Numerical Simulations of Azobé/Urea Formaldehyde Wood Plastic Composite Behaviors under Charpy Impact and Low-Velocity Drop Weight Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Drop Weight Test
2.2.2. Charpy Impact Test
2.2.3. ANSYS Simulation Procedures
2.2.4. Description of the Models
Drop Weight Test
Charpy Impact Test
Energy Absorbed during the Impact
- : Energy related to the overall deformation of the plate;
- : Elastic deformation energy;
- : Plastic deformation energy;
- : Energy related to internal friction;
- : Kinetic energy transferred to debris induced by the impact the internal energy dissipation through Coulomb friction work and of debris ejection can be assumed negligible in the total energy balance during the impact;
- WF ≈ 0 (friction between the impactor and the plate is neglected); and
- . Moreover, due to the low impact velocity, only elastic distortions occur; therefore, the energy balance reduces to Equation (7), as follows:
3. Results and Discussion
3.1. Drop Weight Test
3.1.1. Displacements of the Plate and Impactor
3.1.2. Energy Absorbed
3.1.3. Impactor’s Rebound Speed
3.1.4. Effects of the Impactor’s Tip Shape
3.1.5. Strains and Stresses
3.2. Chapy Impact Test
3.3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shin, K.B.; Lee, J.Y.; Cho, S.H. An experimental study of low-velocity impact responses of sandwich panels for Korean low floor bus. Compos. Struct. 2008, 84, 228–240. [Google Scholar] [CrossRef]
- Grubbström, G.; Oksman, K. Influence of wood flour moisture content on the degree of silane-crosslinking and its relationship to structure–property relations of wood–thermoplastic composites. Compos. Sci. Technol. 2009, 69, 1045–1050. [Google Scholar] [CrossRef]
- Kazemi Najafi, S. Use of recycled plastics in wood plastic composites—A review. Waste Manag. 2013, 33, 1898–1905. [Google Scholar] [CrossRef] [PubMed]
- Schonberg, W.P. A Rupture Limit Equation for Pre-Loaded Laminated Composite Plates. J. Compos. Sci. 2018, 2, 3. [Google Scholar] [CrossRef]
- Schonberg, W.; Schäfer, F.; Putzar, R. Hypervelocity impact response of honeycomb sandwich panels. Acta Astronaut. 2010, 66, 455–466. [Google Scholar] [CrossRef]
- Pilarski, J.M.; Matuana, L.M. Durability of wood flour-plastic composites exposed to accelerated freeze-thaw cycling. II. High density polyethylene matrix. J. Appl. Polym. Sci. 2006, 100, 35–39. [Google Scholar] [CrossRef]
- Dányádi, L.; Janecska, T.; Szabó, Z.; Nagy, G.; Móczó, J.; Pukánszky, B. Wood flour filled PP composites: Compatibilization and adhesion. Compos. Sci. Technol. 2007, 67, 2838–2846. [Google Scholar] [CrossRef] [Green Version]
- Haro, E.E.; Szpunar, J.A.; Odeshi, A.G. Dynamic and ballistic impact behavior of biocomposite armors made of HDPE reinforced with chonta palm wood (Bactris gasipaes) microparticles. Def. Technol. 2018, 14, 238–249. [Google Scholar] [CrossRef]
- Ghahri, S.; Kazemi Najafi, S.; Mohebby, B.; Tajvidi, M. Impact strength improvement of wood flour–recycled polypropylene composites. J. Appl. Polym. Sci. 2012. [Google Scholar] [CrossRef]
