Effect of Alumina and Silicon Carbide Nanoparticle-Infused Polymer Matrix on Mechanical Properties of Unidirectional Carbon Fiber-Reinforced Polymer
Abstract
:1. Introduction
2. Experimental Work
2.1. Materials
2.2. Fabrication of Neat and Hybrid Nanocomposites
2.3. Sonication and Stirring of Nanoparticles into Epoxy Resin
2.4. Field-Emission Scanning Electron Microscope
2.5. Mechanical Characterization
2.5.1. Flexural Test
2.5.2. Interlaminar Shear Strength Test
2.5.3. Impact Test
3. Results and Discussions
3.1. Morphology of Nanoparticles
3.2. Flexural Behavior of Neat CFRP and Hybrid Nanocomposites
3.3. ILSS Behavior of Neat CFRP and Hybrid Nanocomposites
3.4. Impact Behavior of Neat CFRP and Hybrid Nanocomposites
4. Conclusions
- The maximum flexural, shear, and impact strength improvements were obtained at 1.75 wt.% Al2O3 and 1.25 wt.% SiC nanoparticles’ loading over neat composites.
- The mechanical properties were enhanced by the proper selection of the ultrasonication parameters and the combination of magnetic stirring methods that enabled the effective dispersion of nanoparticles.
- Higher filler loading above the optimum level (i.e., 2 wt.% for Al2O3 and 1.5 wt.% for SiC) reduced the mechanical properties of hybrid nanocomposites.
- Flexural strength and modulus were seen as maximum for hybrid Al2O3 nanocomposites. In contrast, a significant drop was observed for the hybrid SiC nanocomposites, above the optimum level of nanoparticles’ loading, falling below the strength value of neat composites.
- Al2O3 nanocomposites were more effective in improving the properties than SiC nanocomposites due to the strong covalent bond formation of the particles’ interaction with polymeric chains of epoxies.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Friedrich, K.; Almajid, A.A. Manufacturing Aspects of Advanced Polymer Composites for Automotive Applications. Appl. Compos. Mater. 2013, 20, 107–128. [Google Scholar] [CrossRef]
- Jarrah, M.; Najafabadi, E.P.; Khaneghahi, M.H.; Oskouei, A.V. The Effect of Elevated Temperatures on the Tensile Performance of GFRP and CFRP Sheets. Constr. Build. Mater. 2018, 190, 38–52. [Google Scholar] [CrossRef]
- Shetty, N.; Shahabaz, S.M.; Sharma, S.S.; Divakara Shetty, S. A Review on Finite Element Method for Machining of Composite Materials. Compos. Struct. 2017, 176, 790–802. [Google Scholar] [CrossRef]
- Shahabaz, S.M.; Shetty, N.; Shetty, S.D.; Sharma, S.S. Surface Roughness Analysis in the Drilling of Carbon Fiber/Epoxy Composite Laminates Using Hybrid Taguchi-Response Experimental Design. Mater. Res. Express 2020, 7, 15322. [Google Scholar] [CrossRef]
- Donnet, J.-B.; Bansal, R.C. Carbon Fibers; CRC Press: Boca Raton, FL, USA, 1998; ISBN 1482285398. [Google Scholar]
- Allred, R.E. Carbon-Reinforced Composite Recycling: Process and Business Development. In Proceedings of the Global Outlook for Carbon Fibers 2005; Intertech Conferences: San Diego, CA, USA, 2005. [Google Scholar]
