Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber
Abstract
:1. Introduction
- The use of organic and inorganic solvents—as a result, the product usually requires additional purification, which complicates the process (additional unit operations), generates significant amounts of wastewater, and increases the processing time. Moreover, for many years, it has been suggested that the technology should use as few solvents as possible, as their use is not necessary [16].
- The need to start and stop production every day and sometimes more frequently affects the efficiency of the process and its economic aspect.
- The use of microwave and plasma reactors is costly and often does not ensure very high process efficiency [16].
2. Materials and Methods
2.1. Materials
2.2. Modifications of Ground Tire Rubber
2.3. Preparation of Polyurethane/Ground Tire Rubber Composite Foams
2.4. Measurements
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mokhtar, F.N.; Abdel Rehim, I.V.; Mahmoud, E.A. Applicability of using recycled rubber-Tire materials for acoustic insulation in barriers of residential areas in Egypt. ARPN J. Eng. Appl. Sci. 2017, 12, 806–820. [Google Scholar]
- Hidalgo-Signes, C.; Garzón-Roca, J.; Grima-Palop, J.M.; Insa-Franco, R. Use of rubber shreds to enhance attenuation of railway sub-ballast layers made of unbound aggregates. Mater. Construcción 2017, 67, 115. [Google Scholar] [CrossRef] [Green Version]
- Shu, X.; Huang, B. Recycling of waste tire rubber in asphalt and portland cement concrete: An overview. Constr. Build. Mater. 2014, 67, 217–224. [Google Scholar] [CrossRef]
- Yoon, S.; Prezzi, M.; Siddiki, N.Z.; Kim, B. Construction of a test embankment using a sand–tire shred mixture as fill material. Waste Manag. 2006, 26, 1033–1044. [Google Scholar] [CrossRef]
- Thomas, B.S.; Gupta, R.C. A comprehensive review on the applications of waste tire rubber in cement concrete. Renew. Sustain. Energy Rev. 2016, 54, 1323–1333. [Google Scholar] [CrossRef]
- Echterhof, T. Review on the use of alternative carbon sources in EAF steelmaking. Metals 2021, 11, 222. [Google Scholar] [CrossRef]
- Dankwah, J.R.; Koshy, P.; O’Kane, P.; Sahajwalla, V. Reduction of FeO in EAF steelmaking slag by blends of metallurgical coke and end-of-life tyre. Steel Res. Int. 2012, 83, 766–774. [Google Scholar] [CrossRef]
- Tire Incineration. Energy Justice Network. Available online: http://www.energyjustice.net/tires#25 (accessed on 3 February 2021).
- Amari, T.; Themelis, N.J.; Wernick, I.K. Resource recovery from used rubber tires. Resour. Policy 1999, 25, 179–188. [Google Scholar] [CrossRef]
- Ramarad, S.; Khalid, M.; Ratnam, C.; Chuah, A.L.; Rashmi, W. Waste tire rubber in polymer blends: A review on the evolution, properties and future. Prog. Mater. Sci. 2015, 72, 100–140. [Google Scholar] [CrossRef]
- De Sousa, F.D.B.; Scuracchio, C.H.; Hu, G.; Hoppe, S. Effects of processing parameters on the properties of microwave-devulcanized ground tire rubber/polyethylene dynamically revulcanized blends. J. Appl. Polym. Sci. 2016, 133, 43503. [Google Scholar] [CrossRef]
- Aoudia, K.; Azem, S.; Hocine, N.A.; Gratton, M.; Pettarin, V.; Seghar, S. Recycling of waste tire rubber: Microwave devulcanization and incorporation in a thermoset resin. Waste Manag. 2017, 60, 471–481. [Google Scholar] [CrossRef] [PubMed]
