Comparative Study on the Behavior of Virgin and Recycled Polyolefins–Cellulose Composites in Natural Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composites Preparation
2.3. Soil Burial Test
2.4. Characterization
3. Results and Discussions
3.1. Weight Loss Determination
3.2. Surface Morphology
3.3. FTIR-ATR Analysis
3.4. Thermogravimetric Analysis (TGA)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ashori, A. Wood–plastic composites as promising green-composites for automotive industries! Bioresour. Technol. 2008, 99, 4661–4667. [Google Scholar] [CrossRef] [PubMed]
- Fakhrul, T.; Islam, M.A. Degradation behavior of natural fiber reinforced polymer matrix composites. Procedia Eng. 2013, 56, 795–800. [Google Scholar] [CrossRef]
- Yashas Gowda, T.G.; Sanjay, M.R.; Subrahmanya Bhat, K.; Madhu, P.; Senthamaraikannan, P.; Yogesha, B. Polymer matrix-natural fiber composites: An overview. Cogent Eng. 2018, 5, 1446667. [Google Scholar] [CrossRef]
- Mohammed, L.; Ansari, M.N.; Pua, G.; Jawaid, M.; Islam, M.S. A review on natural fiber reinforced polymer composite and its applications. Int. J. Polym. Sci. 2015, 243947. [Google Scholar] [CrossRef]
- Patel, R.H.; Kapatel, P.M.; Machchhar, A.D.; Kapatel, Y.A. Studies on natural fiber reinforced polymer matrix composites. AIP Conf. Proc. 2016, 1728, 020233. [Google Scholar]
- Tazi, M.; Erchiqui, F.; Kaddami, H. Influence of SOFTWOOD-fillers content on the biodegradability and morphological properties of WOOD–polyethylene composites. Polym. Compos. 2018, 39, 29–37. [Google Scholar] [CrossRef]
- Tazi, M.; Erchiqui, F.; Godard, F.; Kaddami, H. Evaluation of mechanical properties and durability performance of HDPE-wood composites. AIP Conf. Proc. 2015, 1664, 150001. [Google Scholar]
- Verbeek, C.J.R.; Pickering, K.L. Recent developments in polymer consolidated composites. J. Reinf. Plast. Compos. 2007, 26, 1607–1624. [Google Scholar] [CrossRef]
- Yu, L.; Dean, K.; Li, L. Polymer blends and composites from renewable resources. Prog. Polym. Sci. 2006, 31, 576–602. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Shalwan, A.; Yousif, B.F. In State of Art: Mechanical and tribological behaviour of polymeric composites based on natural fibres. Mater. Des. 2013, 48, 14–24. [Google Scholar] [CrossRef]
- Ticoalu, A.; Aravinthan, T.; Cardona, F. A Review of Current Development in Natural Fiber Composites for Structural and Infrastructure Applications. In Proceedings of the Southern Region Engineering Conference (SREC 2010), Toowoomba, Australia, 10–12 November 2010. [Google Scholar]
- Green Paper on a European Strategy on Plastic Waste in the Environment. Available online: http://www.retorna.org/mm/file/CDR3751-2013_00_00_TRA_PAC_EN.pdf (accessed on 14 June 2019).
- Fotopoulou, K.; Karapanagioti, H. Degradation of Various Plastics in the Environment; In: Hazardous Chemicals Associated with Plastics in the Marine Environment. In Hazardous Chemicals Associated with Plastics in the Marine Environment; Takada, H., Karapanagioti, H.K., Eds.; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Narancic, T.; O’Connor, K.E. Microbial biotechnology addressing the plastic waste disaster. Microb. Biotechnol. 2017, 10, 1232–1235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Faruk, O.; Bledzki, A.K.; Fink, H.P.; Sain, M. Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 2014, 299, 9–26. [Google Scholar] [CrossRef]
- Chauhan, A.; Chauhan, P.; Kaith, B. Natural fiber reinforced composite: A concise review article. J. Chem. Eng. Process Technol. 2012, 3. [Google Scholar] [CrossRef]
- Ku, H.; Wang, H.; Pattarachaiyakoop, N.; Trada, M. A review on the tensile properties of natural fiber reinforced polymer composites. Compos. Part B Eng. 2011, 42, 856–873. [Google Scholar] [CrossRef] [Green Version]
- Sahari, J.; Sapuan, S.M. Natural Fibers and its composites for engineering applications: An overview. Rev. Adv. Mater. Sci. 2011, 30, 166–174. [Google Scholar]