- Prashanth, S.; Subbaya, K.M.; Nithin, K.; Sachhidananda, S. Fiber Reinforced Composites-a Review. J. Mater. Sci. Eng. 2017, 6, 2–6. [Google Scholar]
- Chand, S. Review Carbon Fibers for Composites. J. Mater. Sci. 2000, 35, 1303–1313. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Leong, K.H.; Herszberg, I. A Review of the Effect of Stitching on the In-Plane Mechanical Properties of Fibre-Reinforced Polymer Composites. Compos. Part A Appl. Sci. Manuf. 1997, 28, 979–991. [Google Scholar] [CrossRef]
- Takeda, N.; Kobayashi, S.; Ogihara, S.; Kobayashi, A. Experimental Characterization of Microscopic Damage Progress in Quasi-Isotropic CFRP Laminates: Effect of Interlaminar-Toughened Layers. Adv. Compos. Mater. 1998, 7, 183–199. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ogihara, S.; Takeda, N. Experimental Characterization of the Effects of Stacking Sequence on the Transverse Crack Behavior in Quasi-Isotropic Interleaved CFRP Laminates. Adv. Compos. Mater. 2000, 9, 241–251. [Google Scholar] [CrossRef]
- Takeda, N.; Kobayashi, S.; Ogihara, S.; Kobayashi, A. Effects of Toughened Interlaminar Layers on Fatigue Damage Progress in Quasi-Isotropic CFRP Laminates. Int. J. Fatigue 1999, 21, 235–242. [Google Scholar] [CrossRef]
- Ogihara, S.; Takeda, N.; Kobayashi, S.; Kobayashi, A. Effects of Stacking Sequence on Microscopic Fatigue Damage Development in Quasi-Isotropic CFRP Laminates with Interlaminar-Toughened Layers. Compos. Sci. Technol. 1999, 59, 1387–1398. [Google Scholar] [CrossRef]
- Patki, A.M.; Goyal, R.K. Investigation of Non-Isothermal Crystallization, Dynamic Mechanical and Dielectric Properties of Poly (Ether-Ketone) Matrix Composites. Polym. Technol. Mater. 2021, 60, 70–83. [Google Scholar] [CrossRef]
- Joy, J.; George, E.; Thomas, S.; Anas, S. Effect of Filler Loading on Polymer Chain Confinement and Thermomechanical Properties of Epoxy/Boron Nitride (h-BN) Nanocomposites. New J. Chem. 2020, 44, 4494–4503. [Google Scholar] [CrossRef]
- Madeshwaran, S.R.; Jayaganthan, R.; Velmurugan, R.; Gupta, N.K.; Manzhirov, A.V. Mechanical and Thermal Properties of MoS2 Reinforced Epoxy Nanocomposites. J. Phys. Conf. Ser. 2018, 991, 12054. [Google Scholar] [CrossRef]
- Zhao, M.; Liu, L.; Zhang, B.; Sun, M.; Zhang, X.; Zhang, X.; Li, J.; Wang, L. Epoxy Composites with Functionalized Molybdenum Disulfide Nanoplatelet Additives. RSC Adv. 2018, 8, 35170–35178. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muralidhara, B.; Suresha, B. Studies on Dynamic Mechanical and Thermal Properties of Boron Carbide Filled Carbon Fiber/Epoxy Composites. Mater. Today Proc. 2021, 46, 9145–9149. [Google Scholar] [CrossRef]
- Wang, Y.; Raman Pillai, S.K.; Che, J.; Chan-Park, M.B. High Interlaminar Shear Strength Enhancement of Carbon Fiber/Epoxy Composite through Fiber-and Matrix-Anchored Carbon Nanotube Networks. ACS Appl. Mater. Interfaces 2017, 9, 8960–8966. [Google Scholar] [CrossRef]
- Gkikas, G.; Barkoula, N.-M.; Paipetis, A.S. Effect of Dispersion Conditions on the Thermo-Mechanical and Toughness Properties of Multi Walled Carbon Nanotubes-Reinforced Epoxy. Compos. Part B Eng. 2012, 43, 2697–2705. [Google Scholar] [CrossRef]
