Maltodextrin Moderated Microwave Osmotic Dehydration of Mango Cubes with Finish Air-Drying: Optimum Considerations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Raw Material
2.2. Microwave Setup
2.3. Osmotic Dehydration Procedure
2.4. Experimental Design
2.5. Finished Air Drying
Std Order No. | Temp. (°C) | Conc. (%) | Contact Time (min) | Flow Rate (L/min) |
---|---|---|---|---|
1 | 40 (−1) | 40 (−1) | 20 (−1) | 1.5 (−1) |
2 | 60 (+1) | 40 (−1) | 20 (−1) | 1.5 (−1) |
3 | 40 (−1) | 60 (+1) | 20 (−1) | 1.5 (−1) |
4 | 60 (+1) | 60 (+1) | 20 (−1) | 1.5 (−1) |
5 | 40 (−1) | 40 (−1) | 40 (+1) | 1.5 (−1) |
6 | 60 (+1) | 40 (−1) | 40 (+1) | 1.5 (−1) |
7 | 40 (−1) | 60 (+1) | 40 (+1) | 2.3 (0) |
8 | 60 (+1) | 60 (+1) | 40 (+1) | 1.5(−1) |
9 | 40 (−1) | 40 (−1) | 20 (−1) | 3.0 (+1) |
10 | 60 (+1) | 40 (−1) | 20 (−1) | 3.0 (+1) |
11 | 40 (−1) | 60 (+1) | 20 (−1) | 3.0 (+1) |
12 | 60 (+1) | 60 (+1) | 20 (−1) | 3.0 (+1) |
13 | 40 (−1) | 40 (−1) | 40 (+1) | 3.0 (+1) |
14 | 60 (+1) | 40 (−1) | 40 (+1) | 3.0 (+1) |
15 | 40 (−1) | 60 (+1) | 40 (+1) | 3.0 (+1) |
16 | 60 (+1) | 60 (+1) | 40 (+1) | 3.0 (+1) |
17 | 30 (−1.68) | 50 (0) | 30 (0) | 2.3 (0) |
18 | 70 (+1.68) | 50 (0) | 30 (0) | 2.3 (0) |
19 | 50 (0) | 30 (−1.68) | 30 (0) | 2.3 (0) |
20 | 50 (0) | 70 (+1.68) | 30 (0) | 2.3 (0) |
21 | 50 (0) | 50 (0) | 10 (−1.68) | 2.3 (0) |
22 | 50 (0) | 50 (0) | 50 (+1.68) | 2.3 (0) |
23 | 50 (0) | 50 (0) | 30 (0) | 0.8 (−1.68) |
24 | 50 (0) | 50 (0) | 30 (0) | 3.8 (+1.68) |
25 | 50 (0) | 50 (0) | 30 (0) | 2.3 (0) |
26 | 50 (0) | 50 (0) | 30 (0) | 2.3 (0) |
27 | 50 (0) | 50 (0) | 30 (0) | 2.3 (0) |
28 | 50 (0) | 50 (0) | 30 (0) | 2.3 (0) |
29 | 50 (0) | 50 (0) | 30 (0) | 2.3 (0) |
30 | 50 (0) | 50 (0) | 30 (0) | 2.3 (0) |
2.6. Dehydration Responses and Data Analysis
2.7. Rehydration Capacity
2.8. Bulk Density
2.9. Quality Analysis
2.10. Texture Evaluation
2.11. Color
2.12. Effect of Solute Mixtures
2.13. Statistical Analysis
3. Results and Discussions
3.1. Response Surface Methodology
3.2. Moisture Loss
Std Order No. | ML (%) | SG (%) | ML/SG | WR (%) | Hardness (N) | Chewiness (N mm) | L* | a* | b* | ∆E | RHC (%) | BD (kg/m3) | DT (min) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 32.0 (±3.8) | 4.65 (±1.1) | 7.18 (±2.5) | 27.4 (±4.9) | 101 (±5.7) | 44.0 (±2.4) | 19.1 (±1.4) | 10.7 (±1.3) | 19.8 (±1.9) | 24.6 (±1.4) | 89.3 (±4.2) | 387 (±21) | 960 (±28) |
2 | 39.3 (±1.4) | 6.04 (±0.5) | 6.54 (±0.7) | 33.3 (±1.9) | 108 (±5.2) | 36.7 (±2.1) | 18.3 (±1.5) | 9.50 (±1.0) | 21.6 (±1.6) | 23.9 (±2.4) | 72.2 (±2.9) | 380 (±24) | 870 (±21) |
3 | 34.1 (±1.1) | 5.70 (±0.3) | 5.99 (±0.5) | 28.4 (±1.3) | 110 (±4.9) | 52.8 (±2.2) | 21.1 (±1.6) | 11.6 (±1.0) | 21.8 (±1.4) | 21.8 (±1.5) | 84.4 (±3.6) | 385 (±26) | 950 (±20) |
4 | 41.0 (±1.6) | 7.11 (±0.8) | 5.78 (±0.4) | 33.8 (±0.8) | 130 (±7.1) | 47.3 (±2.0) | 20.1 (±1.5) | 11.1 (±1.5) | 29.1 (±2.1) | 18.6 (±2.0) | 88.2 (±3.9) | 379 (±22) | 720 (±17) |
5 | 44.2 (±2.2) | 6.33 (±0.4) | 7.01 (±0.8) | 37.9 (±2.6) | 135 (±7.7) | 47.3 (±3.4) | 17.3 (±1.8) | 10.7 (±1.2) | 20.1 (±1.9) | 26.1 (±2.6) | 80.1 (±3.5) | 365 (±18) | 800 (±22) |
