An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application
Abstract
:1. Introduction
2. Conducting Polymers
3. Famous Metal Oxides for Supercapacitor Application
4. CP-MO Composites for Supercapacitor Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AASCD | Aqueous asymmetric supercapacitor device |
AC | Activated carbon |
ACNF | Activated carbon nanofibers |
ASC | Asymmetric supercapacitor |
C | Carbon |
CB | Carbon black |
CC | Carbon cloth |
CDC | Carbide-derived carbon |
CF | Carbon fibre |
CMC | Carboxymethyl cellulose |
CNT | Carbon nanotubes |
CP | Conducting polymer |
CV | Cyclic voltammetry |
EDLC | Electrical double-layer capacitor |
F-CNT | Functionalized carbon nanotube |
FNCO | Fe-Ni co-doped |
GO | Graphene oxide |
GPC | Graphene/polyaniline/Co3O4 |
LED | Light-emitting diode |
MC | Mesoporous carbon |
MO | Metal oxides |
MPHMS | MnO2/polyaniline/hollow mesoporous silica |
MWCNT | Multiwalled carbon nanotubes |
NC’s | Nanocages |
NCC | Nanocrystalline cellulose |
N-CNWs | Nitrogen-doped carbon nanowires |
NPC | Nanoporous carbon |
NW’s | Nanowires |
PA | Polyacetylene |
PANI | Polyaniline |
PCNF | Porous carbon nanofiber |
PEDOT | Poly (3,4 ethylene dioxy thiophene) |
PLED | Polymer light-emitting diode |
PPP | Polyparaphenylene |
PPS | Polyparaphenylene sulphide |
PPV | Polyparaphenylene vinylene |
PPy | Polypyrrole |
PSS | Polystyrene sulphonate |
PTh | Polythiophene |
PTSA | p-toluene sulphonic acid |
PVA | Polyvinyl alcohol |
QD | Quantum dot |
rGO | Reduced graphene oxide |
SC | Supercapacitors |
SGO | Sulphonated graphene oxide |
SILAR | Successive ionic layer adsorption and reaction |
TBAPF6/PC | Tetra-n butylammonium hexafluorophosphate/propylene carbonate |
ZIF-8-CC | Zeolitic imidazolate framework-carbon cloth |
References
- Kondawar, S.B. Supercapacitors. In Conducting Polymer Nanocomposites for Supercapacitors; Smithers Rapra Technology Ltd.: Shrewsbury, UK, 2015; pp. 1–24. [Google Scholar]
- Lonkar, S.P.; Pillai, V.V.; Patole, S.P.; Alhassan, S.M. Scalable In Situ Synthesis of 2D–2D-Type Graphene-Wrapped SnS2 Nanohybrids for Enhanced Supercapacitor and Electrocatalytic Applications. ACS Appl. Energy Mater. 2020, 3, 4995. [Google Scholar] [CrossRef]
- Huang, S.; Zhu, X.; Sarkar, S.; Zhao, Y. Challenges and Opportunities for Supercapacitors. APL Mater. 2019, 7, 100901. [Google Scholar] [CrossRef] [Green Version]
- Pan, H.; Li, J.; Feng, Y.P. Carbon Nanotubes for Supercapacitor. Nanoscale Res. Lett. 2010, 5, 654. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Majumdar, D.; Mandal, M.; Bhattacharya, S.K. Journey from supercapacitors to supercapatteries: Recent advancements in electrochemical energy storage systems. Emergent Mater. 2020, 3, 347. [Google Scholar] [CrossRef]
- Xie, A.; Tao, F.; Jiang, C.; Sun, W.; Li, Y.; Hu, L.; Du, X.; Luo, S.; Yao, C. A Coralliform-Structured γ-MnO2 /Polyaniline Nanocomposite for High-Performance Supercapacitors. J. Electroanal. Chem. 2017, 789, 29. [Google Scholar] [CrossRef]
- Shown, I.; Ganguly, A.; Chen, L.; Chen, K. Conducting Polymer-based Flexible Supercapacitor. Energy Sci. Eng. 2015, 3, 2–26. [Google Scholar] [CrossRef]
- Bolgam, R.; Boddula, R.; Srinivasan, P. Improving electrochemical performance by sulphonation of polyaniline-graphene-silica composite for high performance supercapacitor. Int. J. Polym. Mater. Polym. Biomater. 2016, 65, 835. [Google Scholar] [CrossRef]
- Huo, S.; Zhao, Y.; Zong, M.; Liang, B.; Zhang, X.; Khan, I.U.; Song, X.; Li, K. Boosting supercapacitor and capacitive deionization performance of hierarchically porous carbon by polar surface and structural engineering. J. Mater. Chem. A 2020, 8, 2050. [Google Scholar] [CrossRef]
- Bolgam, R.; Boddula, R.; Srinivasan, P. Synthesis of highly crystalline polyaniline with the use of (cyclohexylamino)-1-propanesulphonic acid for supercapacitor. J. Appl. Electrochem. 2015, 45, 51. [Google Scholar] [CrossRef]
- Boddula, R.; Srinivasan, P. Simultaneous Oxidation and Doping of Aniline to Polyaniline by Oxidative Template: Electochemical Performance in Supercapacitor. Int. J. Polym. Mater. Polym. Biomater. 2015, 64, 939. [Google Scholar] [CrossRef]
- Yumak, T.; Bragg, D.; Sabolsky, E.M. Effect of Synthesis Methods on the Surface and Electrochemical Characteristics of Metal Oxide/Activated Carbon Composites for Supercapacitor Applications. Appl. Surf. Sci. 2019, 469, 983. [Google Scholar] [CrossRef]
- Nandhini, S.; Rajagopalan, T.; Muralidharan, G. Copper Incorporated Nickel Sulphide on Ni-Foam: Binder-Free Electrode for High Performance Supercapacitors. AIP Conf. Proc. 2020, 2265, 030597. [Google Scholar] [CrossRef]
- Li, Y.; Zhou, M.; Xia, Z.; Gong, Q.; Lu, X.; Yang, Y.; Gao, Q. Facile Preparation of Polyaniline Covalently Grafted to Isocyanate Functionalized Reduced Graphene Oxide Nanocomposite for High Performance Flexible Supercapacitors. Colloids Surf. A 2020, 602, 125172. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, W.; Wang, Y.; Gao, W.; Li, J.; Liu, K.; Wang, X.; Jiang, J. Oxygen Vacancies Enhance Supercapacitive Performance of CuCo2O4 in High-Energy-Density Asymmetric Supercapacitors. J. Power Sources 2020, 458, 228005. [Google Scholar] [CrossRef]
- Vangari, M.; Pryor, T.; Jiang, L. Supercapacitors: Review of Materials and Fabrication Methods. J. Energy Eng. 2013, 139, 72. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, X.; Cao, Y.; Zhou, W.; Sun, H.; Chai, H. Facial Synthesis of Homogeneous Hollow Co3O4 Microspheres for Enhanced Cycle Life and Electrochemical Energy Storage Performance. ChemElectroChem 2020, 7, 723. [Google Scholar] [CrossRef]
- Mulik, S.V.; Jadhav, S.A.; Patil, P.S.; Delekar, S.D. Transition metal oxide–conducting polymer nanocomposites and metal-organic framework-based composites for supercapacitor application. In Advances in Metal Oxides and Their Composites for Emerging Applications; Delekar, S.D., Ed.; Elsevier: Cambridge, MA, USA, 2022; pp. 135–186. [Google Scholar]
- Awuzie, C.I. Conducting Polymers. Mater. Today Proc. 2017, 4, 5721. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, R.A. Recent Trends and developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef]
- Ragavan, K.V.; Neethirajan, S. Nanoparticles as Biosensors for Food Quality and Safety Assessment. In Nanomaterials for Food Applications; Elsevier Science: Amsterdam, The Netherlands, 2019; p. 147. [Google Scholar] [CrossRef]