- Opelt, C.V.; Becker, D.; Lepienski, C.M.; Coelho, L.A.F. Reinforcement and Toughening Mechanisms in Polymer Nanocomposites–Carbon Nanotubes and Aluminum Oxide. Compos. Part B Eng. 2015, 75, 119–126. [Google Scholar] [CrossRef]
- Divya, G.S.; Suresha, B.; Somashekar, H.M.; Jamadar, I.M. Dynamic Mechanical Analysis and Optimization of Hybrid Carbon-Epoxy Composites Wear Using Taguchi Method. Tribol. Ind. 2021, 43, 298. [Google Scholar] [CrossRef]
- Chowdhury, F.H.; Hosur, M.V.; Jeelani, S. Investigations on the Thermal and Flexural Properties of Plain Weave Carbon/Epoxy-Nanoclay Composites by Hand-Layup Technique. J. Mater. Sci. 2007, 42, 2690–2700. [Google Scholar] [CrossRef]
- Zhou, Y.; Baseer, M.A.; Mahfuz, H.; Jeelani, S. Fabrication and Evaluation on Nano-Phased Unidirectional Carbon Fiber Reinforced Epoxy. J. Mater. Sci. 2012, 47, 5002–5012. [Google Scholar] [CrossRef]
- Muralidhara, B.; Babu, S.P.; Suresha, B. Studies on the Role of Graphene Nanoplatelets on Mechanical Properties, Dynamic-Mechanical and Thermogravimetric Analysis of Carbon-Epoxy Composites. J. Inst. Eng. Ser. D 2020, 20, 1–7. [Google Scholar] [CrossRef]
- Verma, V.; Sayyed, A.H.M.; Sharma, C.; Shukla, D.K. Tensile and Fracture Properties of Epoxy Alumina Composite: Role of Particle Size and Morphology. J. Polym. Res. 2020, 27, 1–14. [Google Scholar] [CrossRef]
- Zhao, S.; Schadler, L.S.; Hillborg, H.; Auletta, T. Improvements and Mechanisms of Fracture and Fatigue Properties of Well-Dispersed Alumina/Epoxy Nanocomposites. Compos. Sci. Technol. 2008, 68, 2976–2982. [Google Scholar] [CrossRef]
- Rodgers, R.M.; Mahfuz, H.; Rangari, V.K.; Chisholm, N.; Jeelani, S. Infusion of SiC Nanoparticles into SC-15 Epoxy: An Investigation of Thermal and Mechanical Response. Macromol. Mater. Eng. 2005, 290, 423–429. [Google Scholar] [CrossRef]
- Senthil, T.; Weng, Z.; Wu, L. Interlaminar Microstructure and Mechanical Response of 3D Robust Glass Fabric-Polyester Composites Modified with Carbon Nanofibers. Carbon N. Y. 2017, 112, 17–26. [Google Scholar] [CrossRef]
- Zhou, Y.; Jeelani, S.; Lacy, T. Experimental Study on the Mechanical Behavior of Carbon/Epoxy Composites with a Carbon Nanofiber-Modified Matrix. J. Compos. Mater. 2014, 48, 3659–3672. [Google Scholar] [CrossRef]
- Chisholm, N.; Mahfuz, H.; Rangari, V.K.; Ashfaq, A.; Jeelani, S. Fabrication and Mechanical Characterization of Carbon/SiC-Epoxy Nanocomposites. Compos. Struct. 2005, 67, 115–124. [Google Scholar] [CrossRef]
- Kadhim, M.J.; Abdullah, A.K.; Al-Ajaj, I.A.; Khalil, A.S. Mechanical Properties of Epoxy/Al2O3 Nanocomposites. Int. J. Appl. Innov. Eng. Manag. 2013, 2, 10–16. [Google Scholar]
- De Souza, J.P.B.; Reis, J.M.L. dos A Thermomechanical and Adhesion Analysis of Epoxy/Al2O3 Nanocomposites. Nanomater. Nanotechnol. 2015, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, V.K.; Harris, B. Effect of Particles on Interlaminar Crack Growth in Cross-Plied Carbon-Fibre/Epoxy Laminates. J. Mater. Sci. 1994, 29, 548–553. [Google Scholar] [CrossRef]
