Study on Anhydrous Proton Conduction in Imidazole–Collagen Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Collagen Membrane and Imidazole–Collagen Composites
2.2. FT-IR Measurement
2.3. Impedance Measurements
2.4. DTA Measurement
2.5. Measurement of 1H-NMR
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Viktorsson, L.; Heinonen, J.T.; Skulason, J.B.; Unnthorsson, R. A Step towards the Hydrogen Economy—A Life Cycle Cost Analysis of a Hydrogen Refueling Station. Energies 2017, 10, 763. [Google Scholar] [CrossRef]
- Gierke, T.D.; Munn, G.E.; Wilson, F.C. Morphology in Nafion Perfluorinated Membrane Products, as Determined by Wide-and Small-Angle Xray Studies. J. Polym. Sci. Part A-2 Polym. Phys. 1981, 19, 1687–1704. [Google Scholar] [CrossRef]
- Kreuer, K.D. On the Development of Proton Conducting Polymer Membranes for Hydrogen and Methanol Fuel Cells. J. Memb. Sci. 2001, 185, 29–39. [Google Scholar] [CrossRef]
- Knauth, P.; Di Vona, M.L. Solid State Proton Conductors: Properties and Applications in Fuel Cells; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Norby, T. The Promise of Protonics. Nature 2001, 410, 877–878. [Google Scholar] [CrossRef]
- Kawabata, T.; Matsuo, Y. Chitin Based Fuel Cell and Its Proton Conductivity. Mater. Sci. Appl. 2018, 9, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Matsuo, Y.; Kumasaka, G.; Saito, K.; Ikehata, S. Fabrication of Solid-State Fuel Cell Based on DNA Film. Solid State Commun. 2005, 133, 61–64. [Google Scholar] [CrossRef]
- Matsuo, Y.; Ikeda, H.; Kawabata, T.; Hatori, J.; Oyama, H. Collagen-Based Fuel Cell and Its Proton Transfer. Mater. Sci. Appl. 2017, 8, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Furuseki, T.; Matsuo, Y. Fuel Cell Using Squid Axon Electrolyte and Its Proton Conductivity. J. Funct. Biomater. 2020, 11, 86. [Google Scholar] [CrossRef]
- Zhong, C.; Deng, Y.; Roudsari, A.F.; Kapetanovic, A.; Anantram, M.P.; Rolandi, M. A Polysaccharide Bioprotonic Field-Effect Transistor. Nat. Commun. 2011, 2, 476. [Google Scholar] [CrossRef] [Green Version]
- Wu, X.; Zhou, J.; Huang, J. Integration of Biomaterials into Sensors Based on Organic Thin-Film Transistors. Macromol. Rapid Commun. 2018, 39, e1800084. [Google Scholar] [CrossRef]
- Orgel, J.P.R.O.; Irving, T.C.; Miller, A.; Wess, T.J. Microfibrillar Structure of Type I Collagen in Situ. Proc. Natl. Acad. Sci. USA 2006, 103, 9001–9005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ikoma, T.; Kobayashi, H.; Tanaka, J.; Walsh, D.; Mann, S. Physical Properties of Type I Collagen Extracted from Fish Scales of Pagrus Major and Oreochromis Niloticas. Int. J. Biol. Macromol. 2003, 32, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, M.; Ikoma, T.; Itoh, S.; Matsumoto, H.N.; Koyama, Y.; Takakuda, K.; Shinomiya, K.; Tanaka, J. Biomimetic Synthesis of Bone-like Nanocomposites Using the Self-Organization Mechanism of Hydroxyapatite and Collagen. Compos. Sci. Technol. 2004, 64, 819–825. [Google Scholar] [CrossRef]
- Zhao, Q.; Wei, Y.; Ni, C.; Wang, L.; Liu, B.; Liu, J.; Zhang, M.; Men, Y.; Sun, Z.; Xie, H.; et al. Effect of Aminated Nanocrystal Cellulose on Proton Conductivity and Dimensional Stability of Proton Exchange Membranes. Appl. Surf. Sci. 2019, 466, 691–702. [Google Scholar] [CrossRef]
- Xing, F.; Chi, Z.; Yang, R.; Xu, D.; Cui, J.; Huang, Y.; Zhou, C.; Liu, C. Chitin-Hydroxyapatite-Collagen Composite Scaffolds for Bone Regeneration. Int. J. Biol. Macromol. 2021, 184, 170–180. [Google Scholar] [CrossRef]