- Heeger, A.J.; MacDiarrmid, A.G.; Shirakawa, H. The Nobel Prize in Chemistry, 2000: Conductive Polymers; Royal Swedish Academy of Sciences: Stockholm, Sweden, 2000. [Google Scholar]
- Mishra, A.K. Conducting Polymers: Concepts and Applications. J. At. Mol. Condens. Matter Nano Phys. 2018, 5, 159. [Google Scholar] [CrossRef]
- Walton, D.J. Electrically conducting polymers. Mater. Dec. 1990, 11, 142. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659. [Google Scholar] [CrossRef]
- Xia, C.; Chen, W.; Wang, X.; Hedhili, M.N.; Wei, N.; Alshareef, H.N. Highly Stable Supercapacitors with Conducting Polymer Core-Shell Electrodes for Energy Storage Applications. Adv. Energy Mater. 2015, 5, 1401805. [Google Scholar] [CrossRef]
- Gupta, B.; Melvin, A.A.; Revathi, P.; Matthews, T.; Dash, S.; Tyagi, A.K.; Prakash, R. Conducting polymer-metal oxide nanocomposite and their property towards energy storage: An overview. In Polymer-Matrix Composites Types, Application and Performance; Kumar, R., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2014; pp. 191–214. [Google Scholar]
- Ravichandran, R.; Sundarrajan, S.; Venugopal, J.R.; Mukherjee, S.; Ramakrishna, S. Applications of conducting polymers and their issues in biomedical engineering. JR Soc. Interface 2010, 7, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahat, M.M.; Sabere, A.S.M.; Azizi, J.; Amdan, N.A.N. Potential Applications of Conducting Polymers to Reduce Secondary Bacterial Infections among Covid-19 Patients: A Review. Emergent Mater. 2021, 4, 279. [Google Scholar] [CrossRef] [PubMed]
- Datta, M.; Maraz, K.M.; Rahman, N.; Khan, R.A. Applications of polymer in biomedical implication. GSC Biol. Pharm. Sci. 2021, 14, 98–114. [Google Scholar] [CrossRef]
- Kausar, A. Emerging hybrid derived from polythiophene and graphene. In Conducting Polymer Based Nanocomposites; Elsevier: Cambridge, MA, USA, 2021; pp. 129–156. [Google Scholar]
- Kumar, R.; Singh, S.; Yadav, B.C. Conducting Polymers: Synthesis, Properties and Applications. Int. J. Adv. Res. Sci. Eng. Technol. 2015, 2, 110. [Google Scholar] [CrossRef]
- Bhandari, S. Polyaniline: Structure and Properties Relationship. In Polyaniline Blends, Composites, and Nanocomposites; Visakh, P.M., Pina, C.D., Falleta, E., Eds.; Elsevier: Cambridge, MA, USA, 2018; pp. 23–60. [Google Scholar]
- Boddula, R.; Srinivasan, P. Role of dual dopants in highly ordered crystalline polyaniline nanospheres: Electrode materials in supercapacitors. J. Appl. Polym. Sci. 2015, 132, 42510. [Google Scholar] [CrossRef]
- Bolgam, R.; Boddula, R.; Srinivasan, P. One-step preparation of sulphonated carbon and subsequent preparation of hybrid materials with polyaniline salt: A promising supercapacitor electrode material. J. Solid State Electrochem. 2017, 21, 1313. [Google Scholar] [CrossRef]
- Srinivasan, P.; Boddula, R. Organic solvent soluble methyltriphynylphosphonium peroxodisulphate: A novel oxidant for synthesis of polyaniline in high performance supercapacitors. New J. Chem. 2015, 39, 5382. [Google Scholar] [CrossRef]
- Deshmukh, K.; Basheer Ahamed, M.; Deshmukh, R.R.; Khadheer Pasha, S.K.; Bhagat, P.R.; Chidambaram, K. Biopolymer Composites with High Dielectric Performance: Interface Engineering. In Biopolymer Composites in Electronics; Sadasivuni, K.K., Ed.; Elsevier: Cambridge, MA, USA, 2017; pp. 27–128. [Google Scholar]
- Mantione, D.; del Agua, I.; Sanchez-Sanchez, A.; Mecerreyes, D. Poly(3,4-Ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics. Polymers 2017, 9, 354. [Google Scholar] [CrossRef] [Green Version]
- Lövenich, W. PEDOT-Properties and Applications. Polym. Sci. Ser. C 2014, 56, 135. [Google Scholar] [CrossRef]
- Min, J.; Patel, M.; Koh, W.-G. Incorporation of Conductive Materials into Hydrogels for Tissue Engineering Applications. Polymers 2018, 10, 1078. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Le, T.-H.; Kim, Y.; Yoon, H. Electrical and Electrochemical Properties of Conducting Polymers. Polymers 2017, 9, 150. [Google Scholar] [CrossRef] [Green Version]
- Revin, S.B. Electrochemical Sensors for Biomolecules Using Functionalized Triazole Modified Conducting Polymer Electrodes. Ph.D. Thesis, Gandhigram Rural Institute, Chinnalapatti, India, 2012. [Google Scholar] [CrossRef]
- Meng, Q.; Cai, K.; Chen, Y.; Chen, L. Research Progress on Conducting Polymer Based Supercapacitor Electrode Materials. Nano Energy 2017, 36, 268. [Google Scholar] [CrossRef]
- Mohd Abdah, M.A.A.; Azman, N.H.N.; Kulandaivalu, S.; Sulaiman, Y. Review of the Use of Transition-Metal-Oxide and Conducting Polymer-Based Fibres for High-Performance Supercapacitors. Mater. Dec. 2020, 186, 108199. [Google Scholar] [CrossRef]
- An, C.; Zhang, Y.; Guo, H.; Wang, Y. Metal Oxide-Based Supercapacitors: Progress and Prospectives. Nanoscale Adv. 2019, 1, 4644. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Zhu, Y.; Ji, X.; Banks, C.E. Transition Metal Oxides as Supercapacitor Materials. In Nanomaterials in Advanced Batteries and Supercapacitors; Ozoemena, K.I., Chen, S., Eds.; Nanostructure Science and Technology; Springer International Publishing: Cham, Switzarland, 2016; pp. 317–344. [Google Scholar]
- Zhang, Q.; Gu, D.; Li, H.; Xu, Z.; Sun, H.; Li, J.; Wang, L.; Shen, L. Energy Release from RuO2//RuO2 Supercapacitors under Dynamic Discharge Conditions. Electrochim. Acta 2021, 367, 137455. [Google Scholar] [CrossRef]
- Ates, M.; Yildirim, M. The Synthesis of RGO/RuO2, RGO/PANI, RuO2/PANI and RGO/RuO2/PANI Nanocomposites and Their Supercapacitors. Polym. Bull. 2020, 77, 2285. [Google Scholar] [CrossRef]
- Zhang, G.; Deng, L.; Liu, J.; Wang, J.; Li, W.; Li, X. Controllable Intercalated Polyaniline Nanofibers Highly Enhancing the Utilization of Delaminated RuO2 Nanosheets for High-Performance Hybrid Supercapacitors. ChemElectroChem 2022, 9, e202200039. [Google Scholar] [CrossRef]
- Cho, S.; Kim, J.; Han, J.; Shin, G.; Park, S.; Yeon, S.; Jana, A.; Kim, H. Self-assembled RuO2 nanoneedles on Ta/Cu foil for a robust and high-performance supercapacitor electrode. Surf. Interfaces 2022, 31, 102069. [Google Scholar] [CrossRef]
- Deshmukh, P.R.; Bulakhe, R.N.; Pusawale, S.N.; Sartale, S.D.; Lokhande, C.D. Polyaniline–RuO2 Composite for High Performance Supercapacitors: Chemical Synthesis and Properties. RSC Adv. 2015, 5, 28687. [Google Scholar] [CrossRef]
