Electromagnetic Shielding Effectiveness of Glass Fiber/Epoxy Laminated Composites with Multi-Scale Reinforcements
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Dispersion of CNTs and Fe3O4 Nano Particles
2.3. Electro-Flocking of Micro Carbon Fibers
2.4. Composite Fabrication Using Vacuum Infusion
2.5. Electromagnetic Shielding Effectiveness Measurements
3. Results and Discussion
3.1. Composites with No Fe3O4 Nano Particles
3.2. Composites with Fe3O4 Nano Particles of 0.5 wt.%
3.3. Composites with Fe3O4 Nano Particles of 1.0 wt.%
4. Conclusions
- SE value of absorption is a major contributor for the total SE value for all composite types.
- Carbon fibers (350 µm long fibers, the fiber density of 2000 fibers/mm2) and Fe3O4 nano particles (1.0 wt.%) provided the highest total SE and SEA.
- The increase of fiber density of carbon fibers from 1000 to 2000 fibers/mm2 did not have considerable impact on total SE and SE value due to absorption in composites with no Fe3O4 nano particles and with 0.5 wt.% of Fe3O4 nano particles.
- At 1.0 wt.% of Fe3O4 nano particles, and at a higher fiber density of 2000 fibers/mm2, composites of carbon fiber lengths of both 80 µm and 150 µm showed significant improvements of total SE values and SE values due to absorption when compared to those of 1000 fibers/mm2.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Norman, R.H. Conducting Rubbers and Plastics; Elsevier: Oxford, UK, 1970. [Google Scholar]
- Wang, Y.; Jing, X. Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 2005, 16, 344–351. [Google Scholar] [CrossRef]
- Faez, R.; Schuster, R.H.; De Paoli, M.A. A conductive elastomer based on EPDM and polyaniline 2. Effect of the crosslinking method. Eur. Polym. J. 2002, 38, 2459–2463. [Google Scholar] [CrossRef]
- Fox, R.T.; Wani, V.; Howard, K.E.; Bogle, A.; Kempel, L. Conductive polymer composite materials and their utility in electromagnetic shielding applications. J. Appl. Polym. Sci. 2008, 107, 2558–2566. [Google Scholar] [CrossRef]
- Jou, W.-S.; Cheng, H.-Z.; Hsu, C.-F. The electromagnetic shielding effectiveness of carbon nanotubes polymer composites. J. Alloy. Compd. 2007, 434–435, 641–645. [Google Scholar] [CrossRef]
- Park, S.-H.; Thelimann, P.T.; Asbeck, P.M.; Bandaru, P.R. Enhanced Electromagnetic Interference Shielding Through the Use of Functionalized Carbon-Nanotube-Reactive Polymer Composites. IEEE Trans. Nanotechnol. 2009, 9, 464–469. [Google Scholar] [CrossRef]
- Jalali, M.; Dauterstedt, S.; Michaud, A.; Wuthrich, R. Electromagnetic shielding of polymer–matrix composites with metallic nanoparticles. Compos. Part B Eng. 2011, 42, 1420–1426. [Google Scholar] [CrossRef]
- Joshi, A.; Bajaj, A.; Singh, R.; Anand, A.; Alegaonkar, P.S.; Datar, S. Processing of graphene nanoribbon based hybrid composite for electromagnetic shielding. Compos. Part B Eng. 2015, 69, 472–477. [Google Scholar] [CrossRef]
- Jia, Y.; Li, K.; Xue, L.; Ren, J.; Zhang, S.; Li, H. Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered (PyC-SiC)n matrix composites. Carbon 2017, 111, 299–308. [Google Scholar] [CrossRef]
- Saini, P.; Choudhary, V. Enhanced electromagnetic interference shielding effectiveness of polyaniline functionalized carbon nanotubes filled polystyrene composites. J. Nanopart. Res. 2013, 15, 1415. [Google Scholar] [CrossRef]
- Hu, W.; Zhang, J.; Liu, B.; Zhang, C.; Zhao, Q.; Sun, Z.; Cao, H.; Zhu, G. Synergism between lignin, functionalized carbon nanotubes and Fe3O4 nanoparticles for electromagnetic shielding effectiveness of tough lignin-based polyurethane. Compos. Commun. 2021, 24, 100616. [Google Scholar] [CrossRef]
- Shuba, M.V.; Yuko, D.; Kuzhir, P.P.; Maksimenko, S.A.; Ksenevich, V.K.; Lim, S.-H.L.; Kim, T.-H.; Choi, S.-M. Electromagnetic and optical responses of a composite material comprising individual single-walled carbon-nanotubes with a polymer coating. Sci. Rep. 2020, 10, 9361. [Google Scholar] [CrossRef]
- Chen, H.C.; Lee, K.C.; Lin, J.H.; Koch, M. Fabrication of conductive woven fabric and analysis of electromagnetic shielding via measurement and empirical equation. J. Mater. Process. Tech. 2007, 184, 124–130. [Google Scholar] [CrossRef]
- Huang, C.-H.; Lin, J.-H.; Yang, R.-B.; Lin, C.-W.; Lou, C.-W. Metal/PET Composite Knitted Fabrics and Composites: Structural Design and Electromagnetic Shielding Effectiveness. J. Electron. Mater. 2012, 41, 2267–2273. [Google Scholar] [CrossRef]