- Khashaba, U.A.; Othman, R.; Najjar, I.M.R. Development and Characterization of Structural Adhesives for Aerospace Industry with Alumina Nanoparticles under Shear and Thermo-Mechanical Impact Loads. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2020, 234, 490–507. [Google Scholar] [CrossRef]
- Su, F.-H.; Zhang, Z.-Z.; Wang, K.; Jiang, W.; Men, X.-H.; Liu, W.-M. Friction and Wear Properties of Carbon Fabric Composites Filled with Nano-Al2O3 and Nano-Si3N4. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1351–1357. [Google Scholar] [CrossRef]
- Kaybal, H.B.; Ulus, H.; Demir, O.; Şahin, Ö.S.; Avcı, A. Effects of Alumina Nanoparticles on Dynamic Impact Responses of Carbon Fiber Reinforced Epoxy Matrix Nanocomposites. Eng. Sci. Technol. Int. J. 2018, 21, 399–407. [Google Scholar] [CrossRef]
- Bazrgari, D.; Moztarzadeh, F.; Sabbagh-Alvani, A.A.; Rasoulianboroujeni, M.; Tahriri, M.; Tayebi, L. Mechanical Properties and Tribological Performance of Epoxy/Al2O3 Nanocomposite. Ceram. Int. 2018, 44, 1220–1224. [Google Scholar] [CrossRef]
- Imai, Y. Inorganic Nano-Fillers for Polymers. Encycl. Polym. Nanomater. 2014, 1, 1–7. [Google Scholar]
- Mishra, A.; Shukla, M.; Shukla, M.K.; Srivastava, D.; Nagpal, A.K. Thermal and Mechanical Characterization of Alumina Modified Multifunctional Novolac Epoxy Nanocomposites. Polym. Polym. Compos. 2022, 30, 09673911221081827. [Google Scholar] [CrossRef]
- Jordan, J.; Jacob, K.I.; Tannenbaum, R.; Sharaf, M.A.; Jasiuk, I. Experimental Trends in Polymer Nanocomposites—A Review. Mater. Sci. Eng. A 2005, 393, 1–11. [Google Scholar] [CrossRef]
- Fu, S.-Y.; Feng, X.-Q.; Lauke, B.; Mai, Y.-W. Effects of Particle Size, Particle/Matrix Interface Adhesion and Particle Loading on Mechanical Properties of Particulate–Polymer Composites. Compos. Part B Eng. 2008, 39, 933–961. [Google Scholar] [CrossRef]
- Mahrholz, T.; Stängle, J.; Sinapius, M. Quantitation of the Reinforcement Effect of Silica Nanoparticles in Epoxy Resins Used in Liquid Composite Moulding Processes. Compos. Part A Appl. Sci. Manuf. 2009, 40, 235–243. [Google Scholar] [CrossRef]
- Lachman, N.; Wagner, H.D. Correlation between Interfacial Molecular Structure and Mechanics in CNT/Epoxy Nano-Composites. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1093–1098. [Google Scholar] [CrossRef]
- Zhou, Y.; Pervin, F.; Jeelani, S.; Mallick, P.K. Improvement in Mechanical Properties of Carbon Fabric–Epoxy Composite Using Carbon Nanofibers. J. Mater. Process. Technol. 2008, 198, 445–453. [Google Scholar] [CrossRef]
- Khashaba, U.A.; Aljinaidi, A.A.; Hamed, M.A. Nanofillers Modification of Epocast 50-A1/946 Epoxy for Bonded Joints. Chin. J. Aeronaut. 2014, 27, 1288–1300. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, S.; Kitagawa, J. Effect of Fine Particle Incorporation into Matrix on Mechanical Properties of Plain Woven Carbon Fiber Reinforced Plastics Fabricated with Vacuum Assisted Resin Transfer Molding. Compos. Part B Eng. 2016, 85, 31–40. [Google Scholar] [CrossRef]