6 | 56.5 (±2.2) | 7.98 (±0.4) | 7.10 (±0.7) | 48.5 (±2.7) | 138 (±7.9) | 38.1 (±1.9) | 16.1 (±1.9) | 8.60 (±1.1) | 15.4 (±1.8) | 29.7 (±1.2) | 75.4 (±3.2) | 349 (±15) | 650 (±10) |
7 | 51.5 (±1.6) | 7.42 (±1.5) | 7.06 (±1.2) | 44.1 (±0.1) | 140 (±9.1) | 55.2 (±3.5) | 19.2 (±1.5) | 10.9 (±1.3) | 27.4 (±2.0) | 20.2 (±1.7) | 90.1 (±4.6) | 357 (±17) | 690 (±12) |
8 | 58.8 (±0.9) | 9.73 (±0.4) | 6.04 (±0.2) | 49.0 (±0.5) | 147 (±10) | 49.6 (±3.2) | 18.1 (±1.9) | 10.0 (±0.9) | 24.4 (±1.8) | 22.5 (±1.3) | 81.5 (±3.3) | 341 (±16) | 438 (±8.0) |
9 | 28.9 (±0.9) | 6.12 (±0.4) | 4.72 (±0.1) | 22.7 (±0.7) | 122 (±6.8) | 49.9 (±2.2) | 21.0 (±1.7) | 9.40 (±1.4) | 22.1 (±1.8) | 21.5 (±2.5) | 79.1 (±3.5) | 385 (±24) | 858 (±19) |
10 | 32.8 (±0.8) | 6.99 (±1.2) | 4.77 (±0.9) | 25.8 (±1.9) | 129 (±7.4) | 44.9 (±2.9) | 20.3 (±1.8) | 9.60 (±1.2) | 23.3 (±2.2) | 21.4 (±1.8) | 91.3 (±4.5) | 380 (±21) | 720 (±16) |
11 | 30.8 (±1.7) | 6.47 (±1.2) | 4.86 (±1.1) | 24.3 (±2.8) | 135 (±7.8) | 58.9 (±3.1) | 22.0 (±1.9) | 9.80 (±1.3) | 21.1 (±1.8) | 21.6 (±0.8) | 100 (±6.9) | 381 (±19) | 810 (±16) |
12 | 40.7 (±1.7) | 7.40 (±1.5) | 5.64 (±1.4) | 33.3 (±3.2) | 143 (±8.9) | 52.7 (±2.1) | 20.5 (±1.6) | 9.10 (±0.8) | 22.4 (±1.8) | 21.6 (±2.2) | 105 (±6.6) | 376 (±17) | 710 (±13) |
13 | 38.4 (±2.5) | 6.98 (±1.1) | 5.60 (±1.2) | 31.5 (±3.6) | 151 (±13) | 52.4 (±2.5) | 19.9 (±1.7) | 8.50 (±1.7) | 20.4 (±1.9) | 23.5 (±2.8) | 77.4 (±3.3) | 379 (±19) | 660 (±10) |
14 | 41.8 (±1.9) | 8.10 (±0.9) | 5.18 (±0.3) | 33.7 (±1.0) | 154 (±11) | 47.5 (±1.9) | 18.1 (±1.9) | 7.20 (±1.4) | 18.2 (±1.9) | 26.4 (±2.4) | 86.1 (±3.5) | 377 (±20) | 528 (±10) |
15 | 40.9 (±0.7) | 7.89 (±0.8) | 5.21 (±0.4) | 33.0 (±0.1) | 159 (±14) | 61.2 (±3.2) | 21.1 (±1.9) | 9.90 (±1.7) | 26.8 (±1.4) | 18.7 (±1.7) | 99.1 (±4.2) | 376 (±18) | 540 (±8.0) |
16 | 50.0 (±1.9) | 9.86 (±0.5) | 5.08 (±0.5) | 40.1 (±2.4) | 161 (±16) | 56.3 (±2.1) | 19.4 (±1.8) | 7.71 (±1.5) | 21.6 (±1.7) | 23.2 (±0.8) | 106 (±6.1) | 362 (±15) | 432 (±7.0) |
17 | 36.2 (±0.8) | 6.95 (±0.3) | 5.21 (±0.4) | 29.2 (±1.1) | 113 (±6.1) | 51.8 (±2.5) | 22.4 (±1.7) | 10.2 (±1.4) | 22.3 (±1.7) | 20.5 (±1.5) | 101 (±5.3) | 373 (±12) | 800 (±20) |
18 | 58.8 (±2.5) | 10.8 (±0.9) | 5.46 (±0.7) | 48.0 (±3.5) | 143 (±8.9) | 45.7 (±2.8) | 18.0 (±1.8) | 9.23 (±1.2) | 19.3 (±1.9) | 25.6 (±2.5) | 101 (±5.5) | 350 (±13) | 490 (±10) |
19 | 35.4 (±2.2) | 5.36 (±0.7) | 6.62 (±0.3) | 30.0 (±2.0) | 109 (±6.9) | 41.7 (±2.1) | 20.0 (±1.7) | 10.1 (±1.8) | 19.0 (±1.9) | 24.4 (±2.5) | 100 (±5.2) | 380 (±24) | 850 (±22) |
20 | 52.1 (±2.1) | 8.06 (±0.1) | 6.47 (±0.3) | 44.0 (±2.2) | 145 (±9.6) | 55.8 (±3.2) | 24.4 (±1.7) | 9.33 (±1.4) | 23.5 (±1.9) | 18.2 (±0.6) | 110 (±6.5) | 358 (±17) | 622 (±11) |
21 | 22.6 (±2.1) | 4.51 (±0.5) | 5.01 (±0.1) | 18.1 (±1.6) | 90.2 (±5.2) | 43.9 (±1.9) | 24.2 (±1.6) | 11.4 (±1.7) | 30.4 (±1.5) | 14.5 (±1.9) | 81.4 (±3.4) | 380 (±24) | 980 (±24) |