- Stark, N.M.; Service, F.; Rowlands, R.E. Effects of Wood Fiber Characteristics on Mechanical Properties of Wood/Polypropylene Composites. Wood Fiber Sci. 2003, 35, 167–174. [Google Scholar]
- Dobreva, D.; Nenkova, S.; Vasileva, S. Morphology and Mechanical Properties of Polypropylene-Wood Flour Composites. Bioresources 2006, 1, 209–219. [Google Scholar]
- Puech, L.; Ramakrishnan, K.R.; Le Moigne, N.; Corn, S.; Slangen, P.R.; Le Duc, A.; Boudhani, H.; Bergeret, A. Investigating the impact behaviour of short hemp fibres reinforced polypropylene biocomposites through high speed imaging and finite element modelling. Compos. Part A Appl. Sci. Manuf. 2018, 109, 428–439. [Google Scholar] [CrossRef]
- Dhakal, H.N.; Zhang, Z.Y.; Bennett, N.; Reis, P.N.B. Low-velocity impact response of non-woven hemp fibre reinforced unsaturated polyester composites: Influence of impactor geometry and impact velocity. Compos. Struct. 2012, 94, 2756–2763. [Google Scholar] [CrossRef]
- De Oliveira Braga, F.; Bolzan, L.T.; Lima, É.P.; Monteiro, S.N. Performance of natural curaua fiber-reinforced polyester composites under 7.62 mm bullet impact as a stand-alone ballistic armor. J. Mater. Res. Technol. 2017, 6, 323–328. [Google Scholar] [CrossRef]
- Omar, M.F.; Md Akil, H.; Ahmad, Z.A.; Mazuki, A.A.M.; Yokoyama, T. Dynamic properties of pultruded natural fibre reinforced composites using Split Hopkinson Pressure Bar technique. Mater. Des. 2010, 31, 4209–4218. [Google Scholar] [CrossRef]
- Cerbu, C. Aspects concerning to the impact charpy testing in case of composites materials filled with wood flour. In The 4th International Conference Advanced Composite Materials Engineering (COMAT); Transilvania University: Brasov, Romania, 2012. [Google Scholar]
- Teng, X.; Wierzbicki, T. Evaluation of six fracture models in high velocity perforation. Eng. Fract. Mech. 2006, 73, 1653–1678. [Google Scholar] [CrossRef]
- ASTM International. Standard Test Methods for Determining the Charpy Impact Resistance of Notched Specimens of Plastics; ASTM International: West Conshohocken, PA, USA, 1997; pp. 1–14. [Google Scholar]
- Stan, G.I.; Cerbu, C.; Dogaru, F.; Curtu, I. Impact Testing of the Panels Made of Composite Materials Reinforced with Woven Glass Fabric and Wood Flour. Proligno 2011, 7, 39–45. [Google Scholar]
- Jeon, K.W.; Shin, K.B. An experimental investigation on low-velocity impact responses of sandwich panels with the changes of impact location and the wall partition angle of honeycomb core. Int. J. Precis. Eng. Manuf. 2012, 13, 1789–1796. [Google Scholar] [CrossRef]
- David-West, O.S.; Alexander, N.V.; Nash, D.H.; Banks, W.M. Energy absorption and bending stiffness in CFRP laminates: The effect of 45° plies. Thin-Walled Struct. 2008, 46, 860–869. [Google Scholar] [CrossRef] [Green Version]
- Hoo Fatt, M.S.; Sirivolu, D. A wave propagation model for the high velocity impact response of a composite sandwich panel. Int. J. Impact Eng. 2010, 37, 117–130. [Google Scholar] [CrossRef]
- Kolopp, A.; Rivallant, S.; Bouvet, C. Impact Testing of Composite Sandwich Structures for Aircraft Armor Applications. In Proceedings of the JNC 17, Poitiers, France, June 2011. [Google Scholar]