- Matsui, H.; Matsuo, Y. Proton Conduction via Water Bridges Hydrated in the Collagen Film. J. Funct. Biomater. 2020, 11, 61. [Google Scholar] [CrossRef]
- Pasternak, G.; Yang, Y.; Santos, B.B.; Brunello, F.; Hanczyc, M.M.; Motta, A. Regenerated Silk Fibroin Membranes as Separators for Transparent Microbial Fuel Cells. Bioelectrochemistry 2019, 126, 146–155. [Google Scholar] [CrossRef]
- Tsuboi, M.; Hibino, M.; Mizuno, N.; Uchida, S. Crystalline Polyoxometalate (POM)-Polyethylene Glycol (PEG) Composites Aimed as Non-Humidified Intermediate-Temperature Proton Conductors. J. Solid State Chem. 2016, 234, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.D.; Honma, I. Anhydrous Solid State Proton Conductor Based on Benzimidazole/Monododecyl Phosphate Molecular Hybrids. Solid State Ion. 2005, 176, 979–984. [Google Scholar] [CrossRef]
- Sunairi, Y.; Dekura, S.; Ueda, A.; Ida, T.; Mizuno, M.; Mori, H. Anhydrous Purely Organic Solid-State Proton Conductors: Effects of Molecular Dynamics on the Proton Conductivity of Imidazolium Hydrogen Dicarboxylates. J. Phys. Soc. Japan 2020, 89, 051008. [Google Scholar] [CrossRef]
- Haile, S.M.; Boysen, D.A.; Chisholm, C.R.I.; Merie, R.B. Solid Acids as Fuel Cell Electrolytes. Nature 2001, 410, 910–913. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.F.H.; Meyer, W.H. Anhydrous Proton-Conducting Polymers. Annu. Rev. Mater. Res. 2003, 33, 233–261. [Google Scholar] [CrossRef]
- Luo, H.B.; Ren, L.T.; Ning, W.H.; Liu, S.X.; Liu, J.L.; Ren, X.M. Robust Crystalline Hybrid Solid with Multiple Channels Showing High Anhydrous Proton Conductivity and a Wide Performance Temperature Range. Adv. Mater. 2016, 28, 1663–1667. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; He, B.; Lamb, K.; De Marco, R.; Shen, P.K.; Jiang, S.P. Phosphoric Acid Functionalized Pre-Sintered Meso-Silica for High Temperature Proton Exchange Membrane Fuel Cells. Chem. Commun. 2013, 49, 4655–4657. [Google Scholar] [CrossRef] [PubMed]
- Matsuo, Y.; Hatori, J.; Nakashima, Y.; Ikehata, S. Superprotonic and Ferroelastic Phase Transition in K3H(SO4)2. Solid State Commun. 2004, 130, 269–274. [Google Scholar] [CrossRef]
- Matsuo, Y.; Hatori, J.; Yoshida, Y.; Ikedo, Y.; Sugiyama, J.; Ikehata, S. Interrelationship between Superprotonic Conductivity and Strain in CsHXO4. Phys. Lett. Sect. A Gen. At. Solid State Phys. 2009, 373, 3470–3472. [Google Scholar] [CrossRef]
- Matsuo, Y.; Hatori, J.; Yoshida, Y.; Ikehata, S. Rule of Superprotonic Phase Transition in Cs XRb1-XH2PO4. Solid State Ion. 2012, 213, 42–44. [Google Scholar] [CrossRef]
- Kreuer, K.D. Proton Conductivity: Materials and Applications. Chem. Mater. 1996, 8, 610–641. [Google Scholar] [CrossRef]
- Li, Y.M.; Hinokuma, K. Proton Conductivity of Phosphoric Acid Derivative of Fullerene. Solid State Ion. 2002, 150, 309–315. [Google Scholar] [CrossRef]
- Ponomareva, V.G.; Shutova, E.S. High-Temperature Behavior of CsH2PO4 and CsH2PO4-SiO2 Composites. Solid State Ion. 2007, 178, 729–734. [Google Scholar] [CrossRef]
- Kawada, A.; McGhie, A.R.; Labes, M.M. Protonic Conductivity in Imidazole Single Crystal. J. Chem. Phys. 1970, 52, 3121–3125. [Google Scholar] [CrossRef]
- Sunairi, Y.; Ueda, A.; Yoshida, J.; Suzuki, K.; Mori, H. Anisotropic Proton Conductivity Arising from Hydrogen-Bond Patterns in Anhydrous Organic Single Crystals, Imidazolium Carboxylates. J. Phys. Chem. C 2018, 122, 11623–11632. [Google Scholar] [CrossRef]