22 | 48.3 (±0.7) | 9.13 (±1.4) | 5.35 (±0.8) | 39.2 (±0.7) | 127 (±8.0) | 50.1 (±2.5) | 18.4 (±1.7) | 8.31 (±1.6) | 22.9 (±1.9) | 23.1 (±2.3) | 71.2 (±3.2) | 375 (±21) | 360 (±9.0) |
23 | 54.6 (±1.6) | 6.77 (±0.8) | 8.10 (±0.7) | 47.9 (±0.9) | 90.4 (±4.5) | 40.8 (±1.7) | 19.4 (±1.9) | 10.4 (±1.3) | 21.1 (±1.9) | 23.5 (±1.8) | 53.5 (±2.1) | 352 (±14) | 750 (±15) |
24 | 39.7 (±1.0) | 8.29 (±0.9) | 4.81 (±0.4) | 31.4 (±0.2) | 128 (±5.4) | 50.2 (±2.8) | 20.0 (±1.7) | 9.0 (3±1.3) | 18.4 (±2.0) | 24.8 (±2.0) | 61.2 (±2.9) | 377 (±19) | 542 (±8.0) |
25 | 38.8 (±2.1) | 7.45 (±0.2) | 5.21 (±0.4) | 31.3 (±2.3) | 71.1 (±3.9) | 41.4 (±2.1) | 17.5 (±1.9) | 9.12 (±1.4) | 19.3 (±2.0) | 26.0 (±3.0) | 91.4 (±4.0) | 378 (±17) | 674 (±12) |
26 | 37.5 (±1.2) | 7.91 (±0.2) | 4.75 (±0.3) | 29.6 (±1.5) | 65.5 (±3.5) | 43.8 (±1.9) | 16.8 (±1.8) | 9.94 (±1.2) | 19.9 (±1.7) | 26.1 (±2.4) | 100 (±5.6) | 383 (±20) | 645 (±10) |
27 | 36.7 (±1.8) | 8.10 (±0.7) | 4.55 (±0.6) | 28.6 (±2.5) | 75.2 (±3.7) | 44.5 (±2.1) | 17.9 (±1.8) | 8.91 (±1.4) | 20.2 (±1.6) | 25.1 (±1.8) | 97.3 (±4.7) | 387 (±19) | 690 (±14) |
28 | 36.9 (±2.7) | 7.11 (±0.3) | 5.18 (±0.2) | 29.8 (±2.4) | 70.4 (±4.0) | 48.9 (±2.0) | 18.0 (±1.6) | 10.1 (±1.7) | 18.4 (±1.8) | 26.3 (±1.4) | 108 (±6.8) | 382 (±19) | 660 (±12) |
29 | 39.5 (±1.8) | 7.04 (±0.5) | 5.59 (±0.7) | 32.4 (±2.4) | 61.4 (±3.4) | 42.8 (±2.4) | 16.5 (±1.9) | 8.90 (±1.2) | 18.6 (±1.9) | 27.2 (±1.5) | 105 (±5.8) | 378 (±21) | 690 (±15) |
30 | 40.0 (±1.9) | 6.92 (±0.3) | 5.79 (±0.5) | 33.1 (±2.2) | 55.0 (±3.1) | 44.4 (±1.9) | 17.7 (±1.7) | 9.50 (±1.5) | 20.6 (±1.6) | 25.0 (±1.3) | 103 (±5.1) | 375 (±16) | 630 (±12) |
Fresh dried | 36.8 (±3.4) | 9.91 (±2.0) | 37.1 (±3.1) |
Responses | Model | Predicting Equations in Terms of Actual Variables | Lack of Fit | R2 |
---|---|---|---|---|
ML | Quadratic | ML = +38.2 + 4.39*T + 2.80*C + 6.41*t − 3.45*F + 1.97*T2 + 1.03*C2 − 1.05*t2 + 1.88*F2 + 0.39*T*C + 0.26*T*t − 0.47*T*F + 0.42*C*t + 0.44*C*F − 1.67*t*F | 0.0506 (NS) | 0.9568 |
SG | Quadratic | SG = +7.42 + 0.81*T + 0.57*C + 0.96*t + 0.33*F + 0.31*T2 − 0.23*C2 − 0.20*t2 − 0.03*F2 + 0.10*T*C + 0.15*T*t − 0.12*T*F + 0.16*C*t − 0.10*C*F − 0.13*t*F | 0.7147 (NS) | 0.9518 |
ML/SG | Quadratic | ML/SG = +6.68 + 0.02*T − 0.07*C + 0.36*t − 0.61*F − 0.27*T2 − 0.03*C2 − 0.22*t2 − 0.21*F2 + 0.03*T*C − 0.09*T*t + 0.14*T*F + 0.11*C*t + 0.36*C*F + 0.10*t*F | 0.6945 (NS) | 0.8717 |
WR | Quadratic | WR = +30.8 + 3.57*T + 2.21*C + 5.47*t − 3.79*F + 1.65*T2 + 1.26*C2 − 0.85*t2 + 1.91*F2 + 0.29*T*C + 0.09*T*t − 0.34*T*F + 0.25*C*t + 0.55*C*F − 1.52*t*F | 0.1497 (NS) | 0.9483 |
L* | Quadratic | L* = +17.4 − 0.78*T + 0.84*C − 1.03*t + 0.59*F + 0.47*T2 + 0.97*C2 + 0.75*t2 + 0.35*F2 − 0.05*T*C − 0.11*T*t − 0.10*T*F + 0.09*C*t − 0.25*C*F + 0.16*t*F | 0.0559 (NS) | 0.8496 |
a* | Linear | a* = +9.62 − 0.43*T + 0.18*C − 0.56*t − 0.60*F | 0.3826 (NS) | 0.7113 |
b* | Quadratic | b* = +19.5 − 0.39*T + 1.78*C − 0.90*t − 0.37*F + 0.33*T2 + 0.47*C2 + 1.80*t2 + 0.09*F2 + 0.28*T*C − 1.67*T*t − 0.41*T*F + 1.16*C*t − 1.12*C*F + 0.19*t*F | 0.0643 (NS) | 0.8856 |