- Saba, N.; Jawaid, M.; Alothman, O.Y.; Paridah, M.T. A review on dynamic mechanical properties of natural fibre reinforced polymer composites. Constr. Build. Mater. 2016, 106, 149–159. [Google Scholar] [CrossRef]
- Altaee, N.; El-Hiti, G.A.; Fahdil, A.; Sudesh, K.; Yousif, E. Biodegradation of different formulations of polyhydroxybutyrate films in soil. SpringerPlus 2016, 5, 762. [Google Scholar] [CrossRef]
- Mumtaz, T.; Khan, M.R.; Hassan, M.A. Study of environmental biodegradation of LDPE films in soil using optical and scanning electron microscopy. Micron 2010, 41, 430–438. [Google Scholar] [CrossRef]
- Sato, H.; Furuhashi, M.; Yang, D.; Ohtani, H.; Tsuge, S.; Okada, M.; Tsunoda, K.; Aoi, K. A novel evaluation method for biodegradability of poly(butylene succinate-co-butylene adipate) by pyrolysis-gas chromatography. Polym. Degrad. Stab. 2001, 73, 327–334. [Google Scholar] [CrossRef]
- Yang, H.-S.; Yoon, J.-S.; Kim, M.-N. Dependence of biodegradability of plastics in compost on the shape of specimens. Polym. Degrad. Stab. 2005, 87, 131–135. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, Y.; Xiong, W.; Zhou, H.; Li, H.; Xu, G.; Zhao, J. Biodegradation of poly (butylene succinate) film by compost microorganisms and water soluble product impact on mung beans germination. Polym. Degrad. Stab. 2016, 126, 22–30. [Google Scholar] [CrossRef]
- Alshehrei, F. Biodegradation of Synthetic and Natural Plastic by Microorganisms. J. Appl. Environ. Microbiol. 2017, 5, 8–19. [Google Scholar]
- Mohan, K. Microbial deterioration and degradation of Polymeric materials. J. Biochem. Technol. 2010, 2, 210–215. [Google Scholar]
- Shah, A.A.; Hasan, F.; Hameed, A.; Ahmed, S. Biological degradation of plastics: A comprehensive review. Biotechnol. Adv. 2008, 26, 246–265. [Google Scholar] [CrossRef] [PubMed]
- Butylina, S.; Martikka, O.; Kärki, T. Physical and Mechanical Properties of Wood-Polypropylene Composites Made with Virgin and/or Recycled Polypropylene. Polym. Plast. Technol. Eng. 2011, 50, 1040–1046. [Google Scholar] [CrossRef]
- Shubhra, Q.T.H.; Alam, A.; Quaiyyum, M.A. Mechanical properties of polypropylene composites: A review. J. Thermoplast. Compos. Mater. 2011, 26, 362–391. [Google Scholar] [CrossRef]
- Khoramnejadian, S.; Zavareh, J.J.; Khoramnejadian, S. Bio-based plastic a way for reduce municipal solid waste. Procedia Eng. 2011, 21, 489–495. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.B.; Shit, S.C.; Sengupta, R.A.; Shukla, P.R. Studies on biodegradabaility, morphology, physicomechanical and thermal properties of polyprylene/potato starch bio-composite. Int. J. Curr. Eng. Technol. 2015, 5, 1074–1084. [Google Scholar]
- Dinh Vu, N.; Tran, H.T.; Nguyen, T.D. Characterization of polypropylene green composites reinforced by cellulose fibers extracted from rice straw. Int. J. Polym. Sci. 2018. [Google Scholar] [CrossRef]
- Arkatkar, A.; Arutchelvi, J.; Bhaduri, S.; Uppara, P.V.; Doble, M. Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int. Biodeterior. Biodegrad. 2009, 63, 106–111. [Google Scholar] [CrossRef]
- Gu, J.D.; Lu, C.; Thorp, K.; Crasto, A.; Mitchell, R. Fiber-reinforced polymeric composites are susceptible to microbial degradation. J. Ind. Microbiol. Biotechnol. 1997, 18, 364–369. [Google Scholar] [CrossRef] [PubMed]
- Shabani, F.; Kumar, L.; Esmaeili, A. A modelling implementation of climate change on biodegradation of Low-Density Polyethylene (LDPE) by Aspergillus niger in soil. Glob. Ecol. Conserv. 2015, 4, 388–398. [Google Scholar] [CrossRef]
- Buzarovska, A.; Grozdanov, A.; Avella, M.; Gentile, G.; Errico, M. Poly (hydroxybutyrate-co-hydroxyvalerate)/titanium dioxide nanocomposites: A degradation study. J. Appl. Polym. Sci. 2009, 114, 3118–3124. [Google Scholar] [CrossRef]
- Abderrahim, B.; Abderrahman, E.; Mohamed, A.; Fatima, T.; Abdesselam, T.; Krim, O. Kinetic thermal degradation of cellulose, polybutylene succinate and a green composite: comparative study. World J. Environ. Eng. 2015, 3, 95. [Google Scholar]
