Flexural Property of a Composite Biomaterial in Three Applications
Abstract
:1. Introduction
2. Luting Materials
2.1. Introduction
2.2. Materials
2.3. Methods and Results
2.4. Discussions
2.5. Relevancy
3. Filling Materials
3.1. Introduction
3.2. Materials and Methods
3.3. Results
3.4. Discussions
3.5. Relevancy
4. Core Build-Up Materials
4.1. Introduction
4.2. Material and Methods
4.3. Results
4.4. Discussions
4.5. Relevancy
5. Novelty
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Irie, M.; Suzuki, K. Current luting cements: Marginal gap formation of composite inlay and their mechanical properties. Dent. Mater. 2001, 17, 347–353. [Google Scholar] [CrossRef]
- Irie, M.; Suzuki, K.; Watts, D.C. Marginal and flexural integrity of three classes of luting cement, with early finishing and water storage. Dent. Mater. 2004, 20, 3–11. [Google Scholar] [CrossRef] [Green Version]
- Peutzfeldt, A.; Asmussen, E. Determinants of in vitro gap formation of resin composites. J. Dent. 2004, 32, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Irie, M.; Hatanaka, K.; Suzuki, K.; Watts, D.C. Immediate versus water-storage performance of class V flowable composite restoratives. Dent. Mater. 2006, 22, 875–883. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hosaka, K.; Nakajima, M.; Takahashi, M.; Itoh, S.; Ikeda, M.; Tagami, J.; Pashley, D.H. Relationship between mechanical properties of one-step self-etch adhesives and water sorption. Dent. Mater. 2010, 26, 360–367. [Google Scholar] [CrossRef] [PubMed]
- Asmussen, E.; Peutzfeldt, A. Influence of UEDMA, BisGMA and TEGDMA on selected mechanical properties of experimental resin composites. Dent. Mater. 1998, 14, 51–56. [Google Scholar] [CrossRef]
- Irie, M.; Maruo, Y.; Nishigawa, G.; Suzuki, K.; Watts, D.C. Physical properties of dual-cured luting-agents correlated to early no interfacial-gap incidence with composite inlay restorations. Dent. Mater. 2010, 26, 608–615. [Google Scholar] [CrossRef]
- Takahashi, H.; Finger, W.J.; Utterodt, A.; Komatsu, M.; Woestmann, B.; Balkenhol, M. Factors influencing marginal cavity adaptation of nanofiller containing resin composite restorations. Dent. Mater. 2010, 26, 1166–1175. [Google Scholar] [CrossRef]
- Irie, M.; Maruo, Y.; Nishigawa, G. Performance of Class I composite restorations when polished immediately or after one-day water storage. PLoS ONE 2017, 12, e0183381. [Google Scholar] [CrossRef] [Green Version]
- Irie, M. Shear bond strength to human tooth and flexural strength of current resin cements. J. Jpn. Assoc. Dent. Traumatol. 2007, 3, 9–14. [Google Scholar]
- Irie, M.; Maruo, Y.; Nishigawa, G.; Yoshihara, K.; Matsumoto, T. Flexural strength of resin core build-up materials: Correlation to root dentin bond strength and pull-out force. Polymers 2020, 12, 2947. [Google Scholar] [CrossRef]
- Gordan, V.V.; Vargas, M.A.; Cobb, D.S.; Denehy, G.E. Evaluation of acidic primers in microleakage of Class 5 composite resin restorations. Oper. Dent. 1998, 23, 244–249. [Google Scholar]