∆E | Quadratic | ΔE = +3.89 + 0.35*T + 0.93*C + 0.99*t − 3.79*F − 5.69x10−3*T2 − 0.01*C2 − 0.01*t2 − 0.55*F2 − 8.12 x 10−4*T*C + 8.69x10−3*T*t + 0.04*T*F − 6.81x10−3*C*t + 0.09*C*F − 0.03*t*F | 0.0686 (NS) | 0.9013 |
Hardness | Quadratic | Hardness = +66.1 + 4.88*T + 6.63*C + 11.7*t + 9.21*F + 18.3*T2 + 18.1*C2 + 13.4*t2 + 13.6*F2 + 1.06*T*C − 1.69*T*t − 1.06*T*F − 1.81*C*t − 0.19*C*F − 0.94*t*F | 0.1007 (NS) | 0.9300 |
Chewiness | Linear | Chewiness = +48.0 − 2.52*T + 4.24*C + 1.35*t + 3.00*F | 0.3938 (NS) | 0.8028 |
RHC | Quadratic | RHC = +100 + 0.25*T + 5.14*C − 1.38*t + 4.09*F + 0.51*T2 + 1.55*C2 − 5.73*t2 − 10.4*F2 + 0.56*T*C − 0.14*T*t + 3.71*T*F + 0.56*C*t + 3.14*C*F − 0.04*t*F | 0.6120 (NS) | 0.9127 |
Bulk density | Quadratic | BD = +380 − 4.88*T − 3.71*C − 6.54*t + 5.12*F − 4.03*T2 − 2.16*C2 − 0.03*t2 − 3.28*F2 − 0.69*T*C − 1.56*T*t + 1.19*T*F − 1.44*C*t − 0.44*C*F + 5.69*t*F | 0.1275 (NS) | 0.8608 |
Drying time | Linear | Drying time = +690 − 75.8*T − 50.5*C − 129*t − 51.5*F | 0.0537 (NS) | 0.9229 |
3.3. Solids Gain
3.4. Weight Reduction
3.5. ML/SG
3.6. Drying Time
3.7. Product Properties
3.7.1. Rehydration Capacity
3.7.2. Bulk Density
3.7.3. Texture
3.8. Color
3.9. Optimization and Process Validation
3.10. Comparison of MWODS Sucrose, Sucrose-Dextrose, Sucrose + Maltodextrin Plus Finish Air-Drying vs. Air-Drying Alone
Set | Constraint | Temp. (°C) | Conc. (%) | Cont. Time (min) | Flow Rate (L/min) | ML (%) | SG (%) | ML/SG | WR (%) | RHC (%) | BD (Kg/m3) | Air-Drying Time (min) | ∆E | Hardness (g) | Chewiness (g mm) | Desirability |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Maximize ML | 60 60 58 | 57 59 59 | 40 40 40 | 1.6 1.6 1.6 | 58.9 58.8 54.5 | 10.0 9.74 8.83 | 6.44 6.47 6.79 | 48.9 49.0 46.0 | 89.0 85.0 80.0 | 347 347 347 | 477 505 555 | 22.9 23.1 23.8 | 128 123 105 | 48.9 48.2 48.2 | 1.000 1.000 0.891 |
2 | Minimize SG | 42 42 40 | 40 40 40 | 20 20 21 | 1.5 1.6 1.5 | 31.4 30.4 32.5 | 4.74 4.82 4.83 | 6.96 6.83 6.99 | 26.7 25.6 27.7 | 85.0 88.0 87.0 | 385 385 383 | 980 974 979 | 23.5 23.4 24.0 | 76.0 76.0 80.0 | 41.6 42.0 42.1 | 0.963 0.950 0.949 |
3 | Maximize ML/SG | 46 44 49 | 44 45 43 | 36 36 36 | 1.5 1.5 1.6 | 45.0 44.6 44.7 | 6.74 6.78 7.01 | 7.39 7.32 7.32 | 38.3 37.9 37.7 | 84.0 85.0 87.0 | 369 369 370 | 729 732 697 | 27.3 26.7 27.7 | 83.0 83.0 81.0 | 44.2 45.3 43.8 | 1.000 1.000 1.000 |
4 | Maximize WR | 60 59 59 | 55 57 58 | 39 39 40 | 1.5 1.5 1.6 | 58.8 58.8 58.8 | 9.69 9.62 9.80 | 6.50 6.51 6.48 | 49.0 49.1 48.9 | 80.0 80.0 84.0 | 346 346 346 | 519 518 494 | 25.0 24.0 23.4 | 117 118 123 | 46.0 47.1 48.1 | 1.000 1.000 0.998 |
5 | Minimize ∆E | 60 40 40 | 60 60 60 | 20 40 40 | 1.7 2.9 2.9 | 43.2 42.6 42.5 | 7.27 8.11 8.13 | 5.80 6.21 6.17 | 35.9 34.5 34.4 | 88.0 96.0 95.0 | 372 375 375 | 736 543 538 | 19.1 19.6 19.6 | 111 137 139 | 46.0 58.6 58.8 | 0.699 0.664 0.663 |
6 | Maximize Hardness | 40 57 41 | 60 60 60 | 40 40 40 | 3.0 3.0 3.0 | 42.3 49.5 42.5 | 8.14 9.64 8.16 | 6.11 6.40 6.16 | 34.2 39.9 34.4 | 93.0 111 94.0 | 376 367 376 | 534 403 529 | 19.7 23.4 19.8 | 140 140 139 | 58.9 54.7 58.9 | 0.882 0.881 0.873 |