- Deshmukh, P.R.; Patil, S.V.; Bulakhe, R.N.; Sartale, S.D.; Lokhande, C.D. Inexpensive Synthesis Route of Porous Polyaniline–Ruthenium Oxide Composite for Supercapacitor Application. Chem. Eng. J. 2014, 257, 82. [Google Scholar] [CrossRef]
- Thakur, A.V.; Lokhande, B.J. Study of RuO2 incorporated PPy hybrid flexible electrodes prepared by soaking and drying technique: A novel approach. Appl. Phys. A 2021, 127, 910. [Google Scholar] [CrossRef]
- Liu, R.; Duay, J.; Lane, T.; Bok Lee, S. Synthesis and Characterization of RuO2/Poly(3,4-Ethylenedioxythiophene) Composite Nanotubes for Supercapacitors. Phys. Chem. Chem. Phys. 2010, 12, 4309. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Yang, D.; Li, J. Supercapacitor Performances of MnO2 and MnO2/ Reduced Graphene Oxide Prepared with Various Electrodeposition Time. Vacuum 2020, 178, 109455. [Google Scholar] [CrossRef]
- Wu, D.; Xie, X.; Zhang, Y.; Zhang, D.; Du, W.; Zhang, X.; Wang, B. MnO2/Carbon Composites for Supercapacitor: Synthesis and Electrochemical Performance. Front. Mater. 2020, 7, 2. [Google Scholar] [CrossRef] [Green Version]
- Devaraj, S.; Munichandraiah, N. Effect of Crystallographic Structure of MnO2 on Its Electrochemical Capacitance Properties. J. Phys. Chem. C 2008, 112, 4406. [Google Scholar] [CrossRef]
- Wang, Z.; Yang, D.; Sham, T. Effect of Oxidation States of Manganese in Manganese Oxide Thin Films on their Capacitance Performances. Surf. Sci. 2018, 676, 71. [Google Scholar] [CrossRef]
- Yu, J.; Li, M.; Wang, X.; Yang, Z. Promising High-Performance Supercapacitor Electrode Materials from MnO2 Nanosheets@Bamboo Leaf Carbon. ACS Omega 2020, 5, 16299. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, C.-A. Nano-Network MnO2/Polyaniline Composites with Enhanced Electrochemical Properties for Supercapacitors. Mater. Des. 2016, 97, 512. [Google Scholar] [CrossRef]
- Liu, W.; Wang, S.; Wu, Q.; Huan, L.; Zhang, X.; Yao, C.; Chen, M. Fabrication of Ternary Hierarchical Nanofibers MnO2/PANI/CNT and Theirs Application in Electrochemical Supercapacitors. Chem. Eng. Sci. 2016, 156, 178. [Google Scholar] [CrossRef]
- Grover, S.; Sahu, V.; Singh, G.; Sharma, R.K. High specific energy ternary nanocomposite polyaniline: Manganese dioxide@ MWCNT electrode for asymmetric supercapacitor. J. Energy Storage 2020, 29, 101411. [Google Scholar] [CrossRef]
- Pan, C.; Gu, H.; Dong, L. Synthesis and Electrochemical Performance of Polyaniline @MnO2/Graphene Ternary Composites for Electrochemical Supercapacitors. J. Power Sources 2016, 303, 175. [Google Scholar] [CrossRef]
- Li, X.; Huang, H.; Zhang, P.; Zhai, X.; Chen, B.; He, Y.; Guo, Z. Rational preapaation of ternary carbon cloth/MnO2/polyaniline nanofibers for high performance electrochemical supercapacitors. J. Mater. Sci. Mater. Electron. 2022, 33, 1918. [Google Scholar] [CrossRef]
- Yin, C.; Zhou, H.; Li, J. Facile one-step hydrothermal synthesis of PEDOT: PSS/MnO2 nanorod hybrids for high-rate supercapacitor electrode material. Ionics 2019, 25, 685. [Google Scholar] [CrossRef]
- Vinodh, R.; Babu, R.S.; Atchudan, R.; Kim, H.-J.; Yi, M.; Samyn, L.M.; de Barros, A.L.F. Fabrication of High-Performance Asymmetric Supercapacitor Consists of Nickel Oxide and Activated Carbon (NiO//AC). Catalysts 2022, 12, 375. [Google Scholar] [CrossRef]
- Sethi, M.; Shenoy, U.S.; Bhat, D.K. Hassle-Free Solvothermal Synthesis of NiO Nanoflakes for Supercapacitor Application. Phys. B Condens. Matter 2021, 611, 412959. [Google Scholar] [CrossRef]
- Singu, B.S.; Palaniappan, S.; Yoon, K.R. Polyaniline–Nickel Oxide Nanocomposites for Supercapacitor. J. Appl. Electrochim. 2016, 46, 1039. [Google Scholar] [CrossRef]
- Zhang, J.; Su, L.; Ma, L.; Zhao, D.; Qin, C.; Jin, Z.; Zhao, K. Preparation of Inflorescence-like ACNF/PANI/NiO Composite with Three-Dimension Nanostructure for High Performance Supercapacitors. J. Electroanal. Chem. 2017, 790, 40. [Google Scholar] [CrossRef]
- Cho, E.C.; Chang-Jian, C.W.; Lee, K.C.; Huang, J.H.; Ho, B.C.; Ding, Y.R.; Hsiao, Y.S. Spray-dried nanoporous NiO/PANI: PSS composite microspheres for high performance asymmetric supercapacitors. Compos. Part B 2019, 175, 107066. [Google Scholar] [CrossRef]
- Yang, H.; Xu, H.; Li, M.; Zhang, L.; Huang, Y.; Hu, X. Assembly of NiO/Ni(OH)2 /PEDOT Nanocomposites on Contra Wires for Fiber-Shaped Flexible Asymmetric Supercapacitors. ACS Appl. Mater. Interfaces 2016, 8, 1774. [Google Scholar] [CrossRef] [PubMed]
- Han, K.; Liu, Y.; Huang, H.; Goung, Q.; Zhang, Z.; Zhou, G. Tremella-like NiO Microspheres Embedded with Fish-Scale-like Polypyrrole for High-Performance Asymmetric Supercapacitor. RSC Adv. 2019, 9, 21608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, R.; Du, Y.; Xiao, P.; Cheng, J.; Yuan, S.; Chen, Y.; Yuan, J.; Chen, J. Transition Metal Oxide Electrode Materials for Supercapacitors: A Review of Recent Developments. Nanomaterials 2021, 11, 1248. [Google Scholar] [CrossRef]
- Wang, Z.; Wu, Z.; Meng, C.; Wu, L.; Yang, S.; Hong, X. Recent Advance in Co3O4 and Co3O4-Containing Electrode Materials for High-Performance Supercapacitors. Molecules 2020, 25, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ren, X.; Fan, H.; Ma, J.; Wang, C.; Zhang, M.; Zhao, N. Hierarchical Co3O4/PANI Hollow Nanocages: Synthesis and Application for Electrode Materials of Supercapacitors. Appl. Surf. Sci. 2018, 441, 194. [Google Scholar] [CrossRef]
- Hai, Z.; Gao, L.; Zhang, Q.; Xu, H.; Cui, D.; Zhang, Z.; Tsoukalas, D.; Tang, J.; Yan, S.; Xue, C. Facile Synthesis of Core–Shell Structured PANI-Co3O4 Nanocomposites with Superior Electrochemical Performance in Supercapacitors. Appl. Surf. Sci. 2016, 361, 57. [Google Scholar] [CrossRef]
- Lin, H.; Huang, Q.; Wang, J.; Jiang, J.; Liu, F.; Chen, Y.; Wang, C.; Lu, D.; Han, S. Self-Assembled Graphene/Polyaniline/Co3O4 Ternary Hybrid Aerogels for Supercapacitors. Electrochim. Acta 2016, 191, 444. [Google Scholar] [CrossRef]
- Guo, D.; Zhang, M.; Chen, Z.; Liu, X. Hierarchical Co3O4 @PPy Core-Shell Composite Nanowires for Supercapacitors with Enhanced Electrochemical Performance. Mater. Res. Bull. 2017, 96, 463. [Google Scholar] [CrossRef]