- Van Meerbeek, B.; Vargas, M.; Inoue, S.; Yoshida, Y.; Peumans, M.; Lambrechts, P.; Vanherle, G. Adhesives and cements to promote preservation dentistry. Oper. Dent. 2001, 26 (Suppl. 6), 119–144. [Google Scholar]
- Tay, F.R.; Pashley, D.H. Aggressiveness of contemporary self-etching systems. I: Depth of penetration beyond dentin smear layers. Dent Mater. 2001, 17, 296–308. [Google Scholar] [CrossRef]
- Feraccane, J.L.; Mitchem, J.C. Relationship between composite contraction stress and leakage in Class V cavities. Am. J. Dent. 2003, 16, 239–243. [Google Scholar]
- Calheiros, F.C.; Sadek, F.T.; Braga, R.R.; Cardoso, P.E. Polymerization contraction stress of low-shrinkage composites and its correlation with microleakage in Class V restorations. J. Dent. 2004, 32, 407–412. [Google Scholar] [CrossRef]
- Irie, M.; Suzuki, K.; Watts, D.C. Marginal gap formation of light-activated restorative materials: Effect of immediate setting shrinkage and bond strength. Dent. Mater. 2002, 18, 203–210. [Google Scholar] [CrossRef]
- Bakhsh, T.A.; Sadr, A.; Shimada, Y.; Mandurah, M.M.; Hariri, I.; Alsayed, E.Z.; Tagami, J.; Sumi, Y. Concurrent evaluation of composite internal adaptation and bond strength in a class-I cavity. J. Dent. 2013, 41, 60–70. [Google Scholar] [CrossRef]
- Watts, D.C. Reaction kinetics and mechanics in photo-polymerised networks. Dent. Mater. 2005, 21, 27–35. [Google Scholar] [CrossRef]
- Mishra, L.; Khan, A.S.; Velo, M.M.A.C.; Saurav, P.S.; Zavattini, A.; Rizzante, F.A.P.; Vega, H.I.A.; Sauro, S.; Monika, L.-S.M. Effects of Surface Treatments of Glass Fiber-Reinforced Post on Bond Strength to Root Dentine: A Systematic Review. Materials 2020, 13, 1967. [Google Scholar] [CrossRef] [Green Version]
- Alshali, R.Z.; Salim, N.A.; Satterthwaite, J.D.; Silikas, N. Long-term sorption and solubility of bulk-fill and conventional resin-composites in water and artificial saliva. J. Dent. 2015, 43, 1511–1518. [Google Scholar] [CrossRef]
- Sokolowski, K.; Agata Szczesio-Wlodarczyk, A.; Bociong, K.; Krasowski, M.; Fronczek-Wojciechowska, M.; Domarecka, M.; Sokolowski, J.; Lukomska-Szymanska, M. Contraction and Hydroscopic Expansion Stress of Dental Ion-Releasing Polymeric Materials. Polymers 2018, 10, 1093. [Google Scholar] [CrossRef] [Green Version]
- Tsujimoto, A.; Irie, M.; Teixeira, E.C.N.; Jurado, C.A.; Maruo, Y.; Nishigawa, G.; Matsumoto, T.; Garcia-Godoy, F. Relationships between Flexural and Bonding Properties, Marginal Adaptation, and Polymerization Shrinkage in Flowable Composite Restorations for Dental Application. Polymers 2021, 13, 2613. [Google Scholar] [CrossRef]
Materials | Manufacturer | Material Composition |
---|---|---|
Self-Adhesive Resin Cement | ||
RelyX Unicem Aplicap | 3M ESPE, Seefeld Germany | Filler Content 72 wt % (Aluminosilicate, Silanized Filler) Methacrylates, Initiators, Acidic Methacrylates |
Adhesive Resin Cement | ||
Calibra | Dentsply/Caulk Milford, DE, USA | Filler Content 67–68 wt % (Silica Fume) Bis-GMA, TEGDMA, Titanium Dioxide, Catalyst |