7 | Maximize Chewiness | 40 40 42 | 60 60 60 | 40 40 40 | 3.0 3.0 3.0 | 42.3 42.5 42.7 | 8.11 8.15 8.23 | 6.09 6.14 6.25 | 34.2 34.3 34.5 | 94.0 94.0 95.0 | 376 376 376 | 543 531 517 | 19.7 19.7 20.3 | 140 140 136 | 59.0 59.0 58.5 | 0.911 0.910 0.889 |
8 | Maximize RHC | 56 59 60 | 60 60 59 | 28 31 26 | 2.5 2.7 2.6 | 43.5 46.7 44.1 | 8.27 8.97 8.41 | 6.30 6.25 6.06 | 35.2 37.7 35.6 | 110 111 110 | 372 369 371 | 600 531 605 | 23.4 24.0 23.0 | 103 117 110 | 51.4 52.0 50.1 | 1.000 1.000 1.000 |
9 | Maximize Bulk D. | 47 47 49 | 43 46 48 | 21 21 20 | 2.5 2.3 2.0 | 28.9 29.7 31.3 | 6.03 6.04 5.98 | 5.84 6.15 6.42 | 22.9 23.6 25.3 | 94.0 96.0 93.0 | 387 388 387 | 845 849 850 | 23.3 23.6 23.4 | 72.0 64.0 61.0 | 45.6 45.9 45.0 | 1.000 1.000 1.000 |
10 | Minimize Drying T. | 60 60 60 | 59 59 60 | 40 40 40 | 3.0 3.0 2.9 | 51.0 50.7 51.8 | 9.97 9.97 10.0 | 6.28 6.25 6.36 | 41.0 40.7 41.8 | 101 101 104 | 365 365 363 | 389 389 391 | 24.0 24.2 23.7 | 144 143 144 | 53.8 53.5 53.6 | 0.954 0.949 0.949 |
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ravichandran, K.S.; Krishnaswamy, K. Sustainable food processing of selected North American native berries to support agroforestry. Crit. Rev. Food Sci. Nutr. 2021, 1–26. [Google Scholar] [CrossRef]
- González-Cavieres, L.; Pérez-Won, M.; Tabilo-Munizaga, G.; Jara-Quijada, E.; Díaz-Álvarez, R.; Lemus-Mondaca, R. Advances in vacuum microwave drying (VMD) systems for food products. Trends Food Sci. Technol. 2021, 116, 626–638. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y.; Geng, Y.; Liu, F.; Guo, L.; Wang, X. Convenient use of low field nuclear magnetic resonance to determine the drying kinetics and predict the quality properties of mulberries dried in hot-blast air. LWT 2020, 137, 110402. [Google Scholar] [CrossRef]
- Zhu, J.; Liu, Y.; Zhu, C.; Wei, M. Effects of different drying methods on the physical properties and sensory characteristics of apple chip snacks. LWT 2021, 154, 112829. [Google Scholar] [CrossRef]
- Rodriguez, A.; García, M.A.; Campañone, L.A. Experimental Study of the Application of Edible Coatings in Pumpkin Sticks Submitted to Osmotic Dehydration. Dry. Technol. 2015, 34, 635–644. [Google Scholar] [CrossRef]
- Wray, D.; Ramaswamy, H.S. Novel concepts in microwave drying of foods. Dry. Technol. 2015, 33, 769–783. [Google Scholar] [CrossRef]
- Azarpazhooh, E.; Ramaswamy, H.S. Microwave-Osmotic Dehydration of Apples Under Continuous Flow Medium Spray Conditions: Comparison with Other Methods. Dry. Technol. 2009, 28, 49–56. [Google Scholar] [CrossRef]
- Azarpazhooh, E.; Ramaswamy, H.S. Optimization of Microwave-Osmotic Pretreatment of Apples with Subsequent Air-Drying for Preparing High-Quality Dried Product. Int. J. Microw. Sci. Technol. 2011, 2011, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Azarpahzooh, E.; Ramaswamy, H.S. Influence of Microwave Osmotic Dehydration Pre-Treatment on the Second Stage of Air-Drying Kinetics of Apples. Int. J. Food Eng. 2011, 7, 1–23. [Google Scholar] [CrossRef]