- Sulaiman, Y.; Azmi, M.K.S.; Abdah, M.A.A.; Azman, N.H.N. One step electrodeposition of poly-(3,4-ethylenedioxythiophene)/graphene oxide/cobalt oxide ternary nanocomposite for high performance supercapacitor. Electrochim. Acta 2017, 253, 581. [Google Scholar] [CrossRef]
- Yang, P.; Xie, J.; Guo, C.; Li, C.M. Soft- to Network Hard-Material for Constructing Both Ion- and Electron-Conductive Hierarchical Porous Structure to Significantly Boost Energy Density of a Supercapacitor. J. Colloid Interface Sci. 2017, 485, 137. [Google Scholar] [CrossRef]
- Charles, D.S.; Teng, X. Vanadium Pentoxide (V2O5) Electrode for Aqueous Energy Storage: Understand Ionic Transport Using Electrochemical, XRay, and Computational Tools. In Alkali-Ion Batteries; Yang, D., Ed.; InTechOpen: London, UK, 2016. [Google Scholar] [CrossRef] [Green Version]
- Bai, M.-H.; Liu, T.-Y.; Luan, F.; Li, Y.; Liu, X.-X. Electrodeposition of Vanadium Oxide–Polyaniline Composite Nanowire Electrodes for High Energy Density Supercapacitors. J. Mater. Chem. A 2014, 2, 10882. [Google Scholar] [CrossRef]
- Asen, P.; Shahrokhian, S. One Step Electrodeposition of V2O5/Polypyrrole/Graphene Oxide Ternary Nanocomposite for Preparation of a High-Performance Supercapacitor. Int. J. Hydrog. Energy 2017, 42, 21073. [Google Scholar] [CrossRef]
- Bi, W.; Wu, Y.; Liu, C.; Wang, J.; Du, Y.; Gao, G.; Wu, G.; Cao, G. Gradient Oxygen Vacancies in V2O5 /PEDOT Nanocables for High-Performance Supercapacitors. ACS Appl. Energy Mater. 2019, 2, 668. [Google Scholar] [CrossRef]
- Nithya, V.D.; Arul, N.S. Review on alpha-Fe2O3 based negative electrode for high performance supercapacitors. J. Power Sources 2016, 327, 297. [Google Scholar] [CrossRef]
- Ding, Y.; Tang, S.; Han, R.; Zhang, S.; Pan, G.; Meng, X. Iron Oxides Nanobelt Arrays Rooted in Nanoporous Surface of Carbon Tube Textile as Stretchable and Robust Electrodes for Flexible Supercapacitors with Ultrahigh Areal Energy Density and Remarkable Cycling-Stability. Sci. Rep. 2020, 10, 11023. [Google Scholar] [CrossRef]
- Prasanna, B.P.; Avadhani, D.N.; Raghu, M.S.; Yogesh Kumar, K. Synthesis of polyaniline/α-Fe2O3 nanocomposite electrode material for supercapacitor applications. Mater. Today Commun. 2017, 12, 72. [Google Scholar] [CrossRef]
- Zhaokun- Yang, Z.; Tang, L.; Ye, J.; Shi, D.; Liu, S.; Chen, M. Hierarchical nanostructured alpha-Fe2O3/polyaniline anodes for high performance supercapacitors. Electrochim. Acta 2018, 269, 21. [Google Scholar] [CrossRef]
- Lokhande, V.; Lokhande, A.; Namkoong, G.; Kim, J.H.; Ji, T. Charge Storage in WO3 Polymorphs and Their Application as Supercapacitor Electrode Material. Results Phys. 2019, 12, 2012. [Google Scholar] [CrossRef]
- Shinde, P.A.; Lokhande, A.C.; Chodankar, N.R.; Patil, A.M.; Kim, J.H.; Lokhande, C.D. Temperature Dependent Surface Morphological Modifications of Hexagonal WO3 Thin Films for High Performance Supercapacitor Application. Electrochim. Acta 2017, 224, 397. [Google Scholar] [CrossRef]
- Liu, Y.; Jiao, Y.; Zhou, H.; Yu, X.; Qu, F.; Wu, X. Rational Design of WO3 Nanostructures as the Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Performance. Nano-Micro Lett. 2015, 7, 12. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Jia, J.; Mi, R.; Liu, X.; Fu, Z.; Wang, C.; Liu, X.; Tang, Y. Fabrication of WO3·2H2O/BC Hybrids by the Radiation Method for Enhanced Performance Supercapacitors. Front. Chem. 2018, 6, 290. [Google Scholar] [CrossRef] [Green Version]
- Das, A.K.; Paria, S.; Maitra, A.; Halder, L.; Bera, A.; Bera, R.; Si, S.K.; De, A.; Ojha, S.; Bera, S.; et al. Highly Rate Capable Nanoflower-like NiSe and WO3@PPy Composite Electrode Materials toward High Energy Density Flexible All-Solid-State Asymmetric Supercapacitor. ACS Appl. Electron. Mater. 2019, 1, 977. [Google Scholar] [CrossRef]
- Zhuzhelskii, D.V.; Tolstopjatova, E.G. Eliseeva, S.N.; Ivanov, A.V.; Miao, S.; Kondratiev, V.V. PEDOT/WO3 composite films for high performance supercapacitor application. Electrochim. Acta 2019, 299, 182. [Google Scholar] [CrossRef]
- Samu, G.F.; Pencz, K.; Janaky, C.; Rajeshiwar, K. On the electrochemical synthesis and charge storage properties of WO3/polyaniline hybrid nanostructures. Electrochim. Acta 2015, 19, 2741. [Google Scholar] [CrossRef]
- Ramesh, S.; Yadav, H.M.; Lee, Y.-J.; Hong, G.-W.; Kathalingam, A.; Sivasamy, A.; Kim, H.-S.; Kim, H.S.; Kim, J.-H. Porous Materials of Nitrogen Doped Graphene Oxide@SnO2 Electrode for Capable Supercapacitor Application. Sci. Rep. 2019, 9, 12622. [Google Scholar] [CrossRef] [Green Version]
- Eedukanti, S.R.; Gampala, A.K.; Rao, K.V.; Chakra, S.; Gedela, V.; Boddula, R. Ultrasonication assisted thermal exfoliation of graphene-tin oxide nanocomposite material for supercapacitor. Mater. Sci. Energy Technol. 2019, 2, 372. [Google Scholar] [CrossRef]
- Hu, Z.-A.; Xie, Y.-L.; Wang, Y.-X.; Mo, L.-P.; Yang, Y.-Y.; Zhang, Z.-Y. Polyaniline/SnO2 nanocomposite for supercapacitor applications. Mater. Chem. Phys. 2009, 114, 990. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Yan, B.; Wang, C.; Zhu, F.; Jiang, X.; Chao, Y.; Yang, G. In Situ Preparation of SnO2@polyaniline Nanocomposites and Their Synergetic Structure for High-Performance Supercapacitors. J. Mater. Chem. A 2014, 2, 8334. [Google Scholar] [CrossRef]
- Roy, H.S.; Islam, M.M.; Mollah, M.Y.A.; Susan, M.A.B.H. Polyaniline-MnO2 Composites Prepared in-Situ during Oxidative Polymerization of Aniline for Supercapacitor Applications. Mater. Today Proc. 2020, 29, 1013. [Google Scholar] [CrossRef]
- Low, W.H.; Khiew, P.S.; Lim, S.S.; Siong, C.W.; Ezeigwe, E.R. Recent Development of Mixed Transition Metal Oxide and Graphene/Mixed Transition Metal Oxide Based Hybrid Nanostructures for Advanced Supercapacitors. J. Alloys Compd. 2019, 775, 1324. [Google Scholar] [CrossRef]
- Liew, S.Y.; Walsh, D.A.; Chen, G.Z. Conducting Polymer Nanocomposites-Based Supercapacitors. In Conducting Polymer Hybrids; Springer: Berlin/Heidelberg, Germany, 2017; p. 269. [Google Scholar] [CrossRef]
- Okpla, C.C. Nanocomposites An-Overview. Int. J. Eng. Res. 2013, 8, 17. [Google Scholar]
- Yang, D. Application of Nanocomposites for Supercapacitors: Characteristics and Properties. In Nanocomposites New Trends and Developments; IntechOpen: London, UK, 2012. [Google Scholar]
- Shahabuddin, S.; Gaur, R.; Mukherjee, N.; Chandra, P.; Khanam, R. Conducting polymers-based nanocomposites: Innovative materials for wastewater treatment and energy storage. Mater. Today Proc. 2022, 62, 6950. [Google Scholar] [CrossRef]