- Abrate, S. Impact on Composite Structures; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Sutcliffe, M.P.F.; Monroy Aceves, C.; Stronge, W.J.; Choudhry, R.S.; Scott, A.E. Moderate speed impact damage to 2D-braided glass-carbon composites. Compos. Struct. 2012, 94, 1781–1792. [Google Scholar] [CrossRef]
- Venkatanarayanan, P.S.; Stanley, A.J. Intermediate velocity bullet impact response of laminated glass fiber reinforced hybrid (HEP) resin carbon nano composite. Aerosp. Sci. Technol. 2012, 21, 75–83. [Google Scholar] [CrossRef]
- EN 1522:1998. Windows, Doors, Shutters and Blinds—Bullet Resistance—Requirements and Classification; European Standard; British Standards Institution: London, UK, 1998. [Google Scholar]
- Wilkins, M.L. Mechanics of penetration and perforation. Int. J. Eng. Sci. 1978, 16, 793–807. [Google Scholar] [CrossRef]
- Goldsmith, W. Non-ideal projectile impact on targets. Int. J. Impact Eng. 1999, 22, 95–395. [Google Scholar] [CrossRef]
- Evci, C.; Gülgeç, M. An experimental investigation on the impact response of composite materials. Int. J. Impact Eng. 2012, 43, 40–51. [Google Scholar] [CrossRef]
- Boria, S.; Scattina, A.; Belingardi, G. Impact behavior of a fully thermoplastic composite. Compos. Struct. 2017, 167, 63–75. [Google Scholar] [CrossRef]
- Banerjee, P.; Karpenko, O.; Udpa, L.; Haq, M.; Deng, Y. Prediction of impact-damage growth in GFRP plates using particle filtering algorithm. Compos. Struct. 2018, 194, 527–536. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Aminanda, Y. Impact characterisation of Glass Fibre Reinforced Polymer (GFRP) type C-600 and E-800 using a drop weight machine. Appl. Mech. Mater. 2014, 629, 461–466. [Google Scholar] [CrossRef]
- Sutherland, L.S.; Guedes Soares, C. Impact characterisation of low fibre-volume glass reinforced polyester circular laminated plates. Int. J. Impact Eng. 2005, 31, 1–23. [Google Scholar] [CrossRef]
- Hirai, Y.; Hamada, H.; Kim, J.-K. Impact response of woven glass-fabric composites—I: Effect of fibre surface treatment. Compos. Sci. Technol. 1998, 58, 91–104. [Google Scholar] [CrossRef]
- Christoforou, A.P. Impact dynamics and damage in composite structures. Compos. Struct. 2001, 52, 181–188. [Google Scholar] [CrossRef]
- Sutherland, L.S.; Guedes Soares, C. The effects of test parameters on the impact response of glass reinforced plastic using an experimental design approach. Compos. Sci. Technol. 2003, 63, 1–18. [Google Scholar] [CrossRef]
- Lee, S.-M.; Cheon, J.-S.; Im, Y.-T. Experimental and numerical study of the impact behavior of SMC plates. Compos. Struct. 1999, 47, 551–561. [Google Scholar] [CrossRef]
- Dear, J.P.; Brown, S.A. Impact damage processes in reinforced polymeric materials. Compos. Part A Appl. Sci. Manuf. 2003, 34, 411–420. [Google Scholar] [CrossRef]
- Espinosa, C. Contribution à L’étude du Comportement sous Impact Localisé Basse Vitesse de Plaques Stratifiées à Base D’unidirectionnels Composites à Fibres Longues. Ph.D. Thesis, Université de Bordeau I, Bordeaux, France, 1991. [Google Scholar]
- Anderson, C.E., Jr. Analytical models for penetration mechanics: A Review. Int. J. Impact Eng. 2017, 108, 3–26. [Google Scholar] [CrossRef]
