The Impact of Fiber Orientation on Structural Dynamics of Short-Fiber Reinforced, Thermoplastic Components—A Comparison of Simulative and Experimental Investigations
Abstract
:1. Introduction
2. State of Art and Methods
2.1. State of Art of Injection Molding Simulations for Fiber Orientation Calculation
2.2. Methodology for Simulative and Experimental Fiber Orientation Investigations
2.3. Methodology for Experimental and Simulative Structural Dynamics Investigations
3. Results
3.1. Simulative and Experimental Fiber Orientation Investigations
3.2. Experimental and Simulative Structural Dynamics Investigations
4. Conclusions
- Optimizing the fiber interaction coefficients at the plate level does not necessarily impose an improved prediction at the component level.
- The process–structure coupling significantly influences the transferred fiber orientation content with the corresponding number of layers.
- Simulative fiber orientations with high deviation compared to the experiments can provide a sufficient prediction in structural dynamics simulation.
- The prediction quality of the structural dynamics simulation is slightly affected by the fiber orientation and significantly by the corresponding material model of stiffness, damping and viscoelasticity.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Stommel, M.; Stojek, M. Korte, FEM zur Berechnung von Kunststoff- und Elastomerbauteilen, 2nd ed.; Carl Hanser Verlag: München, Germany, 2018. [Google Scholar]
- Christensen, R.M. A critical evaluation for a class of micro-mechanics models. J. Mech. Phys. Solids 1990, 38, 379–404. [Google Scholar] [CrossRef]
- Kaiser, J.-M. Beitrag zur Mikromechanischen Berechnung Kurzfaserverstärkter Kunststoffe–Deformation und Versagen. Ph.D. Thesis, Saarland University, Saarbrücken, Germany, 2013. [Google Scholar]
- Kriwet, A.; Stommel, M. Arbitrary-Reconsidered-Double-Inclusion (ARDI) Model to Describe the Anisotropic, Viscoelastic Stiffness and Damping of Short Fiber-Reinforced Thermoplastics. J. Compos. Sci. 2020, 4, 37. [Google Scholar] [CrossRef] [Green Version]
- PART Engineering GmbH. CONVERSE Documentation V4.0.6; PART Engineering GmbH: Bergisch Gladbach, Germany, 2019. [Google Scholar]
- Calmels, S. Introduction to e-Xstream Solutions for the Automotive Industry; E-Xstream Engineering: Luxembourg, 2018. [Google Scholar]
- Korte, W. Workflow for Applying the Abaqus Multiscale Modeling Approach. In Proceedings of the Simulia 2020 3DEXPERIENCE German, Virtual, 26 November 2020. [Google Scholar]
- Wonisch, A.; Raesch, C.; Schreiber, W.; Jin, J.; Fertig, D.; Wüst, A.; Glaser, S. Injection molding simulations with optimized fiber orientation model parameters. In Proceedings of the CONNECT! European Moldflow User Meeting, Frakfurt, Germany, 3–4 June 2014. [Google Scholar]
- Glaser, S. GFK-Bauteile—Berechnung des dynamischen Verhaltens mittels FEM. KU Kunststoffe 2001, 7, 86–90. [Google Scholar]
- Schmachtenberg, E.; Krumpholz, T.; Franck, A.; Vorländer, M. Akustik von Kunststoffbauteilen. Kunststoffe 2004, 9, 230–235. [Google Scholar]
- Arping, T.-W. Werkstoffgerechte Charakterisierung und Modellierung des Akustischen Verhaltens Thermoplastischer Kunststoffe für Körperschallsimulationen. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aachen, Germany, 2010. [Google Scholar]
- Kremer, H. Materialdatenermittlung Thermoplastischer Kunststoffe für Körperschallsimulationen auf Basis von Reverse Engineering. Ph.D. Thesis, Rheinisch-Westfälische Technische Hochschule Aachen (RWTH), Aachen, Germany, 2010. [Google Scholar]
- Calmels, S.; Mathieu, S.; Lesueur, M. Anisotropic Damping Behaviour of Reinforced Plastic Parts for NVH Simulations; E-Xstream Engineering: Luxembourg, 2016. [Google Scholar]
- Gieß, M. Untersuchungen zur Akustischen Formteilauslegung. Ph.D. Thesis, University Siegen, Siegen, Germany, 2018. [Google Scholar]
- Raschke, K.; Korte, W. Faserverstärkte Motorbauteile besser berechnen. Kunststoffe 2019, 109, 184–189. [Google Scholar]
- Kriwet, A.; Stommel, M. Investigation of operational vibrations on the structural dynamics of glass fiber reinforced thermoplastic components. In Proceedings of the MSE Conference, Darmstadt, Germany, 22–25 September 2020. [Google Scholar]
- Kriwet, A.; Stommel, M. A Contribution to Predict the Structural Dynamics of Mounted Short Glass Fiber Reinforced Thermoplastic Components. In Proceedings of the 14th WCCM-ECCOMAS Congress, Virtual, 11–15 January 2020. [Google Scholar]
- Kriwet, A.; Raschke, K.; Stommel, M. Charakterisierung der Wechselwirkung der Lagerstelle und Aggregatgehäuse auf die Strukturdynamik von Kunststoffbauteilen. Schwingungen 2021, 2021, 129–142. [Google Scholar]
- Ultramid®. A3WG10—PA66-GF50. CAMPUS®—A Material Information System for the Plastics Industry; CWFG GmbH: Frankfurt, Germany, 2021; Available online: https://www.campusplastics.com/material/pdf/156435/UltramidA3WG10?sLg=en (accessed on 16 February 2022).