- Raza, M.A.; Rehman, Z.U.; Tanvir, M.G.; Maqsood, M.F. Metal oxide-conducting polymer-based composite electrodes for energy storage applications. In Renewable Polymers and Polymer-Metal Oxide Composites Synthesis, Properties, and Applications; Haider, S., Haider, A., Eds.; Elsevier: Cambridge, MA, USA, 2022; pp. 195–252. [Google Scholar]
- Jadhav, S.A.; Dhas, S.D.; Patil, K.T.; Moholkar, A.V.; Patil, P.S. Polyaniline (PANI)-Manganese Dioxide (MnO2) Nanocomposites as Efficient Electrode Materials for Supercapacitors. Chem. Phys. Lett. 2021, 778, 138764. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Chen, P.; Bao, Y.; Jiang, X.; Chen, Y. Electrochemical performance of polyaniline-coated γ-MnO2 on carbon cloth as flexible electrode for supercapacitor. Electrochim. Acta 2022, 413, 140146. [Google Scholar] [CrossRef]
- Wei, Y.; Luo, W.; Li, X.; Lin, Z.; Hou, C.; Ma, M.; Ding, J.; Li, T.; Ma, Y. PANI-MnO2 and Ti3C2Tx (MXene) as Electrodes for High-Performance Flexible Asymmetric Supercapacitors. Electrochim. Acta 2022, 406, 139874. [Google Scholar] [CrossRef]
- Zhu, Y.; Xu, H.; Tang, J.; Jiang, X.; Bao, Y.; Chen, Y. Preparation of Ternary Composite CF@γ-MnO2/PANI Material in Electrochemical Supercapacitors. J. Mater. Sci. Mater. Electron. 2021, 32, 25300. [Google Scholar] [CrossRef]
- Heydari, H.; Abdouss, M.; Mazinani, S.; Bazargan, A.M.; Fatemi, F. Electrochemical Study of Ternary Polyaniline/MoS2−MnO2 for Supercapacitor Applications. J. Energy Storage 2021, 40, 102738. [Google Scholar] [CrossRef]
- Ling, X.; Zhang, G.; Long, Z.; Lu, X.; He, Z.; Li, J.; Wang, Y.; Zhang, D. Core-shell structure γ-MnO2-Pani carbon fiber paper-based flexible electrode material for high performance supercapacitor. J. Ind. Eng. Chem. 2021, 99, 317. [Google Scholar] [CrossRef]
- Poudel, M.B.; Shin, M.; Kim, H.J. Polyaniline-Silver-Manganese Dioxide Nanorod Ternary Composite for Asymmetric Supercapacitor with Remarkable Electrochemical Performance. Int. J. Hydrog. Energy 2021, 46, 474. [Google Scholar] [CrossRef]
- Huang, Y.; Bao, S.; Lu, J. Flower-like MnO2/Polyaniline/Hollow Mesoporous Silica as Electrode for High-Performance All-Solid-State Supercapacitors. J. Alloys Compd. 2020, 845, 156192. [Google Scholar] [CrossRef]
- Dirican, M.; Yanilmaz, M.; Asiri, A.M.; Zhang, X. Polyaniline/MnO2/Porous Carbon Nanofiber Electrodes for Supercapacitors. J. Electroanal. Chem. 2020, 861, 113995. [Google Scholar] [CrossRef]
- Bolgam, R.; Boddula, R.; Srinivasan, P. Incorporation of graphene-Mn3O4 core into polyaniline shell: Supercapacitor electrode material. Ionics 2018, 24, 1467–1474. [Google Scholar] [CrossRef]
- Naik, Y.V.; Kariduraganavar, M.Y.; Srinivasa, H.T.; Siddagangaiah, P.B. High surface wetting and conducting NiO/PANI nanocomposites as efficient electrode materials for supercapacitors. Inorg. Chem. Commun. 2022, 138, 109275. [Google Scholar] [CrossRef]
- Huang, C.; Hao, C.; Zheng, W.; Zhou, S.; Yang, L.; Wang, X.; Jiang, C.; Zhu, L. Synthesis of Polyaniline/Nickel Oxide/Sulfonated Graphene Ternary Composite for All-Solid-State Asymmetric Supercapacitor. Appl. Surf. Sci. 2020, 505, 144589. [Google Scholar] [CrossRef]
- Kuo, C.-W.; Chang, J.-C.; Wu, B.-W.; Wu, T.-Y. Electrochemical characterization of RuO2-Ta2O5/polyaniline composites as potential redox electrodes for supercapacitor and hydrogen evolution reaction. Int. J. Hydrog. Energy 2018, 45, 22223. [Google Scholar] [CrossRef]
- Arvizu, M.A.; Gonzalez, F.J.; Romero-Galarza, A.; Rodriguez-Varela, F.J.; Garcia, C.R.; Garcia-Lobato, M.A. Symmetric Supercapacitors of PANI Coated RuO2/TiO2 Macroporous Structures Prepared by Electrostatic Spray Deposition. J. Electrochem. Soc. 2022, 169, 020564. [Google Scholar] [CrossRef]
- Athira, A.R.; Bhagya, T.C.; Riyas, A.H.; Xavier, T.S.; Shibli, S.M.A. Design and fabrication of Co3O4 anchored PANI binary composite supercapacitors with enhanced electrochemical performance and stability. J. Mater. Sci. Mater. Electron. 2022, 33, 2829. [Google Scholar] [CrossRef]
- Fan, Y.; Chen, H.; Li, Y.; Cui, D.; Fan, Z.; Xue, C. PANI-Co3O4 with Excellent Specific Capacitance as an Electrode for Supercapacitors. Ceram Int. 2021, 47, 8433. [Google Scholar] [CrossRef]
- Usman, M.; Adnan, N.; Ahsan, M.T.; Javed, S.; Butt, M.S.; Akran, M.A. In Situ Synthesis of a Polyaniline/ Fe-Ni Co-Doped Fe3O4 Composite for the Electrode Material of Supercapacitors with Improved Cycling Stability. ACS Omega 2021, 6, 1190. [Google Scholar] [CrossRef]
- Chhetri, K.; Tiwari, A.P.; Dahal, B.; Ojha, G.P.; Mukhiya, T.; Lee, M.; Kim, T.; Chae, S.-H.; Muthurasu, A.; Kim, H.Y. A ZIF-8-Derived Nanoporous Carbon Nanocomposite Wrapped with Co3O4-Polyaniline as an Efficient Electrode Material for an Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 856, 113670. [Google Scholar] [CrossRef]
- Javed, M.S.; Khan, A.J.; Hanif, M.; Nazir, M.T.; Hussain, S.; Saleem, M.; Raza, R.; Yun, S.; Liu, Z. Engineering the Performance of Negative Electrode for Supercapacitor by Polyaniline Coated Fe3O4 Nanoparticles Enables High Stability up to 25,000 Cycles. Int. J. Hydrog. Energy 2021, 46, 9976. [Google Scholar] [CrossRef]
- Manna, R.; Srivastava, S.K. Reduced Graphene Oxide/Fe3O4 /Polyaniline Ternary Composites as a Superior Microwave Absorber in the Shielding of Electromagnetic Pollution. ACS Omega 2021, 6, 9164. [Google Scholar] [CrossRef] [PubMed]
- Ghebache, Z.; Hamidouche, F.; Safidine, Z.; Trari, M.; Bellal, B. Synthesis and Electrical Conducting Properties of Poly(aniline) Doped with Zeolite HY Nanocomposites Containing SnO2 for High-Performance Supercapacitor Electrode. J. Inorg. Organomet. Polym. Mater. 2019, 29, 1548. [Google Scholar] [CrossRef]
- Prasanna, B.P.; Avadhani, D.N.; Raj, V.; Kumar, K.Y.; Raghu, M.S. Fabrication of PANI/SnO2 Hybrid Nanocomposites via Interfacial Polymerization for High Performance Supercapacitors Applications. Surf. Engin. Appl. Electrochem. 2019, 55, 463. [Google Scholar] [CrossRef]
- Bolgam, R.; Boddula, R.; Srinivasan, P. Hybrid Materials of PANI with TiO2-SnO2: Pseudocaacitor Electrode for Higher Performance Supercapacitors. ChemistrySelect 2017, 2, 65. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, H.; He, C.; Wu, C.; Huang, K.-J. High-Power-Energy Proton Supercapacitor Based on Interface-Adapted Durable Polyaniline and Hexagonal Tungsten Oxide. J. Colloid Interface Sci. 2021, 601, 727. [Google Scholar] [CrossRef]