- Shahid, N.; Villate, R.G.; Barron, A.R. Chemically Functionalized Alumina Nanoparticle Effect on Carbon Fiber/Epoxy Composites. Compos. Sci. Technol. 2005, 65, 2250–2258. [Google Scholar] [CrossRef]
- Kareem, A.A. Enhanced Thermal and Electrical Properties of Epoxy/Carbon Fiber–Silicon Carbide Composites. Adv. Compos. Lett. 2020, 29, 2633366X19894598. [Google Scholar] [CrossRef] [Green Version]
- Rahimnejad Yazdi, A.; Baharvandi, H.; Abdizadeh, H.; Ehsani, N. Study of Mechanical Properties and Fracture Mode of Alumina-Silicon Carbide Nanocomposites. Int. J. Mod. Phys. Conf. Ser. 2012, 5, 551–558. [Google Scholar] [CrossRef]
- Shivamurthy, B.; Bhat, K.U.; Anandhan, S. Mechanical and Sliding Wear Properties of Multi-Layered Laminates from Glass Fabric/Graphite/Epoxy Composites. Mater. Des. 2013, 44, 136–143. [Google Scholar] [CrossRef]
- Hussain, M.; Oku, Y.; Nakahira, A.; Niihara, K. Effects of Wet Ball-Milling on Particle Dispersion and Mechanical Properties of Particulate Epoxy Composites. Mater. Lett. 1996, 26, 177–184. [Google Scholar] [CrossRef]
- Zhang, M.; Singh, R.P. Mechanical Reinforcement of Unsaturated Polyester by Al2O3 Nanoparticles. Mater. Lett. 2004, 58, 408–412. [Google Scholar] [CrossRef]
- Kuo, M.C.; Tsai, C.M.; Huang, J.C.; Chen, M. PEEK Composites Reinforced by Nano-Sized SiO2 and Al2O3 Particulates. Mater. Chem. Phys. 2005, 90, 185–195. [Google Scholar] [CrossRef]
- Jansen, B.J.P.; Tamminga, K.Y.; Meijer, H.E.H.; Lemstra, P.J. Preparation of Thermoset Rubbery Epoxy Particles as Novel Toughening Modifiers for Glassy Epoxy Resins. Polymer 1999, 40, 5601–5607. [Google Scholar] [CrossRef]
- Harani, H.; Fellahi, S.; Bakar, M. Toughening of Epoxy Resin Using Hydroxyl-terminated Polyesters. J. Appl. Polym. Sci. 1999, 71, 29–38. [Google Scholar] [CrossRef]
- Vinod, V.S.; Varghese, S.; Kuriakose, B. Effect of Bonding Agents on Styrene Butadiene Rubber–Aluminum Powder Composites. J. Appl. Polym. Sci. 2002, 85, 519–529. [Google Scholar] [CrossRef]
- Ganesan, R. Experimental Characterization of Interlaminar Shear Strength. Delamination Behav. Compos. 2008, 117–137. [Google Scholar]
- Han, Y.; Li, S.; Frechette, M.; Min, D. Nonlinear Conductivity of Polymer Nanocomposites: A Study on Epoxy Resin\/Silicon Carbide Materials. IEEE Nanotechnol. Mag. 2018, 12, 23–32. [Google Scholar] [CrossRef]
- Cai, H.; Faber, K.T.; Fuller Jr, E.R. Crack Bridging by Inclined Fibers/Whiskers in Ceramic Composites. J. Am. Ceram. Soc. 1992, 75, 3111–3117. [Google Scholar] [CrossRef]
- Leung, C.K.Y.; Li, V.C. Effect of Fiber Inclination on Crack Bridging Stress in Brittle Fiber Reinforced Brittle Matrix Composites. J. Mech. Phys. Solids 1992, 40, 1333–1362. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-H.; Dasari, A.; Yu, Z.-Z.; Mai, Y.-W.; Liu, S.; Yong, M.S. Fracture Toughness of Nylon 6/Organoclay/Elastomer Nanocomposites. Compos. Sci. Technol. 2007, 67, 2914–2923. [Google Scholar] [CrossRef]