- Hernández, E.H.; Gámez, J.F.H.; Cepeda, L.F.; Muñoz, E.J.C.; Corral, F.S.; Rosales, S.G.S.; Velázquez, G.N.; Morones, P.G.; Martínez, D.I.S. Sulfuric acid treatment of ground tire rubber and its effect on the mechanical and thermal properties of polypropylene composites. J. Appl. Polym. Sci. 2017, 134, 44864. [Google Scholar] [CrossRef]
- Cheng, X.; Long, D.; Huang, S.; Li, Z.; Guo, X. Time effectiveness of the low-temperature plasma surface modification of ground tire rubber powder. J. Adhes. Sci. Technol. 2015, 29, 1330–1340. [Google Scholar] [CrossRef]
- Colom, X.; Faliq, A.; Formela, K.; Cañavate, J. FTIR spectroscopic and thermogravimetric characterization of ground tyre rubber devulcanized by microwave treatment. Polym. Test. 2016, 52, 200–208. [Google Scholar] [CrossRef]
- Rungrodnimitchai, S.; Kotatha, D. Chemically modified ground tire rubber as fluoride ions adsorbents. Chem. Eng. J. 2015, 282, 161–169. [Google Scholar] [CrossRef]
- Formela, K.; Cysewska, M.; Haponiuk, J.T. Thermomechanical reclaiming of ground tire rubber via extrusion at low temperature: Efficiency and limits. J. Vinyl Addit. Technol. 2014, 22, 213–221. [Google Scholar] [CrossRef]
- Tzoganakis, C. Reactive extrusion of polymers: A review. Adv. Polym. Technol. 1989, 9, 321–330. [Google Scholar] [CrossRef]
- Moad, G. Chemical modification of starch by reactive extrusion. Prog. Polym. Sci. 2011, 36, 218–237. [Google Scholar] [CrossRef]
- Przybysz-Romatowska, M.; Haponiuk, J.; Formela, K. Reactive extrusion of biodegradable aliphatic polyesters in the presence of free-radical-initiators: A review. Polym. Degrad. Stab. 2020, 182, 109383. [Google Scholar] [CrossRef]
- Swinarew, B. Poliuretany—Nowoczesne wszechstronne materiały. Część II—Pianki poliuretanowe. Przetw. Tworzyw 2015, 5, 428–434. (In Polish) [Google Scholar]
- Papiński, J.; Żabski, L. Zrozumieć poliuretany. Mater. Bud. 2011, 1, 57–58. (In Polish) [Google Scholar]
- Hejna, A.; Kosmela, P.; Olszewski, A.; Zedler, Ł.; Formela, K. The impact of ground tire rubber treatment on the thermal conductivity of flexible polyurethane/ground tire rubber composites. In Scientific Collection «InterConf», (38), Proceedings of the 1st International Scientific and Practical Conference «Science, Education, Innovation: Topical Issues and Modern Aspects», Tallin, Estonia, 16–18 December 2020; Uhingu Teadus Juhatus: Tallin, Estonia, 2020; pp. 1062–1068. [Google Scholar]
- Barnat, W.; Miedzińska, D.; Niezgoda, T. Pianki poliuretanowe—Właściwości, zastosowania, recykling. Arch. Gospod. Odpa-dami Ochr. Sr. 2011, 13, 13–17. (In Polish) [Google Scholar]
- Piszczyk, Ł.; Hejna, A.; Danowska, M.; Strankowski, M.; Formela, K. Polyurethane/ground tire rubber composite foams based on polyglycerol: Processing, mechanical and thermal properties. J. Reinf. Plast. Compos. 2015, 34, 708–717. [Google Scholar] [CrossRef]
- Piszczyk, Ł.; Hejna, A.; Formela, K.; Danowska, M.; Strankowski, M. Effect of ground tire rubber on structural, mechanical and thermal properties of flexible polyurethane foams. Iran. Polym. J. 2014, 24, 75–84. [Google Scholar] [CrossRef] [Green Version]