- Szkoda, M.; Zarach, Z.; Trzciński, K.; Nowak, A.P. An Aqueous Exfoliation of WO3 as a Route for Counterions Fabrication—Improved Photocatalytic and Capacitive Properties of Polyaniline/WO3Composite. Materials 2020, 13, 5781. [Google Scholar] [CrossRef]
- Rehman, M.N.; Munawar, T.; Nadeem, M.S.; Mukhtar, S.; Akbar, U.A.; Manzoor, S.; Hakeem, A.S.; Ashiq, M.N.; Iqbal, F. Facile synthesis of novel PANI covered Y2O3–ZnO nanocomposite: A promising electrode material for supercapacitor. Solid State Sci. 2022, 128, 106883. [Google Scholar] [CrossRef]
- Palsaniya, S.; Nemade, H.B.; Dasmahapatra, A.K. Hierarchical PANI-RGO-ZnO Ternary Nanocomposites for Symmetric Tandem Supercapacitor. J. Phys. Chem. Solids 2021, 154, 110081. [Google Scholar] [CrossRef]
- Cao, X.-M.; Han, Z.-B. Hollow core-shell ZnO@ZIF-8 on carbon cloth for flexible supercapacitors with ultrahigh areal capacitance. Chem. Commun. 2019, 55, 1746. [Google Scholar] [CrossRef]
- Gottam, R.; Srinivasan, P. Composite Electrode Material of MoO3-MC-SiO2-PANI: Aqueous Supercapacitor Cell with High Energy Density, 1 V and 250,000 CD Cycles. Polym. Adv. Technol. 2021, 32, 2465. [Google Scholar] [CrossRef]
- Bortamuly, R.; Konwar, G.; Boruah, P.K.; Das, M.R.; Mahanta, D.; Saikia, P. CeO2-PANI-HCl and CeO2-PANI-PTSA Composites: Synthesis, Characterization, and Utilization as Supercapacitor Electrode Materials. Ionics 2020, 26, 5747. [Google Scholar] [CrossRef]
- Jeyaranjan, A.; Sakthivel, T.S.; Neal, C.J.; Seal, S. Scalable Ternary Hierarchical Microspheres Composed of PANI/ RGO/CeO2 for High Performance Supercapacitor Applications. Carbon 2019, 151, 192. [Google Scholar] [CrossRef]
- Mahmoud, Z.H.; Adham, R.; Bayati, A.L.; Khadom, A.A. Synthesis and supercapacitor performance of polyaniline-titanium dioxide-samarium oxide (PANI/TiO2-Sm2O3) nanocomposite. Chem. Pap. 2022, 76, 1401. [Google Scholar] [CrossRef]
- Xie, Y.; Zhang, J.; Xu, H.; Zhou, T. Laser-assisted mask-free patterning strategy for high-performance hybrid micro-supercapacitors with 3D current collectors. Chem. Eng. J. 2022, 437, 135493. [Google Scholar] [CrossRef]
- Zhuo, W.-J.; Wang, Y.-H.; Huang, C.-T.; Deng, M.-J. Enhanced Pseudocapacitive Performance of Symmetric Polypyrrole-MnO2 Electrode and Polymer Gel Electrolyte. Polymers 2021, 13, 3577. [Google Scholar] [CrossRef]
- Pourfarzad, H.; Badrnezhad, R.; Ghaemmaghami, M.; Saremi, M. In situ synthesis of C3N4/PPy/MnO2 nanocomposite as high-performance active material for assymetric supercapacitor. Ionics 2021, 27, 4057. [Google Scholar] [CrossRef]
- Liu, W.; Liu, N.; Shi, Y.; Chen, Y.; Yang, C.; Tao, J.; Wang, S.; Wang, Y.; Su, J.; Li, L.; et al. Wire-Shaped Flexible Asymmetric Supercapacitor Based on Carbon Fiber Coated with Metal Oxide & Polymer. J. Mater. Chem. A. 2015, 3, 13461. [Google Scholar] [CrossRef]
- Kang, C.; Fang, J.; Fu, L.; Li, S.; Liu, Q. Hierarchical Carbon Nanowire/Ni@MnO2 Nanocomposites for High-Performance Asymmetric Supercapacitors. Chem. Eur. J. 2020, 26, 16392. [Google Scholar] [CrossRef] [PubMed]
- Ates, M.; Kuzgun, O. Modified Carbon Black, CB/MnO2 and CB/MnO2 /PPy Nanocomposites Synthesised by Microwave-Assisted Method for Energy Storage Devices with High Electrochemical Performances. Plast, Rubber Compos. 2020, 49, 342. [Google Scholar] [CrossRef]
- Li, X.; Ma, Y.; Shen, P.; Zhang, C.; Cao, M.; Xiao, S.; Yan, J.; Luo, S.; Gao, Y. An Ultrahigh Energy Density Flexible Asymmetric Micro Supercapacitor Based on Ti3C2 Tx and PPy/MnO2 with Wide Voltage Window. Adv. Mater. Technol. 2020, 5, 2000272. [Google Scholar] [CrossRef]
- Ren, C.; Yan, Y.; Sun, B.; Gu, B.; Chou, T.-W. Wet-Spinning Assembly and in Situ Electrodeposition of Carbon Nanotube-Based Composite Fibers for High Energy Density Wire-Shaped Asymmetric Supercapacitor. J. Colloid Interface Sci. 2020, 569, 298. [Google Scholar] [CrossRef] [PubMed]
- Nady, J.E.; Shokry, A.; Khalil, M.; Ebrahim, S.; Elshaer, A.M.; Anas, M. One-step electrodeposition of a polypyrrole/NiO nanocomposite as a supercapacitor electrode. Sci. Rep. 2022, 12, 3611. [Google Scholar] [CrossRef] [PubMed]
- Shen, Z.-M.; Luo, X.-J.; Zhu, Y.-Y.; Liu, Y.-S. Facile Co-Deposition of NiO-CoO-PPy Composite for Asymmetric Supercapacitors. J. Energy Storage 2022, 51, 104475. [Google Scholar] [CrossRef]
- Golkhatmi, S.Z.; Sedghi, A.; Miankushki, H.N.; Khalaj, M. Structural properties and supercapacitive performance evaluation of the nickel oxide/graphene/polypyrrole hybrid ternary nanocomposite in aqueous and organic electrolytes. Energy 2021, 214, 118950. [Google Scholar] [CrossRef]
- Li, S.; Zhang, L.; Zhang, L.; Zhang, J.; Zhou, H.; Chen, X.; Tang, T. The in Situ Construction of Three-Dimensional Core–Shell-Structured TiO2@PPy/RGO Nanocomposites for Improved Supercapacitor Electrode Performance. New J. Chem. 2021, 45, 1092. [Google Scholar] [CrossRef]
- Xue, J.; Yang, Q.; Guan, R.; Shen, Q.; Liu, X.; Jia, H.; Li, Q. High-Performance Ordered Porous Polypyrrole/ZnO Films with Improved Specific Capacitance for Supercapacitors. Mater. Chem. Phys. 2020, 256, 123591. [Google Scholar] [CrossRef]
- Zhong, M.; Guo, D.; Meng, X.; Bian, L.; Song, Y.; Sun, X.; Liu, X. Heterostructured polypyrrole/hybrid iron oxide composite film as highly stable anode for pseudocapacitors. J. Power Sources 2021, 513, 230550. [Google Scholar] [CrossRef]
- Wang, Y.; Du, Z.; Xiao, J.; Cen, W.; Yuan, S. Polypyrrole-encapsulated Fe2O3 nanotube arrays on a carbon cloth support: Achieving synergistic effect for enhanced supercapacitor performance. Electrochim. Acta 2021, 386, 138486. [Google Scholar] [CrossRef]
- Ghanbari, R.; Shabestari, M.E.; Kalali, E.N.; Ghorbani, S.R. Iron (II and III) Oxides/Reduced Graphene Oxide/Polypyrrole Ternary Nanocomposite as Electrochemical Supercapacitor Electrode. J. Electrochem. Soc. 2021, 168, 030543. [Google Scholar] [CrossRef]
- Le, K.; Gao, M.; Xu, D.; Wang, Z.; Wang, G.; Liu, W.; Wang, F.; Liu, J. Polypyrrole- coated Fe2O3 constructed by nanoneedles as high-performance anodes for aqueous s asymmetric supercapacitors. Dalton Trans. 2020, 49, 9701. [Google Scholar] [CrossRef]