- Ultramid®. Advanced T1000HG10 UN—PA6T/6I-GF50. CAMPS®—A Material Information System for Plastics Industry; CWFG GmbH: Frakfurt, Germany, 2021; Available online: https://www.campusplastics.com/material/pdf/156477/UltramidAdvancedT1000HG10UN?sLg=en (accessed on 16 February 2022).
- Urban, F.; Middendorf, P. Macroscopic Modeling of the Linear-Viscoelastic Vibration Behavior of Short-Fiber Reinforced Plastics. In Proceedings of the SAMPE 2020, Virtual, 3 August 2020. [Google Scholar]
- BASF SE. Weltweit Erster Motorträger aus Kunststoff in Neuer Mercedes GL-Klasse aus Ultramid®. Available online: https://documents.basf.com/36a902759d1a3b974a33b8a6e56df1af61b3d115/Ultramid_first_plastic_engine_support_Mercedes_GL_de.pdf (accessed on 13 February 2022).
- Breuer, K.; Stommel, M.; Korte, W. Analysis and Evaluation of Fiber Orientation Reconstruction Methods. J. Compos. Sci. 2019, 3, 67. [Google Scholar] [CrossRef] [Green Version]
- Kugler, S.K.; Kech, A.; Cruz, C.; Osswald, T. Fiber Orientation Predictions—A Review of Existing Models. J. Compos. Sci. 2020, 4, 69. [Google Scholar] [CrossRef]
- Folgar, F.; Tucker, C.L. Orientation Behavior of Fibers in Concentrated Suspensions. J. Reinf. Plast. Compos. 1984, 3, 98–119. [Google Scholar] [CrossRef]
- Advani, S.G.; Tucker, C.L. The Use of Tensors to Describe and Predict Fiber Orientation in Short Fiber Composites. J. Rheol. 1987, 31, 751–784. [Google Scholar] [CrossRef]
- Huynh, H.M. Improved Fiber Orientation Prediction for Injection-Molded Composites. Master’s Thesis, University of Illinois Urbana-Champaign, Champaign County, IL, USA, 2001. [Google Scholar]
- Wang, J.; O’Gara, J.F.; Tucker, C.L. An objective model for slow orientation kinetics in concentrated fiber suspensions. Theory and rheological evidence. J. Rheol. 2008, 52, 1179–1200. [Google Scholar] [CrossRef]
- Phelps, J.H.; Tucker, C.L., III. An anisotropic rotary diffusion model for fiber orientation in short- and long-fiber thermoplastics. J. Non-Nowton. Fluid Mech. 2009, 156, 165–176. [Google Scholar] [CrossRef]
- Tseng, H.C.; Chang, R.Y.; Hsu, C.H. Phenomenological improvements to predictive models of fiber orientation in concentrated suspensions. J. Rheol. 2013, 57, 1597–1631. [Google Scholar] [CrossRef]
- Tseng, H.C.; Chang, R.Y.; Hsu, C.H. The use of principal spatial tensor to predict anisotropic fiber orientation in concentrated fiber suspensions. J. Rheol. 2017, 62, 313–320. [Google Scholar] [CrossRef]
- Bakharev, A.; Yu, H.; Ray, S.; Speight, R.; Wang, J. Using New Anisotropic Rotational Diffusion Model to Improve Prediction of Short Fibers in Thermoplastic Injection Molding; ANTEC: Orlando, FL, USA, 2018. [Google Scholar]
- Jack, D.A. Advanced Analysis of Short-Fiber Polymer Composite Material Behavior. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2006. [Google Scholar]
- Verley, V.; Dupret, F. Numerical prediction of the fiber orientation in complex injection molded parts. Trans. Eng. Sci. 1994, 4, 303–312. [Google Scholar]