NEXUS 2 | Kerr, Orange CA, USA | Filler Content 70 wt % (Fumed Silica and Barium Aluminosilicate) Bis-GMA, TEGDMA, EBPADMA, HEMA, UDMA, Catalyst |
Panavia F | Kuraray medical, Kurashiki, Japan | Filler Content 78 wt % Paste A: MDP, Comonomer, Filler, NaF, BPO Paste B: Comonomer, Filler, NaF, amine, initiator |
LINK MAX | GC, Tokyo Japan | Filler Content 68 wt % (Fluoroalumonisilicate Glass, SiO) UDMA, HEMA, Dimethacrylate, Catalyst |
Bistite II | Tokuyama Dental Tokyo, Japan | Filler Content 77 wt % (Silica-Zirconia) MAC-10, EBPADMA, Monomer, Initiator |
Chemiace II | Sun Medical Moriyama, Japan | P: Complexed Filler, SiO2, ZrO2, Amine L: 4-META, HEMA, Dimethacrylate, BPO, Powder/Liquid: 1.15 |
Luting Agent | Immediately | After 1-Day Storage | p-Value * |
---|---|---|---|
RelyX Unicem Aplicap | 64.9 (6.7) | 88.8 (4.4) | <0.001 |
Calibra | 73.7 (7.4) | 120.1 (11.7) | <0.001 |
NEXUS 2 | 83.4 (8.1) | 123.0 (9.2) | <0.001 |
Panavia F | 34.8 (5.6) | 99.8 (10.6) | <0.001 |
LINK MAX | 107.8 (10.6) | 159.4 (19.5) | <0.001 |
Bistite II | 73.2 (9.4) | 108.1 (14.7) | <0.001 |
Chemiace II | 37.1 (3.9) | 57.8 (3.7)j | <0.001 |
Luting Agent | Immediately | After 1-Day Storage | p-Value * |
---|---|---|---|
RelyX Unicem | 4.57 (0.55) | 7.86 (0.81) | <0.001 |
Calibra | 1.88 (0.20) | 6.47 (0.30) | <0.001 |
NEXUS 2 | 3.10 (0.41) | 6.69 (0.35) | <0.001 |
Panavia F | 2.75 (0.25) | 9.65 (1.01) | <0.001 |
LINK MAX | 3.33 (0.82) | 7.51 (0.49) | <0.001 |
Bistite II | 5.23 (0.41) | 9.61 (1.11) | <0.001 |
Chemiace II | 0.47 (0.14)e | 3.39 (0.26)j | <0.001 |
Product | Composition | Manufacturer | Lot No. |
---|---|---|---|
QuiXX | Silica nanofiller (86 wt %, 66 vol%) Bis-EMA, UDMA, TEGDMA, TMPTMA, Photo Initiators, Stabilizers | Dentsply/Caulk Milford, DE, USA | 0503000635 |
Filtek P60 | Zirconia/Silica (83 wt %, 61 vol%) Bis-GMA, UDMA, Bis-EMA, Photo Initiators Stabilizers | 3M ESPE, St. Paul, MN, USA | 3TC |
Herculite XRV | Barium Silica Glass (79 wt %, 59 vol%) Bis-GMA, TEGDMA, EBPADMA | Kerr, Orange, CA, USA | 112330 |
Tetric N-Ceram | Bariumglass Filler, Ytterbiumtrifluoride, Mixed Oxide (63.5 wt %, 55–57 vol%), Prepolymer (17%) UDMA, Bis-EMA, Bis-GMA, Photo Initiators | Ivoclar Vivadent AG, Schaan, Liechtenstein | KO4764 |
Gradia Direct P | Silica Powder, Prepolymerized Filler Fluoro-Aluminosilicate-Glass (79 wt %, 65 vol%) UDMA, Dimethacrylate, Pigment, Photo Initiators | GC, Tokyo, Japan | 0403301 |
BEAUTIFIL II | S-PRG Filler, Multi-Functional Glass Filler Ultra-Fine Filler (83.3 wt %, 68.6 vol%) Bis-GMA, TEGDMA, UDA, Photo Initiators | Shofu, Kyoto, Japan | 110615 |
EPIC-AP | Barium glass filler, TMPT reactive filler (82 wt %, 64 vol%) Dimethacrylates, Photoinitiator, Stabilizer | Sun Medical Moriyama, Japan | MX2F |
Estelite Sigma | Silica/zirconia filler (82 wt %, 71 vol%) Bis-GMA, TEGDMA, Bis-MPEPP, Photo Initiators | Tokuyama Dental Tokyo, Japan | 011K2 |
Clearfil AP-X | Silanated Glass Ceramics, Surface Treated Alumina Microfiller (85.5 wt %, 71.0 vol%) Bis-DGMA, TEGDMA, Hydrophobic Aromatic Dimetnacrulate, dl-Camphorquinone | Kuraray Medical Kurashiki, Japan | 1121AA |