- Zhuang, Q.; Li, W.; Zhu, Z.; Yu, H.; Chen, W.; Yang, J.; Fu, M. Facile Growth of Hierarchical SnO2@PPy Composites on Carbon Cloth as All-Solid-State Flexible Supercapacitors. J. Alloys Compd. 2022, 906, 164275. [Google Scholar] [CrossRef]
- Vandana, M.; Nagaraju, Y.S.; Ganesh, H.; Veeresh, S.; Vijeth, H.; Basappaa, M.; Devendrappa, H. A SnO2QDs/GO/PPY ternary composite film as positive and graphene oxide/charcoal as negative electrodes assembled solid state asymmetric supercapacitor for high energy storage applications. RSC Adv. 2021, 11, 27801. [Google Scholar] [CrossRef]
- Jyothibasu, J.P.; Chen, M.-Z.; Tien, Y.-C.; Kuo, C.-C.; Chen, E.-C.; Lin, Y.-C.; Chiang, T.-C.; Lee, R.-H. V2O5/Carbon Nanotube/Polypyrrole Based Freestanding Negative Electrodes for High-Performance Supercapacitors. Catalysts 2021, 11, 980. [Google Scholar] [CrossRef]
- Deng, H.; Huang, J.; Hu, Z.; Chen, X.; Huang, D.; Jin, T. Fabrication of a Three-Dimensionally Networked MoO3/PPy/RGO Composite for a High-Performance Symmetric Supercapacitor. ACS Omega 2021, 6, 9426. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, X.; Sun, H.; Lin, X. Preparation of Polypyrrole Modified Molybdenum Trioxide Nanorod and Their Applications in Supercapacitors. Mater. Technol. 2021, 1947. [Google Scholar] [CrossRef]
- Ramesh, S.; Karuppasamy, K.; Haldorai, Y.; Sivasamy, A.; Kim, H.-S.; Kim, H.S. Hexagonal Nanostructured Cobalt Oxide @ Nitrogen Doped Multiwalled Carbon Nanotubes/Polypyyrole Composite for Supercapacitor and Electrochemical Glucose Sensor. Colloids Surf. B Biointerfaces 2021, 205, 111840. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zu, X.; Zeng, Y.; Zhang, L.; Tang, Z.; Yi, G.; Chen, Z.; Lin, W.; Lin, X.; Zhou, H.; et al. Mechanically robust 3D hierarchical electrode via one-step electro-codeposition towards molecular coupling for high-performance flexible supercapacitors. Nano Energy 2020, 67, 104275. [Google Scholar] [CrossRef]
- He, Q.; Ye, J.; Peng, Z.; Guo, Y.; Tan, L.; Chen, Y. Electrodeposition of poly(3,4- ethylenedioxythiophene) coated manganese dioxide nanospheres for flexible asymmetric planar supercapacitor with superior energy density. J. Power Sources 2021, 506, 230176. [Google Scholar] [CrossRef]
- Kim, H.R.; Lee, J.H.; Lee, S.K.; Chun, Y.; Park, C.; Jin, J.-H.; Lee, H.U.; Kim, S.W. Fabricating a modified biochar-based all-solid-state flexible microsupercapacitor using pen lithography. J. Clean. Prod. 2021, 284, 125449. [Google Scholar] [CrossRef]
- Liu, L.; Choi, S. PEDOT: PSS/MnO2 /CNT Ternary Nanocomposite Anodes for Supercapacitive Energy Storage in Cyanobacterial Biophotovoltaics. ACS Appl. Energy Mater. 2020, 3, 10224. [Google Scholar] [CrossRef]
- Ravit, R.; Azman, N.H.N.; Kulandaivalu, S.; Abdullah, J.; Ahmad, I.; Sulaiman, Y. Cauliflower-like Poly(3,4-ethylenedioxythipohene)/Nanocrystalline Cellulose/Manganese Oxide Ternary Nanocomposite for Supercapacitor. J. Appl. Polym. Sci. 2020, 137, 49162. [Google Scholar] [CrossRef]
- Tatli, S.N.; Unur, E. PEDOT: PSS Enhanced Electrochemical Capacitive Performance of Graphene-Templated delta-MnO2. Electrochem. Sci. Technol. 2020, 11, 50. [Google Scholar] [CrossRef]
- Jiang, X.; Deng, S.; Liu, J.; Qi, N.; Chen, Z. Metal–Organic Framework Derived NiO/Ni@C Composites as Electrode Materials with Excellent Electrochemical Performance for Supercapacitors. J. Energy Storage 2021, 37, 102426. [Google Scholar] [CrossRef]
- Liu, Y.; Murtaza, I.; Shuja, A.; Meng, H. Interfacial Modification for Heightening the Interaction between PEDOT and Substrate towards Enhanced Flexible Solid Supercapacitor Performance. Chem. Eng. J. 2020, 379, 122326. [Google Scholar] [CrossRef]
- Wang, L.; Shu, T.; Guo, S.; Lu, Y.; Li, M.; Nzabahimana, J.; Hu, X. Fabricating Strongly Coupled V2O5@PEDOT Nanobelts/Graphene Hybrid Films with High Areal Capacitance and Facile Transferability for Transparent Solid-State Supercapacitors. Energy Storage Mater. 2020, 27, 150. [Google Scholar] [CrossRef]
- Azman, N.H.N.; Sulaiman, Y. Supercapattery performance of carbon nanofibers decorated with poly(3,4-ethylenedioxythiophene) and cobalt oxide. Ceram. Int. 2022, 48, 11772. [Google Scholar] [CrossRef]
- Zhang, J.; Fan, X.; Meng, X.; Zhou, J.; Wang, M.; Chen, S.; Cao, Y.; Chen, Y.; Bielawski, C.W.; Geng, J. Ice-Templated Large-Scale Preparation of Two-Dimensional Sheets of Conjugated Polymers: Thickness-Independent Flexible Supercapacitance. ACS Nano 2021, 15, 8870. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Xu, L.; Cai, Y.; He, Y.; Xu, J.; Zhou, W. Binder-Free and Flexible Carbon- En capsulated Oxygen-Vacancy Cerium Dioxide Electrode for High-Performance Supercapacitor. J. Electrochim. Soc. 2021, 168, 010536. [Google Scholar] [CrossRef]
- Liang, J.; Sheng, H.; Wang, Q.; Yuan, J.; Zhang, X.; Su, Q.; Xie, E.; Lan, W.; Zhang, C.J. PEDOT: PSS-Glued MoO3 Nanowire Network for All-Solid-State Flexible Transparent Supercapacitors. Nanoscales Adv. 2021, 3, 3502. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.K.; Choudhary, R.B.; Majumder, M.; Majhi, M. Fairly Improved Pseudocapacitance of PTP/PANI/TiO2 Nanohybrid Composite Electrode Material for Supercapacitor Applications. Ionics 2018, 24, 257. [Google Scholar] [CrossRef]
CP | Conductivity (mScm−1) | Advantages |
---|---|---|
Polypyrrole (PPy) | 103~5 × 104 | High conductivity, High stability, Biocompatibility, High mechanical strength. |
Polyaniline (PANI) | 102~108 | High conductivity, High stability, Water solubility. |
Polythiophene (PTh) | 10−1~10−4 | Good optical property, Biocompatibility. |
Poly(3,4-ethylenedioxythiophene) (PEDOT) | 3 × 105~5 × 105 | High conductivity, High stability, Water solubility, High mechanical strength, Biocompatibility. |
Poly (paraphenylene vinylene) (PPV) | 1~1 × 105 | Good optical properties, High stability. |
Conducting Polymer | Metal Oxide | Additional Material | Specific Capacitance (F/g) | Energy Density (Wh/kg) | Power Density (W/kg) | Cycling Stability (Cycles, % Capacitance Retention) | Electrolyte | Ref. |
---|---|---|---|---|---|---|---|---|
PANI | MnO2 | - | 417 | 11.4 | 875 | 2000, 96.4% | 1 M H2SO4 | [107] |
PANI | MnO2 | CC | 1105 mF cm−2 | 10.4 mW cm−3 | 1.5 mWh cm−3 | 2000, 86.35% | 0.5 M H2SO4 | [108] |
PANI | MnO2 | Ti3C2Tx MXene | 21.1 | 47.25 μWh cm−2 | 2.40 mW cm−2 | 4000, 83% | PVA/ H2SO4 | [109] |
PANI | γ MnO2 | CF | 654.3 | 30.9 | 750 | 5000, 73.2% | 0.2 M H2SO4 | [110] |