- Chung, D.H.; Kwon, T.H. Invariant-Based Optimal Fitting Closure Approximation for the Numerical Prediction of Flow-Induced Fiber Orientation. J. Rheol. 2002, 46, 169. [Google Scholar] [CrossRef] [Green Version]
- Montgomery-Smith, S.; He, W.; Jack, D.A.; Smith, D.E. Exact tensor closures for the three-dimensional Jeffery’s equation. J. Fluid Mech. 2011, 680, 321–335. [Google Scholar] [CrossRef] [Green Version]
- Montgomery-Smith, S.; Jack, D.; Smith, D.E. The Fast Exact Closure for Jeffery’s equation with diffusion. J. Non-Newton. Fluid Mech. 2011, 166, 343–353. [Google Scholar] [CrossRef]
- Qadir, N.U.; Jack, D.A. Modeling fibre orientation in short fibre suspensions using the neural network-based orthotropic closure. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1524–1533. [Google Scholar] [CrossRef]
- Jack, D.A.; Schache, B.; Smith, D.E. Neural network-based closure for modeling short-fiber suspensions. Polym. Compos. 2010, 31, 1125–1141. [Google Scholar] [CrossRef]
- Jack, D.A. Investigating the Use of Tensors in Numerical Predictions for Short-Fiber Reinforced Polymer Composites. Master’s Thesis, University of Missouri, Columbia, MO, USA, 2003. [Google Scholar]
- Jack, D.A.; Smith, D.E. Assessing the Use of Tensor Closure Methods with Orientation Distribution Reconstruction Functions. J. Compos. Mater. 2004, 38, 1851–1872. [Google Scholar] [CrossRef]
- Jack, D.A.; Smith, D.E. An invariant based fitted closure of the sixth-order orientation tensor for modeling short-fiber suspensions. J. Rheol. 2005, 49, 1091–1115. [Google Scholar] [CrossRef]
- Webelhaus, K.; Becker, F. Automatische Optimierung von Naturfaserverstärkten Bauteilen mit Varimos® 2; Fachsymposium zur Verarbeitung von Biokunststoffen: Würzburg, Germany, 2014. [Google Scholar]
- Kanirope® GmbH. Aramidseil ARABRAID ⌀6mm Meterware (lfm) 8-Fach Geflochten von Kanirope®. Available online: https://www.kanirope.de/aramidseil-arabraid-6mm-meterware-lfm-8-fach-geflochten-kanirope#product_info (accessed on 13 February 2022).
- Kanirope® GmbH. Aramidseil, Aramidschnur (Geflochten)—Werkstoffeigenschaften der Aramidfasern. Available online: https://www.kanirope.de/shop/aramidseile-geflochten (accessed on 13 February 2022).
- Klenk, M. Entwicklung Eines Versuchsaufbaus zur Präzisen Charakterisierung des Schwingverhaltens von Bauteilen aus Kurzfaserverstärktem Kunststoff. Master’s Thesis, Universität Stuttgart, Stuttgart, Germany, 2019. [Google Scholar]
- Hottinger Brüel & Kjaer®. Modal and Measurement Exciters—Vibration Exciter Type 4809. Available online: https://www.bksv.com/-/media/literature/Product-Data/bp0231.ashx (accessed on 13 February 2022).
- Hottinger Brüel & Kjaer®. Product Data Impedance Heads—Types 8000 and 8001. Available online: https://www.bksv.com/-/media/literature/Product-Data/bp0244.ashx (accessed on 13 February 2022).
- Polytec GmbH. PSV-500-3D Scanning Vibrometer. Available online: https://www.polytec.com/de/vibrometrie/produkte/full-field-vibrometer/psv-500-3d-scanning-vibrometer (accessed on 13 February 2022).
