The Influence and Action Mechanization of Mineral Mixed Material on High Fluidity Potassium Magnesium Phosphate Cement (MKPC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Materials
2.2. Preparation and Maintenance of Specimen
2.3. Test Method
3. Results and Discussion
3.1. The Influence of Mineral Mixed Materials to the Fluidity of Potassium Magnesium Phosphate Cement Mortar
3.2. The Influence of Mineral Mixed Materials to Strength of Potassium Magnesium Phosphate Cement Mortar
3.3. The Influence of Mineral Mixed Materials on Volume of Potassium Magnesium Phosphate Cement Mortar
3.4. The Influence of Mineral Mixed Materials to Hydration Temperature of Potassium Magnesium Phosphate Cement Mortar
3.5. The Influence of Mineral Mixed Materials to Water Stability of Potassium Magnesium Phosphate Cement Mortar
3.6. Microcosmic Analysis
3.6.1. X-ray Diffraction
3.6.2. TG/DTA
3.6.3. SEM
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Li, J.; Zhang, W.; Yong, C. Laboratory evaluation of magnesium phosphate cement paste and mortar for rapid repair of cement concrete pavement. Constr. Build. Mater. 2014, 58, 122–128. [Google Scholar] [CrossRef]
- Yang, Q.; Xueli, W. Factors influencing properties of phosphate cement-based binder for rapid repair of concrete. Cem. Concr. Res. 1999, 29, 389–396. [Google Scholar] [CrossRef]
- Qi, W.; Changjuan, Y.; Jianming, Y.; Linlin, C.; Xuancheng, X.; Qisheng, W. Influence of nickel slag powders on properties of magnesium potassium phosphate cement paste. Constr. Build. Mater. 2019, 205, 668–678. [Google Scholar]
- Yue, L.; Tongfei, S.; Yaqiang, L.; Weiliang, B.; Hui, L. Damage of magnesium potassium phosphate cement under dry and wet cycles and sulfate attack. Constr. Build. Mater. 2019, 210, 111–117. [Google Scholar]
- Qing, W.; Xuezhong, L.; Jun, X. Size Distribution Model and Development Characteristics of Corrosion Pits in Concrete under Two Curing Methods. Materials 2019, 12, 1846. [Google Scholar]
- Tang, H. Research on Corrosion of Bar in Magnesium Phosphate Cement; Chongqing University: Chongqing, China, 2015. [Google Scholar]
- Yuan, F.; Bing, C.; Sajjad, Y.O. Experimental research on magnesium phosphate cement mortar reinforced by glass fiber. Constr. Build. Mater. 2018, 188, 729–736. [Google Scholar]
- Fang, Y.; Cui, P.; Ding, Z.; Zhu, J.X. Properties of a Magnesium Phosphate Cement-Based Fire-Retardant Coating Containing Glass Fiber or Glass Fiber Powder. Constr. Build. Mater. 2018, 162, 553–560. [Google Scholar] [CrossRef]
- Qin, J.; Qian, J.; Li, Z.; You, C.; Dai, X.; Yue, Y.; Fan, Y. Mechanical properties of basalt fiber reinforced magnesium phosphate cement composites. Constr. Build. Mater. 2018, 188, 946–955. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J.; Zheng, S. Experimental research on seawater erosion resistance of magnesium potassium phosphate cement pastes. Constr. Build. Mater. 2018, 183, 534. [Google Scholar]
- Changjuan, Y.; Qing, W.; Jianming, Y. Effect of seawater for mixing on properties of potassium magnesium phosphate cement paste. Constr. Build. Mater. 2017, 155, 217–227. [Google Scholar]
- Wagh, A.S.; George, W.; Drozd, V.; Mukhopadhyay, K.; Patel, S.V. Inorganic Phosphate Compositions and Methods. U.S. Patent 8858702, 14 October 2014. [Google Scholar]
- Chunming, S.; Jianming, Y.; Fei, L.; Li, C.; Chunyu, Z. Research progress of joint materials for prefabricated building concrete components. Concrete 2018, 7, 117–121. [Google Scholar]
- Hongtao, W. Research on High Performance Magnesium Phosphate Cement-Based Materials; Chongqing University: Chongqing, China, 2006. [Google Scholar]
- Hongtao, W.; Jueshi, Q.; Junhui, C. Research on application of composite super plasticizer of magnesium phosphate cement-based Material. J. Build. Mater. 2007, 1, 71–76. [Google Scholar]
- Lin, C.; Wei, W.; Huy, H. Catalytic behavior of graphene oxide for cement hydration process. J. Phys. Chem. Solids. 2016, 89, 128–133. [Google Scholar] [CrossRef]
- Lisha, S.; Quanbing, Y. Effect of aggregate on properties of phosphate-based materials. J. China Concr. Cem. Prod. 2004, 6, 7–9. [Google Scholar]
- Jianming, Y.; Caijun, S. Method for Controlling Setting Time and Early Hydration Rate of Potassium Magnesium Phosphate Cement. Jiangsu, Application CN102234200A, 9 November 2011. [Google Scholar]
- Jianhua, G.; Jianming, Y.; Qing, W.; Qi, W. Effect of water glass on properties of high fluidity potassium magnesium phosphate cement paste. New Build. Mater. 2019, 46, 127–130. [Google Scholar]
