Synthesis and Fabrication of Co1−xNixCr2O4 Chromate Nanoparticles and the Effect of Ni Concentration on Their Bandgap, Structure, and Optical Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. XRD Analysis
3.2. SEM Analysis
3.3. Raman Spectroscopy
3.4. EDS Spectroscopy
3.5. Photoluminescence
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaur, A.; Gupta, U. A review on applications of nanoparticles for the preconcentration of environmental pollutants. J. Mater. Chem. 2009, 19, 8279–8289. [Google Scholar] [CrossRef]
- Han, X.; Xu, K.; Taratula, O.; Farsad, K. Applications of nanoparticles in biomedical imaging. Nanoscale 2019, 11, 799–819. [Google Scholar] [CrossRef] [PubMed]
- Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci. 2019, 1, 607. [Google Scholar] [CrossRef] [Green Version]
- Castro Alarcon, N.; Herrera Arizmendi, J.L.; Luis Alberto, M.C.; Guzman Guzman, I.P.; Perez Centeno, A.; Santana Aranda, M.A. Antibacterial activity of nanoparticles of titanium dioxide, intrinsic and doped with indium and iron. Microbiol. Res. Int. 2016, 4, 55–62. [Google Scholar]
- Bindhu, M.; Umadevi, M.; Micheal, M.K.; Arasu, M.V.; Al-Dhabi, N.A. Structural, morphological and optical properties of MgO nanoparticles for antibacterial applications. Mater. Lett. 2016, 166, 19–22. [Google Scholar] [CrossRef]
- De Souza, L.K.C.; Zamian, J.R.; da Rocha Filho, G.N.; Soledade, L.E.; dos Santos, I.M.; Souza, A.G.; Scheller, T.; Angélica, R.S.; da Costa, C.E.F. Blue pigments based on CoxZn1−xAl2O4 spinels synthesized by the polymeric precursor method. Dyes Pigments 2009, 81, 187–192. [Google Scholar] [CrossRef]
- Lorenzi, G.; Baldi, G.; Di Benedetto, F.; Faso, V.; Lattanzi, P.; Romanelli, M. Spectroscopic study of a Ni-bearing gahnite pigment. J. Ceram. Soc. 2006, 26, 317–321. [Google Scholar] [CrossRef]
- Sickafus, K.E.; Wills, J.M.; Grimes, N.W. Structure of spinel. J. Am. Ceram. Soc. 1999, 82, 3279–3292. [Google Scholar] [CrossRef]
- Wang, Z.; Lazor, P.; Saxena, S.; Artioli, G. High-Pressure Raman Spectroscopic Study of Spinel (ZnCr2O4). J. Solid State Chem. 2002, 165, 165–170. [Google Scholar] [CrossRef]
- Torgashev, V.I.; Prokhorov, A.; Komandin, G.; Zhukova, E.; Anzin, V.B.; Talanov, V.M.; Rabkin, L.M.; Bush, A.A.; Dressel, M.; Gorshunov, B.P. Magnetic and dielectric response of cobalt-chromium spinel CoCr2O4 in the terahertz frequency range. Phys. Solid State 2012, 54, 350–359. [Google Scholar] [CrossRef]
- Lawes, G.; Melot, B.; Page, K.; Ederer, C.; Hayward, M.A.; Proffen, T.; Seshadri, R. Dielectric anomalies and spiral magnetic order in CoCr2O4. Phys. Rev. B 2006, 74, 024413. [Google Scholar] [CrossRef] [Green Version]
- Tsurkan, V.; Zherlitsyn, S.; Yasin, S.; Felea, V.; Skourski, Y.; Deisenhofer, J.; Krug von Nidda, H.-A.; Wosnitza, J.; Loidl, A. Unconventional magnetostructural transition in CoCr2O4 at high magnetic fields. Phys. Rev. Lett. 2013, 110, 115502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yamasaki, Y.; Miyasaka, S.Y.; Kaneko, Y.; He, J.-P.; Arima, T.; Tokura, Y. Magnetic Reversal of the Ferroelectric Polarization in a Multiferroic Spinel Oxide. Phys. Rev. Lett. 2006, 96, 207204. [Google Scholar] [CrossRef] [PubMed]
- Kumar, L.; Mohanty, P.; Shripathi, T.; Rath, C. Appearance of superparamagnetic phase below Curie temperature in cobalt chromite. Nanosci. Nanotechnol. Lett. 2009, 1, 199–2002. [Google Scholar] [CrossRef]