Restoration | Immediately | After One-Day Storage | Change (%) # | p-Value a |
---|---|---|---|---|
QuiXX | 84.4 (3.3) | 143.8 (12.1) | +70 | <0.05 |
P-60 | 102.0 (5.6) | 165.1 (9.8) | +62 | <0.05 |
Herculite XRV | 75.5 (9.3) | 135.9 (10.5) | +80 | <0.05 |
Tetric EvoCeram | 84.1 (5.0) | 122.7 (3.5) | +46 | <0.05 |
Gradia Direct P | 52.2 (3.5) | 91.5 (7.0) | +75 | <0.05 |
BEAUTIFIL II | 77.0 (4.9) | 113.9 (11.3) | +48 | <0.05 |
EPIC AP | 62.2 (5.0) | 108.6 (10.4) | +75 | <0.05 |
Estelite Sigma | 61.9 (5.4) | 93.5 (7.1) | +51 | <0.05 |
Clearfil AP-X | 128.4 (7.6) | 167.9 (14.1) | +31 | <0.05 |
Restoration | Immediately | After One-Day Storage | Change (%) # | p-Value a |
---|---|---|---|---|
QuiXX | 9.29 (2.63) | 18.21 (1.71) | + 96 | <0.05 |
P-60 | 8.62 (1.24) | 15.76 (1.19) | + 83 | <0.05 |
Herculite XRV | 4.77 (0.13) | 11.88 (0.70) | +149 | <0.05 |
Tetric EvoCeram | 6.04 (0.87) | 9.21 (0.88) | + 52 | <0.05 |
Gradia Direct P | 2.78 (0.22) | 5.26 (0.31) | + 89 | <0.05 |
BEAUTIFIL II | 7.05 (0.86) | 11.78 (0.99) | + 67 | <0.05 |
EPIC AP | 5.26 (0.50) | 10.77 (0.73) | +105 | <0.05 |
Estelite Sigma | 3.59 (0.19) | 6.88 (0.46) | +92 | <0.05 |
Clearfil AP-X | 10.99 (0.98) | 17.76 (1.35) | +62 | <0.05 |
Product | Composition | Manufacturer | Batch No. |
---|---|---|---|
FluoroCore 2+ | Barium Fluoro Alumino Borosilicate Glass (Silanated), Silane Treated Silica, Aluminum Oxide, Bis-GMA, Urethane Dimetacrylate, Polymerizable Dimetacrylate, Benzoyl Peroxide, Filler Content: 69.1 wt %, 46 vol%. The Particle Size Ranges from 0.04 to 25 µm. | Dentsply/Caulk, Milford, DE, USA | 160415 |
RelyX Ultimate | Surface Treated Glass Powder Filler, Phosphate Ester monomer, TEGDMA, 1,12-Dodecane Dimethaycrylate, silica Filler, Initiator, Calcium Hydroxide, Titanium Dioxide, Filler Content: About 70 wt % | 3M, Seefeld, Germany | 642680 |
RelyX Unicem 2 Automix | Surface Treated Class Powder Filler, Phosphate Ester monomer, TEGDMA, 1,12-Dodecane Dimethaycrylate, Silica Filler, Initiator, Calcium Hydroxide, Sodium p-Toluensulfinatet, Methacrylated Amine, Titanium Dioxide, Filler Content: About 70 wt % | 3M, Seefeld, Germany | 646984 |
Filtek Bulkfill Flowable Restorative | Silane Treated Ceramic, UDMA, Bis EMA, Bis-GMA, TEGDMA, Other Dimethacrylate, Ytterbium Fluoride, Filler Content: 64.5 wt %, 42.5 vol% | 3M, St. Paul, USA | N815551 |
NX3 | Barium Aluminoborosilicate Glass, Ytterbium Trifluoride, Fumed Silica, TEGDMA, UDMA, EBPADMA, Initiator, Stabilizer, Filler Content: 67.5 wt %, 43.3 vol% | Kerr, Orange, CA, USA | 6021181 |
MultiCore Flow | Ytterbium Trifluoride, Bis-GMA, UDMA, TEGDMA, Dibenzoyl Peroxide, Filler Content: 70 wt %, 46 vol%, The Particle Size Ranges from 0.04 to 25 µm. | Ivoclar Vivadent AG, Schaan, Liechtenstein | W02582 |
UniFil Core EM | UDMA, Dimethacrylate, Fluoroaluminosilicate Glass, Iron Oxide, Dibenzoyl Peroxide, Butylated Hydroxytoluene, Filler Content: 75 wt % | GC, Tokyo, Japan | 1604251 |
Beauti Core Flow Paste | Glass Powder Filler (S-PRG Filler), Bis-GMA, TEGDMA, Silica, Initiator, Others, Filler Content: 60–70 wt % | Shofu, Kyoro, Japan | 61610 |