- Hejna, A.; Olszewski, A.; Zedler, Ł.; Kosmela, P.; Formela, K. The Impact of Ground Tire Rubber Oxidation with H2O2 and KMnO4 on the structure and performance of flexible polyurethane/ground tire rubber composite foams. Materials 2021, 14, 499. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Olszewski, A.; Zedler, Ł.; Formela, K. Determination of the Hydroxyl Number of Ground Tire Rubber Particles Via Modified Test Method for Isocyanate Groups. In Scientific Collection «InterConf», (39), Proceedings of the 8th International Scientific and Practical Conference «Science and Practice: Implementation to Modern Society», Manchester, UK, 26–28 December 2020; Peal Press Ltd.: Manchester, UK, 2020; pp. 1535–1543. [Google Scholar]
- Cachaço, A.G.; Afonso, M.D.; Pinto, M.L. New applications for foam composites of polyurethane and recycled rubber. J. Appl. Polym. Sci. 2013, 129, 2873–2881. [Google Scholar] [CrossRef]
- Gayathri, R.; Vasanthakumari, R.; Padmanabhan, C. Sound absorption, thermal and mechanical behavior of polyurethane foam modified with nano silica, nano clay and crumb rubber fillers. Int. J. Sci. Eng. Res. 2013, 4, 301–308. [Google Scholar]
- Zhang, X.; Lu, Z.; Tian, N.; Li, H. Mechanochemical devulcanization of ground tire rubber and its application in acoustic absorbent polyurethane foamed composites. J. Appl. Polym. Sci. 2013, 127, 4006–4014. [Google Scholar] [CrossRef]
- Fazli, A.; Rodrigue, D. Recycling Waste Tires into Ground Tire Rubber (GTR)/Rubber Compounds: A Review. J. Compos. Sci. 2020, 4, 103. [Google Scholar] [CrossRef]
- Zedler, Ł.; Kosmela, P.; Olszewski, A.; Burger, P.; Formela, K.; Hejna, A. Recycling of waste rubber by thermo-mechanical treatment in a twin-screw extruder. Proceedings 2020, 69, 10. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Klein, M.; Formela, K.; Kopczynska, M.; Haponiuk, J.; Piszczyk, Ł. Two-step conversion of crude glycerol generated by biodiesel production into biopolyols: Synthesis, structural and physical chemical characterization. J. Polym. Environ. 2018, 26, 3334–3344. [Google Scholar] [CrossRef]
- Hejna, A.; Kosmela, P.; Olszewski, A.; Zedler, Ł.; Formela, K. Oil-assisted thermo-mechanical reclamation of ground tire rubber. In Scientific Collection «InterConf», (40), Proceedings of the 2nd International Scientific and Practical Conference «Scientific Community: Interdisciplinary Research», Hamburg, Germany, 26–28 January 2021; Busse Verlag GmbH: Hamburg, Germany, 2021; pp. 615–621. [Google Scholar]
- Formela, K.; Klein, M.; Colom, X.; Saeb, M.R. Investigating the combined impact of plasticizer and shear force on the efficiency of low temperature reclaiming of ground tire rubber (GTR). Polym. Degrad. Stab. 2016, 125, 1–11. [Google Scholar] [CrossRef]
- Gągol, M.; Boczkaj, G.; Haponiuk, J.; Formela, K. Investigation of volatile low molecular weight compounds formed during continuous reclaiming of ground tire rubber. Polym. Degrad. Stab. 2015, 119, 113–120. [Google Scholar] [CrossRef]
- Członka, S.; Bertino, M.F.; Kośny, J.; Strąkowska, A.; Masłowski, M.; Strzelec, K. Linseed oil as a natural modifier of rigid polyurethane foams. Ind. Crop. Prod. 2018, 115, 40–51. [Google Scholar] [CrossRef]