- Tugirumubano, A.; Vijay, S.J.; Go, S.H.; Shin, H.J.; Ku, K.L.; Kim, H.G. The evaluation of electromagnetic shielding properties of CFRP/metal mesh hybrid woven laminated composites. J. Compos. Mater. 2018, 52, 3819–3829. [Google Scholar] [CrossRef]
- Rojas, J.A.; Ribeiro, B.; Rezende, M.C. Influence of serrated edge and rectangular strips of MWCNT buckypaper on the electromagnetic properties of glass fiber/epoxy resin composites. Carbon 2020, 160, 317–327. [Google Scholar] [CrossRef]
- O’Donnell, J.; Chalivendra, V.; Hall, A.; Haile, M.; Nataraj, L.; Coatney, M.; Kim, Y. Electro-mechanical studies of multi-functional glass fiber/epoxy reinforced composites. J. Reinf. Plast. Compos. 2019, 38, 506–520. [Google Scholar] [CrossRef]
- Yang, S.; Meninno, C.; Chalivendra, V.; Kim, Y. Electro-bending Behavior of Curved Natural Fiber Laminated Composites. Compos. Struct. 2020, 238, 112004. [Google Scholar] [CrossRef]
- Kim, Y.K.; Lewis, A.F.; Rice, J.M. Materials Methodology to Improve the Delamination Strength of Laminar Composites. U.S. Patent 7,981,495, 19 July 2011. [Google Scholar]
- Pinto, M.; Chalivendra, V.B.; Kim, Y.K.; Lewis, A.M. Evaluation of Surface Treatment and Fabrication Methods for Jute Fiber/Epoxy Laminar Composites. Polym. Compos. 2014, 35, 310–317. [Google Scholar] [CrossRef]
- Yang, S.; Chalivendra, V.B.; Kim, Y.K. Fracture and impact characterization of novel auxetic Kevlar/Epoxy laminated composites. Compos. Struct. 2017, 168, 120–129. [Google Scholar] [CrossRef]
- Gorgi, J.P.; Bhattacharya, N.S.; Bhattacharya, N.S. Single layer microwave absorber based on expanded graphite–novolac phenolic resin composite for Xband applications. Compos. Part B Eng. 2014, 58, 518–523. [Google Scholar]
- Oh, J.-H.; Oh, K.-S.; Kim, C.-G.; Hong, C.-S. Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Compos. Part B Eng. 2004, 35, 49–56. [Google Scholar] [CrossRef]
- Kashi, S.; Gupta, R.K.; Buau, T.; Kao, N.; Bhattacharya, S.N. Morphology, electromagnetic properties and electromagnetic interference shielding performance of poly lactide/graphene nanoplatelet nanocomposites. Mater. Des. 2016, 95, 119–126. [Google Scholar] [CrossRef]
- Song, W.-L.; Guan, X.-T.; Fan, L.-Z.; Cao, W.-Q.; Wang, C.-Y.; Zhao, Q.-L.; Cao, M.-S. Magnetic and conductive graphene papers toward thin layers of effective electromagnetic shielding. J. Mater. Chem. A 2015, 3, 2097–2107. [Google Scholar] [CrossRef]
- Bayat, M.; Yang, H.; Ko, F. Effect of iron oxide nanoparticle size on electromagnetic properties of composite nanofibers. J. Compos. Mater. 2017, 52, 1723–1736. [Google Scholar] [CrossRef]
- Basith, M.A.; Yesmin, N.; Hossain, R. Low temperature synthesis of Bismuth Ferrite nanoparticles with enhanced magnetization and promising photocatalytic performance in dye degradation and hydrogen evolution. RSC Adv. 2018, 8, 29613. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.M.; Kim, K.; Lee, C.Y.; Joo, J.; Cho, S.J.; Yoon, H.S.; Pejakovic, D.A.; Yoo, J.W.; Epstein, A.J. Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 2004, 84, 589–591. [Google Scholar] [CrossRef] [Green Version]
- Shukla, V. Review of electromagnetic interference shielding materials fabricated by iron ingredients. Nanosc. Adv. 2019, 1, 1640–1671. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yesmin, N.; Chalivendra, V. Electromagnetic Shielding Effectiveness of Glass Fiber/Epoxy Laminated Composites with Multi-Scale Reinforcements. J. Compos. Sci. 2021, 5, 204. https://doi.org/10.3390/jcs5080204
Yesmin N, Chalivendra V. Electromagnetic Shielding Effectiveness of Glass Fiber/Epoxy Laminated Composites with Multi-Scale Reinforcements. Journal of Composites Science. 2021; 5(8):204. https://doi.org/10.3390/jcs5080204
Chicago/Turabian StyleYesmin, Nilufar, and Vijaya Chalivendra. 2021. "Electromagnetic Shielding Effectiveness of Glass Fiber/Epoxy Laminated Composites with Multi-Scale Reinforcements" Journal of Composites Science 5, no. 8: 204. https://doi.org/10.3390/jcs5080204
APA StyleYesmin, N., & Chalivendra, V. (2021). Electromagnetic Shielding Effectiveness of Glass Fiber/Epoxy Laminated Composites with Multi-Scale Reinforcements. Journal of Composites Science, 5(8), 204. https://doi.org/10.3390/jcs5080204