it-influences-3d-printing (accessed on 12 June 2024).
- 3D Systems. Introduction to the Most Common Materials Used for 3D Printing. 3D Systems. Available online: https://www.3ds.com/make/solutions/blog/most-common-materials-3d-printing (accessed on 5 May 2024).
- Wilkes, J.O. Fluid Mechanics for Chemical Engineers with Microfluidics and CFD, 2nd ed.; O’Reilly Online Learning; Available online: https://www.oreilly.com/library/view/fluid-mechanics-for/9780132442329/ch06.html (accessed on 23 June 2024).
- Wang, J.; Porter, R.S. On the viscosity-temperature behavior of polymer melts. Rheol. Acta 1995, 34, 496–503. [Google Scholar] [CrossRef]
- Powell, P.C.; Ingen Housz, A.J. Engineering with Polymers, 2nd ed.; CRC Press, 2023; Available online: https://books.google.lu/books?id=JKlg2OhrHIMC&printsec=frontcover&hl=de#v=onepage&q&f=false (accessed on 23 June 2024).
- Duty, C.; Ajinjeru, C.; Kishore, V.; Compton, B.; Hmeidat, N.; Chen, X.; Liu, P.; Hassen, A.A.; Lindahl, J.; Kunc, V. What makes a material printable? A viscoelastic model for extrusion-based 3D printing of polymers. J. Manuf. Process. 2018, 35, 526–537. [Google Scholar] [CrossRef]
r (mm) | r (Relative) | Vz (mm/s) | ||
---|---|---|---|---|
= 1 MPa/mm | =2 MPa/mm | |||
0.35 | −0.4 | 0.00 | 0.00 | 0.00 |
0.45 | −0.3 | 0.63 | 1.27 | 1.91 |
0.55 | −0.2 | 1.02 | 2.06 | 3.09 |
0.65 | −0.1 | 1.24 | 2.49 | 3.74 |
0.75 | 0 | 1.30 | 2.62 | 3.94 |
0.85 | 0.1 | 1.25 | 2.51 | 3.77 |
0.95 | 0.2 | 1.08 | 2.17 | 3.27 |
1.05 | 0.3 | 0.81 | 1.63 | 2.45 |
1.15 | 0.4 | 0.45 | 0.91 | 1.36 |
1.25 | 0.5 | 0.00 | 0.00 | 0.00 |
Nozzle Diameter | Extrusion Temperature (°C) | Extrusion Speed (mm/s) | Gas Pressure (KPa) | Average Outer Diameter (D) (mm) | Average Core Diameter (d) (mm) | Average Shell Thickness (t) (mm) |
---|---|---|---|---|---|---|
1.5 | 220 | 0.5 | 13.8 | 1.36 ± 0.05 | 0.72 ± 0.06 | 0.32 ± 0.055 |
17.2 | 1.39 ± 0.07 | 0.77 ± 0.07 | 0.31 ± 0.07 | |||
1.5 | 220 | 1.5 | 13.8 | 1.46 ± 0.06 | 0.82 ± 0.02 | 0.32 ± 0.04 |
24.1 | 1.64 ± 0.08 | 1.02 ± 0.02 | 0.31 ± 0.05 | |||
1.5 | 220 | 2.5 | 13.8 | 1.55 ± 0.07 | 0.85 ± 0.04 | 0.35 ± 0.055 |
27.6 | 1.79 ± 0.10 | 1.09 ± 0.03 | 0.35 ± 0.065 | |||
1.5 | 220 | 3 | 13.8 | 1.60 ± 0.07 | 0.87 ± 0.04 | 0.37 ± 0.055 |
27.6 | 1.95 ± 0.02 | 1.23 ± 0.02 | 0.36 ± 0.02 | |||
1.5 | 205 | 0.5 | 13.8 | 1.35 ± 0.06 | 0.68 ± 0.03 | 0.33 ± 0.045 |
27.6 | 1.56 ± 0.04 | 0.93 ± 0.07 | 0.31 ± 0.055 | |||
1.5 | 205 | 1.5 | 13.8 | 1.44 ± 0.09 | 0.74 ± 0.03 | 0.35 ± 0.06 |
27.6 | 1.59 ± 0.07 | 0.93 ± 0.04 | 0.33 ± 0.055 |
Nozzle Diameter | Extrusion Temperature (°C) | Extrusion Speed (mm/s) | Gas Pressure (KPa) | Average Outer Diameter (D) (mm) | Average Core Diameter (d) (mm) | Average Shell Thickness (t) (mm) |
---|---|---|---|---|---|---|
1.5 | 220 | 3 | 13.8 | 1.70 | 1.11 | 0.30 |
20.7 | 1.75 | 1.16 | 0.30 | |||
1.5 | 220 | 6 | 13.8 | 1.76 | 1.13 | 0.31 |
20.7 | 1.85 | 1.22 | 0.31 | |||
1.5 | 220 | 9 | 13.8 | 1.81 | 1.17 | 0.32 |
20.7 | 1.99 | 1.37 | 0.31 | |||
1.5 | 230 | 3 | 13.8 | 1.74 | 1.20 | 0.27 |
20.7 | ||||||
1.5 | 230 | 6 | 13.8 | 1.80 | 1.23 | 0.28 |
20.7 | 1.86 | 1.31 | 0.27 | |||
1.5 | 230 | 9 | 13.8 | 1.90 | 1.29 | 0.30 |
20.7 | 2.05 | 1.50 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, M.A.; Elsersawy, R.; Khondoker, M.A.H. Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates. J. Manuf. Mater. Process. 2025, 9, 37. https://doi.org/10.3390/jmmp9020037
Habib MA, Elsersawy R, Khondoker MAH. Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates. Journal of Manufacturing and Materials Processing. 2025; 9(2):37. https://doi.org/10.3390/jmmp9020037
Chicago/Turabian StyleHabib, Md Ahsanul, Rawan Elsersawy, and Mohammad Abu Hasan Khondoker. 2025. "Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates" Journal of Manufacturing and Materials Processing 9, no. 2: 37. https://doi.org/10.3390/jmmp9020037
APA StyleHabib, M. A., Elsersawy, R., & Khondoker, M. A. H. (2025). Pellet-Based Extrusion Additive Manufacturing of Lightweight Parts Using Inflatable Hollow Extrudates. Journal of Manufacturing and Materials Processing, 9(2), 37. https://doi.org/10.3390/jmmp9020037