- Prociak, A.; Kurańska, M.; Malewska, E.; Szczepkowski, L.; Zieleniewska, M.; Ryszkowska, J.; Ficon, J.; Rzasa, A. Biobased polyurethane foams modified with natural fillers. Polimery 2015, 60, 592–599. [Google Scholar] [CrossRef]
- Formela, K.; Hejna, A.; Zedler, Ł.; Przybysz, M.; Ryl, J.; Saeb, M.R.; Piszczyk, Ł. Structural, thermal and physico-mechanical properties of polyurethane/brewers’ spent grain composite foams modified with ground tire rubber. Ind. Crop. Prod. 2017, 108, 844–852. [Google Scholar] [CrossRef]
- Song, Z.-L.; Ma, L.-Q.; Wu, Z.-J.; He, D.-P. Effects of viscosity on cellular structure of foamed aluminum in foaming process. J. Mater. Sci. 2000, 35, 15–20. [Google Scholar] [CrossRef]
- Zhang, X.; Tian, N.; Zhang, W.; Zhu, J.; Lu, C. Morphology, foaming rheology and physical properties of ethylene-propylene diene rubber/ground tyre rubber (GTR) composite foams: Effect of mechanochemical devulcanisation of GTR. Prog. Rubber Plast. Recycl. Technol. 2013, 29, 81–98. [Google Scholar] [CrossRef]
- Formela, K.; Cysewska, M.; Haponiuk, J.; Stasiek, A. The influence of feed rate and shear forces on the devulcanization process of ground tire rubber (GTR) conducted in a co-rotating twin screw extruder. Polimery 2013, 58, 906–912. [Google Scholar] [CrossRef]
- Formela, K.; Cysewska, M.; Haponiuk, J.; Stasiek, A. Effect of screw configuration and rotation speed of screws on quality of products of continuous thermomechanical devulcanization. Przem. Chem. 2012, 91, 2398–2402. [Google Scholar]
- Markl, E.; Lackner, M. Devulcanization Technologies for Recycling of Tire-Derived Rubber: A Review. Materials 2020, 13, 1246. [Google Scholar] [CrossRef] [Green Version]
- Esteban, B.; Riba, J.-R.; Baquero, G.; Puig, R.; Rius, A.; Ruiz, J.-R.R. Characterization of the surface tension of vegetable oils to be used as fuel in diesel engines. Fuel 2012, 102, 231–238. [Google Scholar] [CrossRef]
- Kurańska, M.; Banaś, J.; Polaczek, K.; Banaś, M.; Prociak, A.; Kuc, J.; Uram, K.; Lubera, T. Evaluation of application potential of used cooking oils in the synthesis of polyol compounds. J. Environ. Chem. Eng. 2019, 7, 103506. [Google Scholar] [CrossRef]
- Ma, J.; Hu, M.; Sun, D.; Lu, T.; Sun, G.; Ling, S.; Xu, L. Understanding the role of waste cooking oil residue during the preparation of rubber asphalt. Resour. Conserv. Recycl. 2021, 167, 105235. [Google Scholar] [CrossRef]
- Saiwari, S.; Dierkes, W.K.; Noordermeer, J.W.M. Devulcanization of Whole passenger car tire material. KGK Rubberpoint 2013, 66, 20–25. [Google Scholar]
- Chuayjuljit, S.; Sangpakdee, T. Processing and properties of palm oil-based rigid polyurethane foam. J. Met. Mater. Miner. 2007, 17, 17–23. [Google Scholar]
- Mosiewicki, M.; Dell’Arciprete, G.; Aranguren, M.; Marcovich, N. Polyurethane foams obtained from castor oil-based polyol and filled with wood flour. J. Compos. Mater. 2009, 43, 3057–3072. [Google Scholar] [CrossRef]
- Nandi, S.; Winter, H.H. Swelling behavior of partially cross-linked polymers: A ternary system. Macromolecules 2005, 38, 4447–4455. [Google Scholar] [CrossRef] [Green Version]