- Singh, R.P.; Zhang, M.; Chan, D. Toughening of a Brittle Thermosetting Polymer: Effects of Reinforcement Particle Size and Volume Fraction. J. Mater. Sci. 2002, 37, 781–788. [Google Scholar] [CrossRef]
- Yasmin, A.; Abot, J.L.; Daniel, I.M. Processing of Clay/Epoxy Nanocomposites by Shear Mixing. Scr. Mater. 2003, 49, 81–86. [Google Scholar] [CrossRef]
- Karapappas, P.; Baltopoulos, A.; Vavouliotis, A.; Fiamegkou, E.; Athanasopoulos, N.; Fotiou, I.; Kostopoulos, V.; Borsella, E.; Fabbri, F. The Effect of Silicon Carbide Nanoparticles on the Multifunctionality of Epoxy Polymers and CFRPs. In Proceedings of the Second International Conference on Smart Materials and Nanotechnology in Engineering, Weihai, China, 8–11 July 2009; SPIE: Bellingham, WA, USA, 2009; Volume 7493, pp. 1041–1047. [Google Scholar]
- Kychkin, A.A.; Anan’eva, E.S.; Kychkin, A.K.; Тuisov, A.G. Influence of Ultrafine Silicon Carbide Powders on the Properties of Epoxy Resin. Procedia Struct. Integr. 2019, 20, 185–189. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Density (g/cm3) | 1.8 |
Filament diameter (μm) | 7 |
Tensile strength (MPa) | 4000 |
Tensile modulus (GPa) | 240 |
Elongation (%) | 1.7 |
Property | Test Method | Resin | Hardener |
---|---|---|---|
Viscosity at 25 °C (MPas) | ASTM D445 | 9000–12,000 | <50 |
Density at 25 °C (g/cc) | ASTM D4052 | 1.2 | 0.95 |
Flashpoint (°C) | ASTM D93 | >200 | >123 |
Mixing ratio | - | 100 parts by weight | 30 parts by weight |
Gel time at 30 °C | 120 min | ||
Curing time at room temperature (25–30 °C) | 24 h |
Property | Al2O3 | SiC |
---|---|---|
Color | White | Grey |
APS (nm) | 20–30 | 50 |
Purity (%) | 99.9 | 98 |
Melting point (°C) | 2030 | 2700 |
Shelf life (years) | 5 | 5 |
Composite Designation | Carbon Fiber Weight (%) | Epoxy Resin Weight (%) | Nanoparticle Weight (%) |
---|---|---|---|
CFRP (neat) | 50 | 50 | - |
Al2O3 1 wt.% | 50 | 49 | 1 |
Al2O3 1.5 wt.% | 50 | 48.5 | 1.5 |
Al2O3 1.75 wt.% | 50 | 48.25 | 1.75 |
Al2O3 2 wt.% | 50 | 48 | 2 |
SiC 1 wt.% | 50 | 49 | 1 |
SiC 1.25 wt.% | 50 | 48.75 | 1.25 |
SiC 1.5 wt.% | 50 | 48.5 | 1.5 |
SiC 2 wt.% | 50 | 48 | 2 |
Hybrid Nanocomposite | Alumina (Al) | Silicon (Si) | Carbon (C) | Oxygen (O) | ||||
---|---|---|---|---|---|---|---|---|
Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | Weight % | Atomic % | |
Al2O3 | 0.36 | 2.83 | - | - | 1.81 | 32.39 | 4.83 | 64.78 |
SiC | - | - | 0.67 | 6.08 | 1.46 | 31.31 | 3.90 | 62.61 |
Material | Flexural Strength (MPa) | Strength Gain (%) | Flexural Modulus (GPa) | Modulus Gain (%) | ||
---|---|---|---|---|---|---|
Avg. Strength (MPa) | Std. Dev. | Avg. Modulus (GPa) | Std. Dev. | |||
CFRP | 324.70 | 14.43 | - | 23.56 | 1.74 | - |
Al2O3 1 wt.% | 354.81 | 11.22 | 9.27 | 27.80 | 0.79 | 18.03 |
Al2O3 1.5 wt.% | 415.43 | 9.76 | 27.94 | 28.61 | 2.40 | 21.45 |
Al2O3 1.75 wt.% | 427.83 | 17.39 | 31.76 | 32.29 | 1.26 | 37.08 |
Al2O3 2 wt.% | 332.39 | 15.52 | 2.37 | 25.18 | 2.56 | 6.88 |