- Wray, D.; Ramaswamy, H.S. Microwave-Osmotic/Microwave-Vacuum Drying of Whole Cranberries: Comparison with Other Methods. J. Food Sci. 2015, 80, E2792–E2802. [Google Scholar] [CrossRef]
- Lazou, A.Ε.; Dermesonlouoglou, E.K.; Giannakourou, M.C. Modeling and Evaluation of the Osmotic Pretreatment of Tomatoes (S. lycopersicum) with Alternative Sweeteners for the Production of Candied Products. Food Bioprocess Technol. 2020, 13, 948–961. [Google Scholar] [CrossRef]
- Shinde, B.; Ramaswamy, H.S. Evaluation of mass transfer kinetics and quality of microwave-osmotic dehydrated mango cubes under continuous flow medium spray (MWODS) conditions in sucrose syrup as moderated by dextrose and maltodextrin supplements. Dry. Technol. 2019, 38, 1036–1050. [Google Scholar] [CrossRef]
- Shinde, B.; Ramaswamy, H.S. Kinetic modeling of sucrose and maltodextrin (10–18 DE) moderated mass transfer rates in mango cubes during microwave osmotic dehydration under continuous medium spray conditions. Dry. Technol. 2019, 39, 713–725. [Google Scholar] [CrossRef]
- Shinde, B.; Ramaswamy, H.S. Optimization of maltodextrin (10DE)—Sucrose moderated microwave osmotic dehydration of mango cubes under continuous flow spray mode (MWODS) conditions. J. Food Process Eng. 2021, 44, e13835. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis No.41.003; Association of Official Analytical Chemists: Rockville, MD, USA, 1975. [Google Scholar]
- Wray, D.; Ramaswamy, H.S. Microwave-Osmotic Dehydration of Cranberries under Continuous Flow Medium Spray Conditions. Int. J. Microw. Sci. Technol. 2013, 2013, 1–11. [Google Scholar] [CrossRef]
- Gupta, T.; Yellishetty, M.; Singh, T.N. Measurement of Bulk volume and Density of Irregular Solid Samples by Sand Displacement Method. Rock Mech. Rock Eng. 2016, 50, 639–645. [Google Scholar] [CrossRef]
- Rahman, M.S. Mass-volume-area-related properties of foods. In Engineering Properties of Foods, 4th ed.; CRC Press: Boca Raton, FL, USA, 2014; pp. 1–36. [Google Scholar] [CrossRef]
- Cantre, D.; Mata, C.I.; Verboven, P.; Hertog, M.; Nicolai, B.M. 3-Dmicrostructural changes in relation to the evolution of quality during ripening of mango (Mangifera indicaL. cv. Carabao). J. Sci. Food Agric. 2020, 100, 5207–5221. [Google Scholar] [CrossRef]
- Funami, T.; Nakauma, M. Instrumental food texture evaluation in relation to human perception. Food Hydrocoll. 2021, 124, 107253. [Google Scholar] [CrossRef]
- Wray, D.; Ramaswamy, H.S. Quality Attributes of Microwave Vacuum Finish-Dried Fresh and Microwave-Osmotic Pretreated Cranberries. J. Food Processing Preserv. 2015, 39, 3067–3079. [Google Scholar] [CrossRef]
- Maftoonazad, N.; Ramaswamy, H. Effect of pectin-based coating on the kinetics of quality change associated with stored avocados. J. Food Processing Preserv. 2008, 32, 621–643. [Google Scholar] [CrossRef]
- Li, H.; Ramaswamy, H.S. Osmotic Dehydration of Apple Cylinders: I. Conventional Batch Processing Conditions. Dry. Technol. 2006, 24, 619–630. [Google Scholar] [CrossRef]
