Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite
Abstract
:1. Introduction
2. Materials for Preparing the Hybrid Metal Matrix Composite
2.1. Matrix Material
2.2. Reinforcement Materials
2.2.1. Silicon Carbide (SiC)
2.2.2. Alumina (Al2O3)
2.2.3. Fly Ash (FA)
3. Measurement of Mechanical Properties
3.1. Tensile Test
3.2. Hardness Test
3.3. Impact Strength Test
3.4. Wear Test
3.5. Microscopic Examination
4. Results and Discussion
4.1. Density
4.2. Tensile Strength
4.3. Hardness
4.4. Wear Rate
5. Conclusions
- When the SiC and Al2O3 content of each increased from 5% to 7.5%, the tensile strength of the composite increased by 8.2%, the yield strength increased by 36.48%, and the hardness increased by 20%.
- The increase of SiC and Al2O3 content from 5% to 10% leads to an increase of tensile strength and yield strength of the composite by 10.4% and 25%, respectively. However, the hardness of the composite decreased by 16%.
- On comparison with the base metal Al6061, the proposed composite exhibits a good improvement in tensile strength, yield strength, and hardness. However, no significant change is observed in impact strength.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Toptan, F.; Ayfer, K.; Ahmet, K.; Mustafa, C.; Isil, K. Processing and microstructural characterization of AA 1070 and AA 6063 matrix B4CP reinforced composites. Mater. Des. 2010, 31, 87–91. [Google Scholar] [CrossRef]
- Bodunrin, M.; Alaneme, K.K.; Chown, L.H. Aluminium matrix hybrid composites: A review of reinforcement philosophies; mechanical, corrosion and tribological characteristics. J. Mater. Res. Technol. 2015, 4, 434–445. [Google Scholar] [CrossRef]
- Ashwath, P.; Xavior, M.A. Processing methods and property evaluation of Al2O3 and SiC reinforced metal matrix composites based on aluminium 2xxx alloys. J. Mater. Res. 2016, 31, 1201–1219. [Google Scholar] [CrossRef]
- Umanath, K.; PalaniKumar, K.; Selvamani, S.T. Analysis of dry sliding wear behaviour of Al6061/SiC/Al2O3 hybrid metal matrix composites. Compos. Part B 2013, 53, 159–168. [Google Scholar] [CrossRef]
- Kumar, G.V.; Rao, C.S.P.; Selvaraj, N. Studies on mechanical and dry sliding wear of Al6061–SiC composites. Compos. Part B Eng. 2012, 43, 1185–1191. [Google Scholar] [CrossRef]
- Mahdavi, S.; Akhlaghi, F. Effect of SiC content on the processing, compaction behavior, and properties of Al6061/SiC/Gr hybrid composites. J. Mater. Sci. 2011, 46, 1502–1511. [Google Scholar] [CrossRef]
- Velmurugan, C.; Subramanian, R.; Thirugnanam, S.; Anandavel, B. Investigation of friction and wear behavior of hybrid aluminium composites. Ind. Lubr. Tribol. 2012, 64, 152–163. [Google Scholar] [CrossRef]
- Uvaraja, V.; Natarajan, N. Tribological characterization of stir-cast hybrid composite Aluminium 6061 reinforced with SiC and B4C particulates. Eur. J. Sci. Res. 2012, 76, 539–552. [Google Scholar]
- Selvam, D.R.J.; Smart, D.R.; Dinaharan, I. Synthesis and Characterization of Al6061-Fly Ashp-SiCp Composites by Stir Casting and Compocasting Methods. Energy Procedia 2013, 34, 637–646. [Google Scholar] [CrossRef]
- Naveed, M.; Khan, A.R.A. Ultimate Tensile Strength of Heat Treated Hybrid Metal Matrix Composites. Int. J. Sci. Res. 2015, 4, 146–151. [Google Scholar]
- Reddy, P.S.; Kesavan, R.; Vijaya Ramnath, B. Investigation of mechanical properties of aluminum 6061-silicon carbide, boron carbide metal matrix composite. Silicon 2017, 9, 1–8. [Google Scholar]
- Pitchayyapillai, G.; Seenikannan, P.; Raja, K.; Chandrasekaran, K. Al6061 hybrid metal matrix composite reinforced with alumina and molybdenum disulphide. Adv. Mater. Sci. Eng. 2016, 2016, 6127624. [Google Scholar] [CrossRef]