- Abanda, G.-C.; Ntenga, R. Comportement physico-mécanique des composites bois-polymère à base d’essences tropicales africaines. Sci. Technol. Dév. 2016, 17, 113–116. [Google Scholar]
- Sevkat, E.; Liaw, B.; Delale, F. Drop-weight impact response of hybrid composites impacted by impactor of various geometries. Mater. Des. 2013, 52, 67–77. [Google Scholar] [CrossRef]
- Cundall, P.A.; Hart, R.P. Numerical Modelling of Discontiniua. Eng. Comput. 1992, 9, 101–113. [Google Scholar] [CrossRef]
- Nairn, J.A. Numerical Simulations of Transverse Compression and Densification In Wood. Wood Fiber Sci. 2006, 38, 576–591. [Google Scholar]
- Favier, J.; Kremmer, M.; Abbaspour-fard, H.; Raji, A.O. Shape Representation of Axi-Symmetrical, Non-Spherical Particles in Discrete Simulations Using Multi-Element Model Particles. Eng. Comput. 1999, 16, 467–480. [Google Scholar] [CrossRef]
- Favier, J.; Kremmer, M.; Abbaspour-fard, H. Discrete Element Modelling of the Flow of Irregular, Smooth-Surfaced Particles Through an Environment of Arbitrary Geometry. In Proceedings of the Fourteenth Engineering Mechanics Conference, Austin, TX, USA, 21–24 May 2000. [Google Scholar]
WPC Specimen | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
WPC 0A | 852.1 | 288.9 | 390.8 | 288.9 | 120.4 | 162.8 | 120.4 | 0.2 | 0.2 | 0.2 |
WPC 10A | 700 | 313.2 | 292.7 | 313.2 | 130.5 | 121.9 | 130.5 | 0.2 | 0.2 | 0.2 |
WPC 20A | 666.7 | 508.7 | 315.9 | 508.7 | 211.9 | 131.62 | 211.9 | 0.2 | 0.2 | 0.2 |
WPC 30A | 1000 | 313.3 | 337.1 | 313.3 | 122.4 | 131.7 | 122.4 | 0.2 | 0.2 | 0.2 |
WPC 40A | 1125 | 307.6 | 535.8 | 307.6 | 120.2 | 209.3 | 120.2 | 0.2 | 0.2 | 0.2 |
WPC 50A | 1285.7 | 429.4 | 379.9 | 429.4 | 178.9 | 158.3 | 178.9 | 0.2 | 0.2 | 0.2 |
Type of Impactor | Displacements | Contact Force | Energy |
---|---|---|---|
Hemispherical | + | +++ | +++ |
Conical | ++ | + | ++ |
Ogive | +++ | ++ | + |
Impactor | 0.6 ms | 1 ms | 1.4 ms |
---|---|---|---|
Hemispherical | |||
Conic | |||
ogive |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntenga, R.; Lahe, S.F.; Atangana Ateba, J.; Beda, T. Numerical Simulations of Azobé/Urea Formaldehyde Wood Plastic Composite Behaviors under Charpy Impact and Low-Velocity Drop Weight Tests. J. Compos. Sci. 2018, 2, 60. https://doi.org/10.3390/jcs2040060
Ntenga R, Lahe SF, Atangana Ateba J, Beda T. Numerical Simulations of Azobé/Urea Formaldehyde Wood Plastic Composite Behaviors under Charpy Impact and Low-Velocity Drop Weight Tests. Journal of Composites Science. 2018; 2(4):60. https://doi.org/10.3390/jcs2040060
Chicago/Turabian StyleNtenga, Richard, Serges Fabrice Lahe, Jean Atangana Ateba, and Tibi Beda. 2018. "Numerical Simulations of Azobé/Urea Formaldehyde Wood Plastic Composite Behaviors under Charpy Impact and Low-Velocity Drop Weight Tests" Journal of Composites Science 2, no. 4: 60. https://doi.org/10.3390/jcs2040060
APA StyleNtenga, R., Lahe, S. F., Atangana Ateba, J., & Beda, T. (2018). Numerical Simulations of Azobé/Urea Formaldehyde Wood Plastic Composite Behaviors under Charpy Impact and Low-Velocity Drop Weight Tests. Journal of Composites Science, 2(4), 60. https://doi.org/10.3390/jcs2040060