Material | Flexural Strength (MPa) | Strength Gain (%) | Flexural Modulus (GPa) | Modulus Gain (%) | ||
---|---|---|---|---|---|---|
Avg. Strength (MPa) | Std. Dev. | Avg. Modulus (GPa) | Std. Dev. | |||
CFRP | 324.70 | 14.43 | - | 23.56 | 1.74 | - |
SiC 1 wt.% | 358.13 | 17.359 | 10.29 | 24.09 | 2.769 | 2.24 |
SiC 1.25 wt.% | 366.25 | 15.570 | 12.79 | 25.82 | 1.475 | 9.59 |
SiC 1.5 wt.% | 290.06 | 11.189 | −10.66 | 23.77 | 0.751 | 0.89 |
SiC 2 wt.% | 264.22 | 13.779 | −18.62 | 22.61 | 2.359 | −4.03 |
Material | Interlaminar Shear Strength (MPa) | Strength Gain (%) | |
---|---|---|---|
Avg. Strength (MPa) | Std. Dev. | ||
CFRP | 24.08 | 0.44 | - |
Al2O3 1 wt.% | 28.42 | 0.89 | 18.02 |
Al2O3 1.5 wt.% | 31.26 | 1.28 | 29.84 |
Al2O3 1.75 wt.% | 33.94 | 0.92 | 40.95 |
Al2O3 2 wt.% | 30.70 | 1.24 | 27.51 |
Material | Interlaminar Shear Strength (MPa) | Strength Gain (%) | |
---|---|---|---|
Avg. Strength (MPa) | Std. Dev. | ||
CFRP | 24.08 | 0.44 | - |
SiC 1 wt.% | 30.74 | 1.07 | 27.67 |
SiC 1.25 wt.% | 32.33 | 0.87 | 34.27 |
SiC 1.5 wt.% | 31.22 | 1.04 | 29.69 |
SiC 2 wt.% | 28.00 | 3.10 | 16.30 |
Material | Impact Strength (kJ/m2) | Standard Deviation | Strength Gain (%) |
---|---|---|---|
CFRP | 51.81 | 1.13 | - |
Al2O3 1 wt.% | 72.29 | 2.31 | 39.52 |
Al2O3 1.5 wt.% | 74.12 | 6.39 | 43.06 |
Al2O3 1.75 wt.% | 76.43 | 3.10 | 47.51 |
Al2O3 2 wt.% | 61.18 | 4.07 | 18.08 |
Material | Impact Strength (kJ/m2) | Standard Deviation | Strength Gain (%) |
---|---|---|---|
CFRP | 51.814 | 1.133 | - |
SiC 1 wt.% | 60.706 | 2.650 | 17.16 |
SiC 1.25 wt.% | 67.595 | 6.392 | 30.45 |
SiC 1.5 wt.% | 63.401 | 2.312 | 22.36 |
SiC 2 wt.% | 57.797 | 3.707 | 11.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahabaz, S.M.; Shetty, P.K.; Shetty, N.; Sharma, S.; Divakara Shetty, S.; Naik, N. Effect of Alumina and Silicon Carbide Nanoparticle-Infused Polymer Matrix on Mechanical Properties of Unidirectional Carbon Fiber-Reinforced Polymer. J. Compos. Sci. 2022, 6, 381. https://doi.org/10.3390/jcs6120381
Shahabaz SM, Shetty PK, Shetty N, Sharma S, Divakara Shetty S, Naik N. Effect of Alumina and Silicon Carbide Nanoparticle-Infused Polymer Matrix on Mechanical Properties of Unidirectional Carbon Fiber-Reinforced Polymer. Journal of Composites Science. 2022; 6(12):381. https://doi.org/10.3390/jcs6120381
Chicago/Turabian StyleShahabaz, S. M., Pradeep Kumar Shetty, Nagaraja Shetty, Sathyashankara Sharma, S. Divakara Shetty, and Nithesh Naik. 2022. "Effect of Alumina and Silicon Carbide Nanoparticle-Infused Polymer Matrix on Mechanical Properties of Unidirectional Carbon Fiber-Reinforced Polymer" Journal of Composites Science 6, no. 12: 381. https://doi.org/10.3390/jcs6120381
APA StyleShahabaz, S. M., Shetty, P. K., Shetty, N., Sharma, S., Divakara Shetty, S., & Naik, N. (2022). Effect of Alumina and Silicon Carbide Nanoparticle-Infused Polymer Matrix on Mechanical Properties of Unidirectional Carbon Fiber-Reinforced Polymer. Journal of Composites Science, 6(12), 381. https://doi.org/10.3390/jcs6120381