- Zakunta, D.; Vlcek, J.; Fitl, P.; Nemokovski, K.; Honecker, D.; Niznansky, D.; Disch, S. Noncollinear magnetism in nanosized cobalt chromite. Phys. Rev. B 2019, 98, 064407. [Google Scholar]
- Suchomel, M.R.; Shoemaker, D.P.; Ribaud, L.; Kemei, M.C.; Seshadri, R. Spin-induced symmetry breaking in orbitally ordered NiCr2O4 and CuCr2O4. Phys. Rev. B 2012, 86, 054406. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, P.; Sheppard, C.J.; Prinsloo, A.R.E.; Roos, W.D.; Olivi, L.; Aquilanti, G. Effect of cobalt substitution on the magnetic properties of nickel chromite. J. Magn. Magn. Mater. 2018, 451, 20–28. [Google Scholar] [CrossRef]
- Mohanty, P.; Prinsloo, A.R.E.; Doyle, B.P.; Carleschi, E.; Sheppard, C.J. Structural and magnetic properties of (Co1–xNix) Cr2O4 (x = 0.5, 0.25) nanoparticles. AIP Adv. 2018, 8, 056424. [Google Scholar] [CrossRef]
- Opuchovic, O.; Kreiza, G.; Senvaitiene, J.; Kazlauskas, K.; Beganskiene, A.; Kareiva, A. Sol-Gel synthesis, characterization and application of selected sub-micro sized lanthanide (Ce, Pr, Nd, Tb) ferrites. Dyes Pigments 2015, 118, 176–182. [Google Scholar] [CrossRef]
- Maqbool, M.; Ahmad, I.; Ali, G.; Maaz, K. Energy level splitting and luminescence enhancement in AlN: Er by an external magnetic field. Opt. Mater. 2015, 46, 601–604. [Google Scholar] [CrossRef]
- Maqbool, M.; Ali, G.; Ahmad, I.; Maaz, K. Luminescence Enhancement in Amorphous AlN: W by Direct UV Excitation through Co-Doped Gadolinium. IEEE Photonics Technol. Lett. 2015, 27, 1519–1522. [Google Scholar] [CrossRef]
- Maqbool, M.; Main, K.; Kordesch, M. Titanium doped sputter-deposited AlN infrared whispering gallery mode microlaser on optical fibers. Opt. Lett. 2010, 35, 3637–3639. [Google Scholar]
- Maqbool, M.; Ahmad, I.; Richardson, H.H.; Kordesch, M.E. Direct ultraviolet excitation of an amorphous AlN: Praesiodimium phosphor by co-doped Gd3+ Cathodoluminescence. Appl. Phys. Lett. 2007, 91, 193511. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saeed, M.; Rani, M.; Batool, K.; Batool, H.; Younus, A.; Azam, S.; Mehmood, A.; Haq, B.; Alshahrani, T.; Ali, G.; et al. Synthesis and Fabrication of Co1−xNixCr2O4 Chromate Nanoparticles and the Effect of Ni Concentration on Their Bandgap, Structure, and Optical Properties. J. Compos. Sci. 2021, 5, 247. https://doi.org/10.3390/jcs5090247
Saeed M, Rani M, Batool K, Batool H, Younus A, Azam S, Mehmood A, Haq B, Alshahrani T, Ali G, et al. Synthesis and Fabrication of Co1−xNixCr2O4 Chromate Nanoparticles and the Effect of Ni Concentration on Their Bandgap, Structure, and Optical Properties. Journal of Composites Science. 2021; 5(9):247. https://doi.org/10.3390/jcs5090247
Chicago/Turabian StyleSaeed, Muhammad, Malika Rani, Kiran Batool, Hafiza Batool, Aisha Younus, Sikander Azam, Arshad Mehmood, Bakhtiarul Haq, Thamraa Alshahrani, Ghafar Ali, and et al. 2021. "Synthesis and Fabrication of Co1−xNixCr2O4 Chromate Nanoparticles and the Effect of Ni Concentration on Their Bandgap, Structure, and Optical Properties" Journal of Composites Science 5, no. 9: 247. https://doi.org/10.3390/jcs5090247
APA StyleSaeed, M., Rani, M., Batool, K., Batool, H., Younus, A., Azam, S., Mehmood, A., Haq, B., Alshahrani, T., Ali, G., & Maqbool, M. (2021). Synthesis and Fabrication of Co1−xNixCr2O4 Chromate Nanoparticles and the Effect of Ni Concentration on Their Bandgap, Structure, and Optical Properties. Journal of Composites Science, 5(9), 247. https://doi.org/10.3390/jcs5090247