- Kosmela, P.; Hejna, A.; Suchorzewski, J.; Piszczyk, Ł.; Haponiuk, J.T. Study on the structure-property dependences of rigid pur-pir foams obtained from marine biomass-based biopolyol. Materials 2020, 13, 1257. [Google Scholar] [CrossRef] [Green Version]
- Zedler, Ł.; Przybysz-Romatowska, M.; Haponiuk, J.; Wang, S.; Formela, K. Modification of ground tire rubber—Promising approach for development of green composites. J. Compos. Sci. 2019, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Formela, K.; Cysewska, M.; Haponiuk, J. The influence of screw configuration and screw speed of co-rotating twin screw extruder on the properties of products obtained by thermomechanical reclaiming of ground tire rubber. Polimery 2014, 59, 170–177. [Google Scholar] [CrossRef]
- Gibson, L.J.; Ashby, M.F. Cellular Solids: Structure and Properties, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Usman, M.A.; Adeosun, S.O.; Osifeso, G.O. Optimum Calcium Carbonate Filler Concentration for Flexible Polyurethane Foam Composite. J. Miner. Mater. Charact. Eng. 2012, 11, 311–320. [Google Scholar] [CrossRef]
- Chen, Y.; Das, R.; Battley, M. Effects of cell size and cell wall thickness variations on the strength of closed-cell foams. Int. J. Eng. Sci. 2017, 120, 220–240. [Google Scholar] [CrossRef]
- Andersons, J.; Kirpluks, M.; Stiebra, L.; Cabulis, U. Anisotropy of the stiffness and strength of rigid low-density closed-cell polyisocyanurate foams. Mater. Des. 2016, 92, 836–845. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, J.; Zhu, Y.; Zhang, J.; Luo, G.; Cao, P.; Shen, Q.; Zhang, L. Correlation between the structure and compressive property of PMMA microcellular foams fabricated by supercritical CO2 foaming method. Polymers 2020, 12, 315. [Google Scholar] [CrossRef]
- Boiko, Y.M.; Guérin, G.; Marikhin, V.A.; Prud’Homme, R.E. Healing of interfaces of amorphous and semi-crystalline poly(ethylene terephthalate) in the vicinity of the glass transition temperature. Polymers 2001, 42, 8695–8702. [Google Scholar] [CrossRef]
- Boiko, Y.M.; Prud’Homme, R.E. Surface mobility and diffusion at interfaces of polystyrene in the vicinity of the glass transition. J. Polym. Sci. Part B Polym. Phys. 1998, 36, 567–572. [Google Scholar] [CrossRef]
- Hatakeyama, H.; Hirogaki, A.; Matsumura, H.; Hatakeyama, T. Glass transition temperature of polyurethane foams derived from lignin by controlled reaction rate. J. Therm. Anal. Calorim. 2013, 114, 1075–1082. [Google Scholar] [CrossRef]
- Gisbert, A.N.; Amorós, J.E.C.; Martínez, J.L.; Garcia, A.M. Study of Thermal Degradation Kinetics of Elastomeric Powder (Ground Tire Rubber). Polym. Technol. Eng. 2007, 47, 36–39. [Google Scholar] [CrossRef]
- Laza, T.; Bereczky, Á. Basic fuel properties of rapeseed oil-higher alcohols blends. Fuel 2011, 90, 803–810. [Google Scholar] [CrossRef]
- Ravey, M.; Pearce, E.M. Flexible polyurethane foam. I. Thermal decomposition of a polyether-based, water-blown commercial type of flexible polyurethane foam. J. Appl. Polym. Sci. 1997, 63, 47–74. [Google Scholar] [CrossRef]
GTR Type | GTR | GTRTM | GTR20FO | GTR40FO | GTR20WO | GTR40WO |
---|---|---|---|---|---|---|
Hydroxyl number, mg KOH/g | 61.7 ± 3.0 | 37.8 ± 1.3 | 56.9 ± 2.4 | 53.1 ± 1.0 | 75.2 ± 3.5 | 75.9 ± 0.9 |
Component | Neat Foam | Composite Foams |
---|---|---|
Content, wt % | ||