i-TFC system Post Resin | Dimethacrylates, Silica, Barium Glass Filler, Photoinitiators, Stabilizer, Others Filler Content: 67 wt % | Sun Medical, Moriyama, Shiga, Japan | MX13 |
ESTECORE | Bis-GMA, TEGDMA, Bis-MPEPP, Silica-Zirconia Filler, Camphorquinone, Peroxide, Radial Amplifier, Others, Filler Content: 75 wt % | Tokuyama Dental, Tokyo, Japan | 112006 |
Clearfil DC Core Automix ONE | Bis-GMA, TEGDMA, Hydrophilic Aliphatic Dimethacrylate, Hydrophobic Aromatic Dimethacrylate, Silanated barium Glass Filler, Silanated Colloidal Silica, Colloidal Silica, dl-Camphor Quinone, Aluminum Oxide Filler, Initiators, Accelerators, Pigments. Filler Content: 74 wt %, 52 vol% | Kuraray Noritake Dental, Tainai, Niigata, Japan | B30218 |
Immediate | After One-Day Storage | p-Value a | |
---|---|---|---|
FluoriCore 2 | 83.3 (8.8) | 132.0 (8.4) | <0.05 |
RelyX Ultimate | 71.4 (4.6) | 119.4 (3.6) | <0.05 |
RelyX Unicem 2 Automix | 71.9 (5.7) | 108.0 (6.8) | <0.05 |
Filtek BulkFill Flowable Restorative | 50.3 (1.8) | 144.9 (5.3) | <0.05 |
NX3 | 39.1 (5.2) | 123.7 (9.8) | <0.05 |
MultiCore Flow | 99.4 (7.4) | 142.1 (9.1) | <0.05 |
UniFil Core EM | 90.8 (7.3) | 153.6 (11.4) | <0.05 |
BeautiCore Flow Paste | 112.4 (9.3) | 140.7 (7.9) | <0.05 |
i-TFC system Post Resin | 84.3 (4.1) | 139.4 (6.4) | <0.05 |
ESTECORE | 122.3 (9.1) | 172.8 (10.2) | <0.05 |
Clearfil DC Core Automix ONE | 97.3 (19.4) | 140.6 (9.6) | <0.05 |
Immediate | After One-Day Storage | p-Value a | |
---|---|---|---|
FluoriCore 2 | 4.61 (0.34) | 9.20 (0.85) | <0.05 |
RelyX Ultimate | 3.78 (0.31) | 9.22 (0.73) | <0.05 |
RelyX Unicem 2 Automix | 4.16 (0.51) | 8.22 (0.58) | <0.05 |
Filtek BulkFill Flowable Restorative | 3.25 (0.21) | 7.82 (0.51) | <0.05 |
NX3 | 0.84 (0.26) | 5.97 (0.49) | <0.05 |
MultiCore Flow | 4.27 (0.73) | 8.44 (0.47) | <0.05 |
UniFil Core EM | 4.72 (0.39) | 11.12 (0.92) | <0.05 |
BeautiCore Flow Paste | 5.79 (0.47) | 9.62 (0.66) | <0.05 |
i-TFC system Post Resin | 3.33 (0.35) | 6.86 (0.42) | <0.05 |
ESTECORE | 8.05 (0.95) | 13.80 (1.35) | <0.05 |
Clearfil DC Core Automix ONE | 4.74 (0.56) | 8.43 (0.55) | <0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irie, M.; Maruo, Y.; Nishigawa, G.; Matsumoto, T. Flexural Property of a Composite Biomaterial in Three Applications. J. Compos. Sci. 2021, 5, 282. https://doi.org/10.3390/jcs5100282
Irie M, Maruo Y, Nishigawa G, Matsumoto T. Flexural Property of a Composite Biomaterial in Three Applications. Journal of Composites Science. 2021; 5(10):282. https://doi.org/10.3390/jcs5100282
Chicago/Turabian StyleIrie, Masao, Yukinori Maruo, Goro Nishigawa, and Takuya Matsumoto. 2021. "Flexural Property of a Composite Biomaterial in Three Applications" Journal of Composites Science 5, no. 10: 282. https://doi.org/10.3390/jcs5100282
APA StyleIrie, M., Maruo, Y., Nishigawa, G., & Matsumoto, T. (2021). Flexural Property of a Composite Biomaterial in Three Applications. Journal of Composites Science, 5(10), 282. https://doi.org/10.3390/jcs5100282