- Azuara, E.; Beristain, C.I.; Gutiérrez, G.F. Osmotic dehydration of apples by immersion in concentrated sucrose/maltodextrin solutions. J. Food Process. Preserv. 2002, 26, 295–306. [Google Scholar] [CrossRef]
- Dimakopoulou-Papazoglou, D.; Katsanidis, E. Effect of Maltodextrin, Sodium Chloride, and Liquid Smoke on the Mass Transfer Kinetics and Storage Stability of Osmotically Dehydrated Beef Meat. Food Bioprocess Technol. 2017, 10, 2034–2045. [Google Scholar] [CrossRef]
- Pantelidou, D.; Gerogiannis, K.; Goula, A.M.; Gonas, C. Ultrasound-Assisted Osmotic Dehydration as a Method for Supplementing Potato with Unused Chokeberries Phenolics. Food Bioprocess Technol. 2021, 14, 1–17. [Google Scholar] [CrossRef]
- Ren, A.; Pan, S.; Li, W.; Chen, G.; Duan, X. Effect of Various Pretreatments on Quality Attributes of Vacuum-Fried Shiitake Mushroom Chips. J. Food Qual. 2018, 2018, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Hawkes, J.; Flink, J. Osmotic dehydration of papaya: Influence of process variables on the product quality. J. Food Processing Preserv. 1978, 10, 831–848. [Google Scholar]
- Li, H.; Ramaswamy, H.S. Osmotic Dehydration of Apple Cylinders: III. Continuous Medium Flow Microwave Heating Conditions. Dry. Technol. 2006, 24, 643–651. [Google Scholar] [CrossRef]
- Li, H.; Ramaswamy, H.S. Osmotic Dehydration of Apple Cylinders: II. Continuous Medium Flow Heating Conditions. Dry. Technol. 2006, 24, 631–642. [Google Scholar] [CrossRef]
- Van Nieuwenhuijzen, N.H.; Zareifard, M.R.; Ramaswamy, H.S. Osmotic drying kinetics of cylindrical apple slices of different sizes. Dry. Technol. 2001, 19, 525–545. [Google Scholar] [CrossRef]
- Sotera, E.M.; Rodriguez, A.; Gamboa-Santos, J.; Campañone, L.A. Review characterization of edible films formulated with sodium alginate and low-methoxyl pectin in osmotic dehydration applications. Int. J. Food Sci. Technol. 2021, 56, 4995–5006. [Google Scholar] [CrossRef]
- Azarpazhooh, E.; Ramaswamy, H.S. Evaluation of Factors Influencing Microwave Osmotic Dehydration of Apples Under Continuous Flow Medium Spray (MWODS) Conditions. Food Bioprocess Technol. 2010, 5, 1265–1277. [Google Scholar] [CrossRef]
- Azarpazhooh, E.; Ramaswamy, H.S. Modeling and Optimization of Microwave Osmotic Dehydration of Apple Cylinders Under Continuous-Flow Spray Mode Processing Conditions. Food Bioprocess Technol. 2012, 5, 1486–1501. [Google Scholar] [CrossRef]
- Monsalve-Gonález, A.; Barbosa-Cánovas, G.V.; Cavalieri, R.P. Mass Transfer and Textural Changes during Processing of Apples by Combined Methods. J. Food Sci. 1993, 58, 1118–1124. [Google Scholar] [CrossRef]
- Chiralt, A.; Talens, P. Physical and chemical changes induced by osmotic dehydration in plant tissues. J. Food Eng. 2005, 67, 167–177. [Google Scholar] [CrossRef]
- Dermesonlouoglou, E.K.; Giannakourou, M.; Taoukis, P.S. Kinetic study of the effect of the osmotic dehydration pre-treatment with alternative osmotic solutes to the shelf life of frozen strawberry. Food Bioprod. Process. 2016, 99, 212–221. [Google Scholar] [CrossRef]