- Trivedi, M.K.; Trivedi, A.B.D.; Saikia, G.N.G. Physical and Structural Characterization of Biofield Treated Imidazole Derivatives. Nat. Prod. Chem. Res. 2015, 3, 1000187. [Google Scholar] [CrossRef]
- Yang, L.; Tang, B.; Wu, P. A Novel Proton Exchange Membrane Prepared from Imidazole Metal Complex and Nafion for Low Humidity. J. Memb. Sci. 2014, 467, 236–243. [Google Scholar] [CrossRef]
- Ramasamy, R. Vibrational Spectroscopic Studies of Imidazole. Armen. J. Phys. 2015, 8, 51–55. [Google Scholar]
- Jena, H.; Rao, C.V.; Eddy, F.P.; Dooley, J.; Rambabu, B. Structural and Proton Transport Studies on Nanocrystalline [Ca10 (PO4 )6 (OH)2] (HAp), HAp-Nafion® Composite, and Natural Human Bone. Phys. Status Solidi 2009, 206, 2536–2541. [Google Scholar] [CrossRef]
- Yashima, M.; Kubo, N.; Omoto, K.; Fujimori, H.; Fujii, K.; Ohoyama, K. Diffusion Path and Conduction Mechanism of Protons in Hydroxyapatite. J. Phys. Chem. C 2014, 118, 5180–5187. [Google Scholar] [CrossRef]
- Furuseki, T.; Matsuo, Y. Anhydrous Proton Conductivity in HAp-Collagen Composite. J. Compos. Sci. 2022, 6, 236. [Google Scholar] [CrossRef]
- Chang, M.C.; Tanaka, J. FT-IR Study for Hydroxyapatite/Collagen Nanocomposite Cross-Linked by Glutaraldehyde. Biomaterials 2002, 23, 4811–4818. [Google Scholar] [CrossRef]
- Muyonga, J.H.; Cole, C.G.B.; Duodu, K.G. Fourier Transform Infrared (FTIR) Spectroscopic Study of Acid Soluble Collagen and Gelatin from Skins and Bones of Young and Adult Nile Perch (Lates Niloticus). Food Chem. 2004, 86, 325–332. [Google Scholar] [CrossRef]
- Smith, G.W. Proton Magnetic Resonance Studies of Solid Tetramethyls of Silicon, Germanium, Tin, and Lead. J. Chem. Phys. 1965, 42, 4229–4243. [Google Scholar] [CrossRef]
- Matsuo, Y.; Ikehata, S. Proton Coduction in DNA. In DNA Engineering: Properties and Applications; Mizoguchi, K., Sakamoto, H., Eds.; Jenny Stanford Publishing: Singapore, 2016; Chapter 4. [Google Scholar]
- Cole, K.S.; Cole, R.H. Dispersion and Absorption in Dielectrics I. Alternating Current Characteristics. J. Chem. Phys. 1941, 9, 341–351. [Google Scholar] [CrossRef] [Green Version]
- Lazarev, Y.A.; Grishkovsky, B.A.; Khromova, T.B. Amide I Band of IR Spectrum and Structure of Collagen and Related Polypeptides. Biopolymers 1985, 24, 1449–1478. [Google Scholar] [CrossRef] [PubMed]
T (°C) | σ0 (S/m) | εs-ε∞ | τ (s) | β |
---|---|---|---|---|
100 | 1.4 × 10−7 | 40 | 4.0 × 10−2 | 0.26 |
115 | 6.0 × 10−7 | 90 | 8.0 × 10−2 | 0.29 |
120 | 1.1 × 10−6 | 165 | 1.5 × 10−1 | 0.31 |
160 | 6.8 × 10−5 | 85 | 6.0 × 10−5 | 0.41 |
190 | 5.3 × 10−4 | 80 | 5.0 × 10−6 | 0.45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Furuseki, T.; Teranishi, S.; Matsuo, Y. Study on Anhydrous Proton Conduction in Imidazole–Collagen Composite. J. Compos. Sci. 2022, 6, 360. https://doi.org/10.3390/jcs6120360
Furuseki T, Teranishi S, Matsuo Y. Study on Anhydrous Proton Conduction in Imidazole–Collagen Composite. Journal of Composites Science. 2022; 6(12):360. https://doi.org/10.3390/jcs6120360
Chicago/Turabian StyleFuruseki, Tomoki, Shotaro Teranishi, and Yasumitsu Matsuo. 2022. "Study on Anhydrous Proton Conduction in Imidazole–Collagen Composite" Journal of Composites Science 6, no. 12: 360. https://doi.org/10.3390/jcs6120360
APA StyleFuruseki, T., Teranishi, S., & Matsuo, Y. (2022). Study on Anhydrous Proton Conduction in Imidazole–Collagen Composite. Journal of Composites Science, 6(12), 360. https://doi.org/10.3390/jcs6120360