F3000 | 32.6 | 26.1 |
V700 | 32.6 | 26.1 |
Glycerol | 0.8 | 0.6 |
DBTDL | 0.6 | 0.5 |
33LV | 0.4 | 0.3 |
TKA30 | 0.4 | 0.3 |
Water | 0.3 | 0.3 |
pMDI | 32.3 | 25.8 |
GTR/modified GTR | - | 20.0 |
Sample | Compressive Strength at 60% Deformation | Tensile Strength, kPa | Elongation at Break, % | E′ at 22 °C, kPa | E″ at 22 °C, kPa | tan δ at 22 °C | Tg, °C | |
---|---|---|---|---|---|---|---|---|
Measured, kPa | Normalized, kPa·m3/kg | |||||||
Matrix | 77 + 7 | 0.37 | 230 + 6 | 195 + 4 | 1358 | 834 | 0.61 | 20.7 |
PU/GTR | 38 + 2 | 0.18 | 128 + 5 | 167 + 2 | 627 | 323 | 0.52 | 10.5 |
PU/GTRTM | 52 + 2 | 0.26 | 156 + 8 | 171 + 5 | 1049 | 558 | 0.53 | 16.6 |
PU/GTR20FO | 19 + 1 | 0.09 | 77 + 1 | 174 + 2 | 379 | 213 | 0.56 | 10.3 |
PU/GTR40FO | 40 + 4 | 0.19 | 128 + 4 | 178 + 1 | 854 | 472 | 0.55 | 15.9 |
PU/GTR20WO | 45 + 2 | 0.22 | 154 + 13 | 169 + 7 | 935 | 568 | 0.60 | 14.1 |
PU/GTR40WO | 97 + 3 | 0.46 | 197 + 12 | 178 + 5 | 1023 | 582 | 0.55 | 15.4 |
Sample | T−2, °C | T−5, °C | T−10, °C | T−50, °C | Residue, wt% | Tmax1, °C | Tmax2, °C | Tmax3, °C | Tmax4, °C | Tmax5, °C |
---|---|---|---|---|---|---|---|---|---|---|
Matrix | 215.0 | 253.5 | 308.2 | 372.5 | 13.2 | 187.7 | 227.6 | 346.7 | 393.4 | 456.8 |
GTR | 256.6 | 307.2 | 347.9 | 444.7 | 37.5 | - | - | - | 379.0 | 431.2 |
PU/GTR | 232.5 | 284.3 | 316.2 | 386.3 | 14.9 | 198.0 | 241.1 | 349.0 | 399.5 | 454.0 |
GTRTM | 261.1 | 310.2 | 348.9 | 444.4 | 37.4 | - | - | - | 378.2 | 431.8 |
PU/GTRTM | 228.4 | 283.0 | 316.7 | 389.3 | 16.5 | 192.9 | 240.3 | 349.2 | 398.8 | 455.0 |
GTR20FO | 269.5 | 316.6 | 347.2 | 429.3 | 32.4 | - | - | - | 382.4 | 442.9 |
PU/GTR20FO | 239.6 | 289.0 | 317.9 | 387.8 | 16.1 | 199.9 | 238.9 | - | 393.3 | 455.9 |
GTR40FO | 283.7 | 325.0 | 350.3 | 417.4 | 27.7 | - | - | - | 389.2 | 441.6 |
PU/GTR40FO | 233.1 | 285.5 | 320.9 | 392.8 | 15.6 | 193.7 | 237.1 | - | 390.9 | 453.9 |
GTR20WO | 259.9 | 305.1 | 340.4 | 427.0 | 32.3 | - | - | - | 381.9 | 440.6 |
PU/GTR20WO | 231.7 | 284.0 | 318.3 | 390.7 | 15.7 | 195.1 | 237.3 | - | 393.5 | 454.1 |
GTR40WO | 267.1 | 308.8 | 340.4 | 415.3 | 27.9 | - | - | - | 386.3 | 440.6 |
PU/GTR40WO | 231.4 | 283.4 | 318.5 | 389.5 | 14.9 | 194.2 | 239.9 | - | 393.2 | 453.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kosmela, P.; Olszewski, A.; Zedler, Ł.; Burger, P.; Formela, K.; Hejna, A. Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber. J. Compos. Sci. 2021, 5, 90. https://doi.org/10.3390/jcs5030090
Kosmela P, Olszewski A, Zedler Ł, Burger P, Formela K, Hejna A. Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber. Journal of Composites Science. 2021; 5(3):90. https://doi.org/10.3390/jcs5030090
Chicago/Turabian StyleKosmela, Paulina, Adam Olszewski, Łukasz Zedler, Paulina Burger, Krzysztof Formela, and Aleksander Hejna. 2021. "Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber" Journal of Composites Science 5, no. 3: 90. https://doi.org/10.3390/jcs5030090
APA StyleKosmela, P., Olszewski, A., Zedler, Ł., Burger, P., Formela, K., & Hejna, A. (2021). Structural Changes and Their Implications in Foamed Flexible Polyurethane Composites Filled with Rapeseed Oil-Treated Ground Tire Rubber. Journal of Composites Science, 5(3), 90. https://doi.org/10.3390/jcs5030090