- Jung, M.R.; Horgen, F.D.; Orski, S.V.; Rodriguez, V.; Beers, K.L.; Balazs, G.H.; Jones, T.T.; Work, T.M.; Brignac, K.C.; Royer, S.J.; et al. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Mar. Pollut. Bull. 2018, 127, 704–716. [Google Scholar] [CrossRef]
- Liu, R.; Liu, M.; Cao, J.; Ma, E.; Huang, A. Fungi resistance of organo-montmorillonite modified lignocellulosic flour/polypropylene composites. Polym. Compos. 2018, 39, 3831–3840. [Google Scholar] [CrossRef]
- Brzozowska-Stanuch, A.; Rabiej, S.; Fabia, J.; Nowak, J. Changes in thermal properties of isotactic polypropylene with different additives during aging process. Polymery 2014, 59, 302–307. [Google Scholar] [CrossRef]
- Al-Salem, S.M.; Sharma, B.K.; Khan, A.R.; Arnold, J.C.; Alston, S.M.; Chandrasekaran, S.R.; Al-Dhafeeri, A.T. Thermal degradation kinetics of virgin polypropylene (PP) and PP with starch blends exposed to natural weathering. Ind. Eng. Chem. Res. 2017, 56, 5210–5220. [Google Scholar] [CrossRef]
- Mofokeng, J.; Luyt, A.S.; Tábi, T.; Kovács, J. Comparison of injection moulded, natural fibre reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 2012, 25, 927–948. [Google Scholar] [CrossRef]
- Reixach, R.; Puig, J.; Méndez, J.A.; Gironès, J.; Espinach, F.X.; Arbat, G.; Mutjé, P. Orange wood fiber reinforced polypropylene composites: Thermal properties. Available online: https://ojs.cnr.ncsu.edu/index.php/BioRes/article/viewFile/BioRes_10_2_2156_Reixach_Orange_Wood_Fiber_Polypropylene_Composites/3376 (accessed on 14 June 2019).
- Salemane, M.G.; Luyt, A.S. Thermal and mechanical properties of polypropylene–wood powder composites. J. Appl. Polym. Sci. 2006, 100, 4173–4180. [Google Scholar] [CrossRef]
Abbreviation | Material Composition | Form and Characteristics |
---|---|---|
rPP | recycled polypropylene from auto pieces | plate; black color; 0.5 cm thickness |
rPP 20cell | 80% rPP+ 20% cellulose fiber | plate; black color; 0.5 cm thickness |
rPP 30cell | 70% rPP + 30% cellulose fiber | plate; black color; 0.5 cm thickness |
rPP 40cell | 60% rPP + 40% cellulose fiber | plate; black color; 0.5 cm thickness |
vPP | virgin polypropylene | plate; white color; relative transparent; 0.5 cm thickness |
vPP 20cell | 80% vPP + 20% cellulose fiber | plate; chestnut color; 0.5 cm thickness |
vPP 30cell | 70% vPP + 30% cellulose fiber | plate; chestnut color; 0.5 cm thickness |
vPP 40cell | 60% vPP + 40% cellulose fiber | plate; chestnut color; 0.5 cm thickness |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Raut, I.; Calin, M.; Vuluga, Z.; Alexandrescu, E.; Arsene, M.L.; Purcar, V.; Nicolae, C.-A.; Gurban, A.M.; Doni, M.; Jecu, L. Comparative Study on the Behavior of Virgin and Recycled Polyolefins–Cellulose Composites in Natural Environmental Conditions. J. Compos. Sci. 2019, 3, 60. https://doi.org/10.3390/jcs3020060
Raut I, Calin M, Vuluga Z, Alexandrescu E, Arsene ML, Purcar V, Nicolae C-A, Gurban AM, Doni M, Jecu L. Comparative Study on the Behavior of Virgin and Recycled Polyolefins–Cellulose Composites in Natural Environmental Conditions. Journal of Composites Science. 2019; 3(2):60. https://doi.org/10.3390/jcs3020060
Chicago/Turabian StyleRaut, Iuliana, Mariana Calin, Zina Vuluga, Elvira Alexandrescu, Melania Liliana Arsene, Violeta Purcar, Cristian-Andi Nicolae, Ana Maria Gurban, Mihaela Doni, and Luiza Jecu. 2019. "Comparative Study on the Behavior of Virgin and Recycled Polyolefins–Cellulose Composites in Natural Environmental Conditions" Journal of Composites Science 3, no. 2: 60. https://doi.org/10.3390/jcs3020060
APA StyleRaut, I., Calin, M., Vuluga, Z., Alexandrescu, E., Arsene, M. L., Purcar, V., Nicolae, C. -A., Gurban, A. M., Doni, M., & Jecu, L. (2019). Comparative Study on the Behavior of Virgin and Recycled Polyolefins–Cellulose Composites in Natural Environmental Conditions. Journal of Composites Science, 3(2), 60. https://doi.org/10.3390/jcs3020060