- Tabtiang, S.; Prachayawarakon, S.; Soponronnarit, S. Effects of Osmotic Treatment and Superheated Steam Puffing Temperature on Drying Characteristics and Texture Properties of Banana Slices. Dry. Technol. 2012, 30, 20–28. [Google Scholar] [CrossRef]
- Chun, H.H.; Kim, M.S.; Chung, K.S.; Won, M.; Bin Song, K. Dehydration of blueberries using maltodextrin and the physicochemical properties of dried blueberries. Hortic. Environ. Biotechnol. 2012, 53, 565–570. [Google Scholar] [CrossRef]
- Nunes, Y.; Moreira, R.G. Effect of Osmotic Dehydration and Vacuum-Frying Parameters to Produce High-Quality Mango Chips. J. Food Sci. 2009, 74, E355–E362. [Google Scholar] [CrossRef]
Responses | Predicted Value | CI Low | CI High | Verified Value |
---|---|---|---|---|
ML | 45.6 | 43.3 | 48.0 | 46.1 (±1.78) |
SG | 7.83 | 7.43 | 8.22 | 7.57 (±1.00) |
ML/SG | 6.63 | 6.25 | 7.02 | 6.17 (±0.85) * |
WR | 37.8 | 35.5 | 40.1 | 38.6 (±2.12) |
L* | 19.0 | 18.0 | 20.0 | 18.1 (±1.48) |
a* | 10.1 | 9.70 | 10.4 | 9.99 (±1.19) |
b* | 22.7 | 21.3 | 24.1 | 21.2 (±1.59) * |
∆E | 43.1 | 41.9 | 44.2 | 44.5 (±1.02) * |
Hardness | 92.4 | 81.0 | 102 | 92.8 (±1.91) |
Chewiness | 49.9 | 48.2 | 51.7 | 49.3 (±1.62) |
RHC | 98.9 | 93.6 | 104 | 98.2 (±6.45) |
Bulk density | 369 | 363 | 375 | 369.3 (±11.4) |
Drying time | 656 | 626 | 685 | 674 (±40 min) |
Sucrose | S:D | S:MD | Fresh-AD | |
---|---|---|---|---|
L* | 15.3 (1.18) ab | 14.0 (1.86) bc | 16.8 (1.80) a | 12.2 (1.55) c |
a* | 15.0 (1.25) a | 13.0 (1.86) a | 9.94 (1.17) b | 14.1(1.76) a |
b* | 14.8 (1.29) b | 15.7 (1.94) b | 19.8 (1.60) a | 11.0 (2.08) c |
∆E | 31.3 (1.39) b | 31.3 (2.50) b | 26.2 (1.97) c | 36.0 (2.07) a |
Hardness | 68.1 (1.81) ab | 67.7 (1.89) ab | 65.6 (1.35) b | 69.2 (2.32) a |
Chewiness | 52.6 (1.90) ab | 52.1(1.85) bc | 49.3 (1.62) c | 55.2 (1.82) a |
Bulk density | 397.5 (8.52) ab | 389.5 (8.71) b | 379.3 (9.70) b | 411 (9.22) a |
RHC | 79.5 (7.48) ab | 89.0 (4.09) ab | 98.2 (6.45) a | 78.8 (7.84) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shinde, B.; Ramaswamy, H.S. Maltodextrin Moderated Microwave Osmotic Dehydration of Mango Cubes with Finish Air-Drying: Optimum Considerations. J. Compos. Sci. 2022, 6, 56. https://doi.org/10.3390/jcs6020056
Shinde B, Ramaswamy HS. Maltodextrin Moderated Microwave Osmotic Dehydration of Mango Cubes with Finish Air-Drying: Optimum Considerations. Journal of Composites Science. 2022; 6(2):56. https://doi.org/10.3390/jcs6020056
Chicago/Turabian StyleShinde, Bhakti, and Hosahalli S. Ramaswamy. 2022. "Maltodextrin Moderated Microwave Osmotic Dehydration of Mango Cubes with Finish Air-Drying: Optimum Considerations" Journal of Composites Science 6, no. 2: 56. https://doi.org/10.3390/jcs6020056
APA StyleShinde, B., & Ramaswamy, H. S. (2022). Maltodextrin Moderated Microwave Osmotic Dehydration of Mango Cubes with Finish Air-Drying: Optimum Considerations. Journal of Composites Science, 6(2), 56. https://doi.org/10.3390/jcs6020056