- Devaraju, A.; Kumar, A.; Kumaraswamy, A.; Kotiveerachari, B. Wear and mechanical properties of 6061-T6 aluminum alloy surface hybrid composites [(SiC + Gr) and (SiC + Al2O3)]. J. Mater. Res. Technol. 2013, 2, 362–369. [Google Scholar]
- Saravanan, V.K.; Tamilarasan, T. Investigation of wear behaviour of Al 6061 alloy reinforced with SiC, Al2O3 and E glass fiber. Int. J. Sci. Eng. Appl. Sci. 2015, 1, 430–434. [Google Scholar]
- Basithrahman, A. Experimental analysis of mechanical properties of aluminium hybrid metal matrix composites. Int. J. Eng. Res. Technol. 2016, 5, 132–135. [Google Scholar] [CrossRef]
- James, S.; Annamalai, A.; Kuppan, P.; Oyyaravelu, R. Fabrication of hybrid metal matrix composite reinforced with SiC/Al2O3/TiB2. Mech. Mater. Sci. Eng. 2017, 9, 301–305. [Google Scholar]
- Chawla, K. Fibrous Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 2016. [Google Scholar]
- Bansal, S.; Saini, J.S. Mechanical and wear properties of SiC/Graphite reinforced Al359 alloy-based metal matrix composite. Defence Sci. J. 2015, 65, 330–338. [Google Scholar] [CrossRef]
- Dey, A.; Pandey, K.M. Characterization of fly ash and its reinforcement effect on metal matrix composites: A review. Rev. Adv. Mater. Sci. 2016, 44, 168–181. [Google Scholar]
- Gireesh, C.H.; Prasad, K.D.; Ramji, K.; Vinay, P.V. Mechanical characterization of aluminium metal matrix composite reinforced with Aloe vera powder. Mater. Today Proc. 2018, 5, 3289–3297. [Google Scholar] [CrossRef]
Specimen | Composition (wt %) | |||
---|---|---|---|---|
Al 6061 | SiC | Al2O3 | FA | |
A | 85 | 5 | 5 | 5 |
B | 80 | 7.5 | 7.5 | 5 |
C | 75 | 10 | 10 | 5 |
Serial No. | Specimen | Load (kg) | Speed (m/s) | Wear Rate (mm3/s) |
---|---|---|---|---|
1 | A | 2 | 1.5 | 23.104 |
2 | A | 4 | 1.5 | 15.403 |
3 | A | 2 | 3.5 | 5.7760 |
4 | A | 4 | 3.5 | 123.46 |
5 | A | 3 | 2.5 | 69.313 |
6 | B | 2 | 2.5 | 7.5600 |
7 | B | 4 | 2.5 | 39.620 |
8 | B | 3 | 1.5 | 18.900 |
9 | B | 3 | 3.5 | 20.466 |
10 | B | 3 | 2.5 | 11.340 |
11 | C | 2 | 1.5 | 19.549 |
12 | C | 4 | 1.5 | 84.062 |
13 | C | 3.5 | 3.5 | 62.558 |
14 | C | 3.5 | 3.5 | 198.81 |
15 | C | 2.5 | 2.5 | 93.837 |
Material | Density (g/cc) | Tensile Strength (MPa) | Yield Strength (MPa) | Hardness (BHN) |
---|---|---|---|---|
Al6061 | 2.67 | 115 | 48 | 30 |
Specimen A: | 2.48 | 117 | 79 | 53 |
Specimen B: | 2.56 | 126 | 108 | 64 |
Specimen C: | 2.44 | 129 | 99 | 45 |
Serial No. | Factor | Units | Limits | ||
---|---|---|---|---|---|
−1 | 0 | +1 | |||
1 | Load | kg | 2 | 3 | 4 |
2 | Speed | m/s | 1.5 | 2.5 | 3.5 |
3 | Reinforcement | % | 15 | 20 | 25 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hima Gireesh, C.; Durga Prasad, K.G.; Ramji, K. Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite. J. Compos. Sci. 2018, 2, 49. https://doi.org/10.3390/jcs2030049
Hima Gireesh C, Durga Prasad KG, Ramji K. Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite. Journal of Composites Science. 2018; 2(3):49. https://doi.org/10.3390/jcs2030049
Chicago/Turabian StyleHima Gireesh, Ch, K. G. Durga Prasad, and Koona Ramji. 2018. "Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite" Journal of Composites Science 2, no. 3: 49. https://doi.org/10.3390/jcs2030049
APA StyleHima Gireesh, C., Durga Prasad, K. G., & Ramji, K. (2018). Experimental Investigation on Mechanical Properties of an Al6061 Hybrid Metal Matrix Composite. Journal of Composites Science, 2(3), 49. https://doi.org/10.3390/jcs2030049