PANI | MnO2 | MoS2 | 259 | 35.97 | 500 | 4000, 94.1% at 16 A g−1 | 1 M H2SO4 | [111] |
PANI | γ-MnO2 | _ | 642.5 | 114.2 | 798.6 | - | [112] | |
PANI | Ag@MnO2 | AC | 1028.66 | 49.77 | 1599.75 | 5000, 88.4% | 2 M KOH | [113] |
PANI | MnO2 | Hollow mesoporous silica | 428.6 | 88.4 | 800 | 5000, 97.7% | 6.0 M KOH | [114] |
PANI | MnO2 | Porous carbon nanofiber (PCNF) | 289 | 119 | 322 | 5000, 86% | 1 M H2SO4 | [115] |
PANI | Mn3O4 | graphene | 460 | 23 | 600 | 4000, 89% | 1 M H2SO4 | [116] |
PANI | NiO | - | 480 | - | - | - | - | [117] |
PANI | NiO | Sulfonated graphene (SGO) | 308.8 | 109.8 | 800 | 5000, 92.23% | 6 M KOH | [118] |
PANI | RuO2 | Ta2O5 | 428 | 26.7 | 2400 | - | 0.5 M H2SO4 | [119] |
PANI | RuO2 | rGO | 723.09 | - | - | - | 1 M H2SO4 | [48] |
PANI | RuO2, TiO2 | - | 67.4 | 3.37 | 60 | 10,000, 81.6% | 0.1 M H2SO4 | [120] |
PANI | Co3O4 | - | 1308 | 250 | 6400 | - | 1 M H2SO4 | [121] |
PANI | Co3O4 | AC | 3105.46 | 58.84 | 160 | 3000, 74.81% | 6 M KOH | [122] |
PANI | Co3O4 (FNCO, Fe-Ni co-doped) | - | 1171 | 144 | - | 2000, 84% | 1 M H2SO4 | [123] |
PANI | Co3O4 | ZIF-8NPC | 1407 | 52.81 | 751.51 | - | KOH | [124] |
PANI NP | Fe2O3 | - | 1669.18 | - | - | 25,000, 96.5% | KOH | [125] |
PANI | Fe2O3 | rGO | 610.4 | - | - | - | - | [126] |
PANI | SnO2 | HY zeolite (solid acid) doped | 1085 | - | - | - | - | [127] |
PANI | SnO2 | - | 337 | - | - | - | 1 M H2SO4 | [128] |
PANI | SnO2 | TiO2 | 540 | 27 | 200 | 6000, 85% | 1 M H2SO4 | [129] |
PANI | h-WO3 | - | 636 | 29.0 | 610 | 2000, 89% at 2 A g−1 | 1 M H2SO4 | [130] |
PANI | WO3 | - | 180 | 12.25 | 1075.6 | 10,000, 70% | - | [131] |
PANI | ZnO Y2O3 | - | 873 | 73 | 9100 | - | - | [132] |
PANI | ZnO | rGO | ~40 | ~5.61 | ~403 | 5000, 86% | 1 M H2SO4 | [133] |
PANI | ZnO | ZIF-8-CC | 4839–3987 mF cm−2 | 0.137–0.0891 mW h cm−3 | 1.421–23.629 W cm−3 | - | PVA/KCl gel | [134] |
PANI | MoO3 | SiO2, mesoporous carbon (MC) | 45 | 31 | 155 | 250,000, 57% | 1 M H2SO4 | [135] |
PANI | CeO2 | HCl | 504 | 100.8 | 830 | - | 0.1 M Na2SO4 | [136] |
PANI | CeO2 | p-toluene sulfonic acid (PTSA) | 454 | 100.8 | 830 | - | 0.1 M Na2SO4 | [136] |
PANI | CeO2 | rGO | 684 | 46.27 | 850 | 6000, 92% at 4 A g−1 | 1 M H2SO4 | [137] |
PANI | Sm2O3 | TiO2 | 881 | 141 | - | 1000, 91% | 1 M H2SO4 | [138] |
PPy | MnO2 | Ni foam | 59.29 mF/cm2 | 42.99 to 77.94 μWh/cm2 | 0.272 to 6.818 mW/cm2 | 10,000, 95.6% | LiClO4 | [139] |
PPY | MnO2 | CC | 270 | 165.3 | 1000 | 1000, 94% | - | [140] |
PPy | MnO2 | C3N4 | 509.4 | 63.9 | 2000 | 5000, 95.7% | 1 M aqueous Na2SO4 | [141] |
PPy | MnO2 | Carbon nanofiber | - | 0.340 mWh Cm−2 | 1.5 mWCm2 | - | - | [142] |
N-CNWs derived from PPy | Ni@MnO2 | CC | 571.4 | 36.4 | 900 | 3500, 72.8% | 4 mM NaHCO3 | [143] |
PPy | MnO2 | CB | 273.2 | 0.5513 | 91.556 | 1000, 92.20% | 1 M H2SO4 | [144] |
PPy | MnO2 | Ti3C2Tx | 61.5 mF cm−2 | 6.73 µWh cm−2 | - | 5000, 80.7% | (PVA/H2SO4) as the quasi-solid | [145] |
PPy | Mno2 | CNT | 10.7 | 4.82 | 1382 | 5000, 86% | LiCl/PVA | [146] |
PPy | NiO | - | 679 | 94.4 | 500.74 | 1000, 83.9% | 0.1 M LiClO4 | [147] |
PPy | NiO | CoO | 1123 | 35.9 | 801 | 5000, 90.1% | 2 M KOH | [148] |
PPy | NiO | Graphene | 970.85 | 33.71 | - | - | 6 M KOH | [149] |
PPy | TiO2 | rGO | 462.1 | - | - | - | 2 M KOH | [150] |
PPy | ZnO | - | 161.02 | - | - | 5000, 70.71% | 1 M KCl | [151] |
PPy | FeOx | - | 2.0 F cm−2 | 3.44 mWh cm−3 | 6.72 mW cm−3 | 10,000, 105.6% | 3 M LiCl | [152] |
PPy | Fe2O3 | CC | 237 mF cm−2 | 24.2 | 408.2 | 10,000, 80% At 10 mA cm−2 | 1 M Na2SO4 | [153] |
PPy | Fe2O3 | rGO | 626.8 | 87.05 | 500 | - | 1 M H2SO4 | [154] |
PPy | Fe2O3NTs | - | 530 mF cm−2 | 51.2 | 285.4 | 5000, 83.5% | 1 M Na2SO4 | [155] |
PPy | SnO2 | CC | 493.8 mF cm−2 | 0.7 mWh cm−3 | 4.74 mW cm−3 | 10,000, 90.5% | PVA-KOH Gel | [156] |
PPy | SnO2 QDs | GO | 1296 | 29.6 | 5310.26 | 11,000, 90% | (PVA/KOH) gel | [157] |
PPy | V2O5 | f-CNT | 1266 mF cm−2 | - | - | - | 1 M Na2SO4 | [158] |
PPy | MoO3 | rGO | 412.3 | 19.8 | 301 | 6000, 85.1% at 2 A g−1 | Na2SO4 | [159] |
PPy | MoO3 | - | 453.75 | 20.3 | 400 | 5000, 84.3% | 1.0 M Na2SO4 | [160] |
PPy | Co3O4 | N-doped MWCNT | ∼872 | - | - | 10,000, 96.8 % | KOH | [161] |
PPY | Co3O4NW | MnO2 | 215 | 41.3 | 4348 | 1000, 96.8% | - | [162] |
PEDOT | MnO2 | V2O5 | 116.9 mF cm−2 | 15.1 μWh cm−2 | - | 10,000, 87.2% | Carboxymethyl cellulose sodium (CMC)-Na2SO4 gel | [163] |
PEDOT | MnO2 | HNO3 pre-treated biochar | 76.6 | 14.0 | 53.1 | - | - | [164] |
PEDOT:PSS | MnO2 | CNT | 105.2 mF·cm−2 | 13.2 μW h·cm−2 | 162 μW·cm−2 | - | 1 M Na2SO4 | [165] |
PEDOT | MnO2 | Nanocrystalline cellulose (NCC) | 144.69 | 10.3 | 494.9 | 2000, 83% | 1 M KCl | [166] |
PEDOT: PSS | MnO2 | - | 550 | 18 | 4500 | - | - | [167] |
PEDOT | NiO/Ni@C | AC | 805.3 | 20.7 | 12,920 | 10,000, 69.7% | 6 M KOH | [168] |
PEDOT | Ni2+/NiO-SS | - | 236 | 40.15 Ah/Kg | 1320 | 2500, 99% | 0.1 M TBAPF6/PC | [169] |
PEDOT | V2O5 | Graphene | 22.4 mF cm−2 | 0.18 μW h cm−2 | 11 μW cm−2 | 50,000, 92.4% | 5 M LiCl | [170] |
PEDOT | Co3O4 | Carbon nanofibers | 849.65 | 14.54 | 1726.96 | - | - | [171] |
PEDOT: PSS | WO3 | - | 701 mF cm−2 | 0.083 mWh cm−2 | 10 mW cm−2. | 10,000, 96% | 0.1 M H2SO4 | [172] |
PEDOT | CeO2 | C | 141.56 | 11.12 | 2000 | - | 1 M Na2SO4 | [173] |
PEDOT: PSS | MoO3 | - | 15.7 mF cm−2 | 0.623 μW h cm−2 | 40 μW cm−2 | 11,000, 92.4% | 2 M Na2SO4 | [174] |
PTh | TiO2 | PANI | 265 | 9.09 | 3770 | 3000, 92.3% | 1 M H2SO4 | [175] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patil, P.H.; Kulkarni, V.V.; Jadhav, S.A. An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. J. Compos. Sci. 2022, 6, 363. https://doi.org/10.3390/jcs6120363
Patil PH, Kulkarni VV, Jadhav SA. An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. Journal of Composites Science. 2022; 6(12):363. https://doi.org/10.3390/jcs6120363
Chicago/Turabian StylePatil, Pranoti H., Vidya V. Kulkarni, and Sushilkumar A. Jadhav. 2022. "An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application" Journal of Composites Science 6, no. 12: 363. https://doi.org/10.3390/jcs6120363
APA StylePatil, P. H., Kulkarni, V. V., & Jadhav, S. A. (2022). An Overview of Recent Advancements in Conducting Polymer–Metal Oxide Nanocomposites for Supercapacitor Application. Journal of Composites Science, 6(12), 363. https://doi.org/10.3390/jcs6120363