- Biwan, X.; Barbara, L.; Andreas, L.; Frank, W. Reaction mechanism of magnesium potassium phosphate cement with high magnesium-to-phosphate ratio. Cem. Concr. Res. 2018, 108, 140–151. [Google Scholar]
- Hugo, L.; Céline, C.D.; Coumes, C.M.; David, L.; Céline, C.; Sylvie, D.; Sandrine, G. Influence of the w/c ratio on the hydration process of a magnesium phosphate cement and on its retardation by boric acid. Cem. Concr. Res. 2018, 109, 159–174. [Google Scholar]
- Shuxian, H.; Jianchao, Z.; Hui, L.; Jindong, X.; Chuangyi, H.; Guangde, W.; Heng, H.; Liu, Y.; Ying, X.; Feng, X.; et al. Investigation on early hydration features of magnesium potassium phosphate cementitious material with the electrodeless resistivity method. Cem. Concr. Compos. 2018, 90, 235–240. [Google Scholar]
- Jianming, Y.; Chunxiang, Q.; Qizhao, Z.; Baoxiang, J. Effect of water glass on the properties of potassium magnesium phosphate cement. J. Build. Mater. 2011, 14, 227–233. [Google Scholar]
- Yu, L.; Mengyuan, L.; Peiyu, Y. Effect of mineral admixture on rheological properties and thixotropy of cementitious material slurry. J. Chin. Ceram. Soc. 2019, 47, 594–601. [Google Scholar]
- Liwu, M.; Liming, L.; Min, D.; Jueshi, Q. Influence of fly ash and metakaolin on the microstructure and compressive strength of magnesium potassium phosphate cement paste. Cem. Concr. Res. 2018, 111, 116–129. [Google Scholar]
- Yu, J.; Muhammad, R.A.; Bing, C. Properties of magnesium phosphate cement containing steel slag powder. Constr. Build. Mater. 2019, 195, 140–147. [Google Scholar]
- Qin, J.; Qian, J.; Chao, Y.; Fan, Y.; Zhen, L.; Wang, H. Bond behavior and interfacial micro-characteristics of magnesium phosphate cement onto old concrete substrate. Constr. Build. Mater. 2018, 167, 166–176. [Google Scholar] [CrossRef]
- Jianming, Y.; Luming, W.; Jie, Z. Experimental study on the deformation characteristics of magnesium potassium phosphate cement paste at early hydration ages. Cem. Concr. Compos. 2019, 103, 175–182. [Google Scholar] [CrossRef]
- Zhang, X.; Li, G.; Niu, M.; Song, Z. Effect of calcium aluminate cement on water resistance and high-temperature resistance of magnesium-potassium phosphate cement. Constr. Build. Mater. 2018, 175, 768–776. [Google Scholar] [CrossRef]
- Xuancheng, X.; Yunxia, S. Research Progress of Potassium Magnesium Phosphate Cement. Sichuzn Build. Sci. 2013, 39, 201–204. [Google Scholar]
Mineral Admixture | Others | ||||||||
---|---|---|---|---|---|---|---|---|---|
MO | 0.49 | 3.76 | 2.33 | 92.58 | 0.67 | 0.02 | 0.15 | ||
SF | 0.44 | 93.16 | 0.44 | 1.37 | 0.27 | 1.3 | 3.02 | ||
MK | 46.12 | 48.73 | 0.12 | 0.13 | 0.35 | 1.32 | 0.1 | 3.13 | |
FA | 28.33 | 49.20 | 4.87 | 2.17 | 6.78 | 1.20 | 1.27 | 0.65 | 5.53 |
Mortar Ratio | |||||
---|---|---|---|---|---|
M0 | 2:3 | 0.14 | 0.18 | 0.02 | 1:0.75 |
Code | Fluidity/mm |
---|---|
M0 | 300+ |
M-SF | 270 |
M-MK | 300+ |
M-FA | 300 |
Code | Strength and Strength Residual Ratio | |
---|---|---|
Compressive Strength | Bending bond Strength | |
M0 | 48.2/84.4% | 2.2/88.0% |
M1 | 49.4/90.8% | 6.1/89.7% |
M2 | 56.9/88.6% | 3.1/66.0% |
M3 | 51.8/86.3% | 4.4/110.0% |
Code | Natural Curing | Water Curing |
---|---|---|
M0 | 23.3% | 24.0% |
M1 | 22.9% | 23.9% |
M2 | 21.6% | 21.3% |
M3 | 22.0% | 20.0% |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Q.; Zou, Y.; Gu, J.; Xu, J.; Ji, R.; Wang, G. The Influence and Action Mechanization of Mineral Mixed Material on High Fluidity Potassium Magnesium Phosphate Cement (MKPC). J. Compos. Sci. 2020, 4, 29. https://doi.org/10.3390/jcs4010029
Wu Q, Zou Y, Gu J, Xu J, Ji R, Wang G. The Influence and Action Mechanization of Mineral Mixed Material on High Fluidity Potassium Magnesium Phosphate Cement (MKPC). Journal of Composites Science. 2020; 4(1):29. https://doi.org/10.3390/jcs4010029
Chicago/Turabian StyleWu, Qing, Yan Zou, Jianhua Gu, Jun Xu, Rongjian Ji, and Gang Wang. 2020. "The Influence and Action Mechanization of Mineral Mixed Material on High Fluidity Potassium Magnesium Phosphate Cement (MKPC)" Journal of Composites Science 4, no. 1: 29. https://doi.org/10.3390/jcs4010029
APA StyleWu, Q., Zou, Y., Gu, J., Xu, J., Ji, R., & Wang, G. (2020). The Influence and Action Mechanization of Mineral Mixed Material on High Fluidity Potassium Magnesium Phosphate Cement (MKPC). Journal of Composites Science, 4(1), 29. https://doi.org/10.3390/jcs4010029