- Kullback, S.; Leibler, R.A. On Information and Sufficiency. Ann. Math. Stat. 1951, 1951, 79–86. [Google Scholar] [CrossRef]
- Ertürk, E. Entwicklung und Validierung Einer Methodik zur Struktursimulation Ineinander Spritzgegossener Kunststoffbauteile. Master’s Thesis, Universität Stuttgart, Stuttgart, Germany, 2020. [Google Scholar]
Nr. | P1 | P2 | P3 | P4 | P5 | Average | |
---|---|---|---|---|---|---|---|
Comp. | |||||||
8.9% | 5.9% | 2.9% | 14.5% | 4.0% | 7.3% | ||
29.2% | 21.9% | 15.4% | 60.4% | 16.3% | 28.7% | ||
16.9% | 15.4% | 4.5% | 13.3% | 15.5% | 13.1% | ||
6.2% | 5.7% | 6.9% | 20.4% | 7.4% | 9.3% | ||
21.9% | 20.2% | 18.9% | 65.5% | 11.3% | 27.6% | ||
88.3% | 91.9% | 126.3% | 117.4% | 97.8% | 104.4% |
Nr. | B1 | B2 | Average | |
---|---|---|---|---|
Comp. | ||||
22.8% | 7.9% | 15.3% | ||
20.1% | 29.0% | 24.6% | ||
20.7% | 30.9% | 25.8% | ||
16.9% | 9.4% | 13.1% | ||
16.3% | 36.1% | 26.2% | ||
162.8% | 281.2% | 221.9% |
Nr. | P1 | P2 | P3 | P4 | P5 | Average | |
---|---|---|---|---|---|---|---|
Comp. | |||||||
14.9% | 15.4% | 19.0% | 10.8% | 10.5% | 14.1% | ||
42.7% | 49.6% | 58.4% | 29.4% | 24.9% | 41.0% | ||
48.9% | 40.9% | 40.5% | 27.8% | 43.0% | 40.2% | ||
18.2% | 20.4% | 19.9% | 12.3% | 10.7% | 16.3% | ||
37.9% | 37.9% | 44.4% | 41.4% | 30.6% | 38.4% | ||
232.9% | 299.2% | 300.2% | 219.4% | 232.4% | 256.8% |
Nr. | B1 | B2 | Average | |
---|---|---|---|---|
Comp. | ||||
9.7% | 10.9% | 10.3% | ||
14.1% | 15.3% | 14.7% | ||
14.6% | 33.1% | 23.9% | ||
28.2% | 12.6% | 20.4% | ||
21.8% | 18.6% | 20.2% | ||
276.9% | 417.6% | 347.2% |
Nr. | P1 | P2 | P3 | P4 | P5 | Average | |
---|---|---|---|---|---|---|---|
Comp. | |||||||
10.1% | 11.2% | 15.9% | 9.0% | 9.5% | 11.2% | ||
29.4% | 43.2% | 49.1% | 29.0% | 23.4% | 34.8% | ||
49.0% | 40.9% | 40.5% | 27.8% | 43.0% | 40.2% |
Nr. | B1 | B2 | Average | |
---|---|---|---|---|
Comp. | ||||
12.4% | 31.7% | 22.1% | ||
18.6% | 45.1% | 31.9% | ||
14.6% | 33.1% | 23.9% |
Mode-Shape with Relative Displacement [-] | Resonance Frequency [Hz] | Ampl. Res. Frequency [m/s²/N] | MAC Value [%] |
---|---|---|---|
Global torsion | PA66GF50 419 | PA66GF50 34.4 | 90.2 |
PPAGF50 446 | PPAGF50 36.5 | ||
Global bending | PA66GF50 2011 | PA66GF50 63.1 | 82.6 |
PPAGF50 2128 | PPAGF50 39.1 | ||
Local surface | PA66GF50 2172 | PA66GF50 40.6 | 69.9 |
PPAGF50 2287 | PPAGF50 29.0 |
Mode-Shape | Sim. | MAC Value [%] | ||
---|---|---|---|---|
Global torsion | CM | 1 Layer 89.4 | 2 Layer 89.6 | 3 Layer 90.1 |
4 Layer 90.5 | 5 Layer 90.4 | 6 Layer 91.6 | ||
MF | 1 Layer 87.9 | 2 Layer 89.8 | 3 Layer 89.2 | |
4 Layer 90.6 | 5 Layer 90.1 | 6 Layer 90.2 | ||
Global bending | CM | 1 Layer 82.4 | 2 Layer 82.7 | 3 Layer 83.8 |
4 Layer 83.8 | 5 Layer 84.1 | 6 Layer 84.7 | ||
MF | 1 Layer 80.8 | 2 Layer 80.1 | 3 Layer 80.7 | |
4 Layer 80.4 | 5 Layer 80.6 | 6 Layer 81.3 | ||
Local surface | CM | 1 Layer 73.9 | 2 Layer 73.9 | 3 Layer 74.8 |
4 Layer 73.9 | 5 Layer 74.2 | 6 Layer 75.1 | ||
MF | 1 Layer 73.7 | 2 Layer 73.6 | 3 Layer 73.0 | |
4 Layer 73.9 | 5 Layer 73.1 | 6 Layer 74.9 |
Mode Shape | Layer | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
Sim. | ||||||||
Relative deviation frequency [%] Relative deviation amplitude [%] | ||||||||
torsion | CM | 9.2 46.0 | 8.8 41.7 | 7.2 41.3 | 7.6 42.8 | 7.6 43.0 | 6.7 39.5 | |
MF | 8.0 34.6 | 7.2 42.1 | 7.4 45.1 | 6.8 42.1 | 7.2 40.9 | 6.1 36.2 | ||
bending | CM | 5.4 33.8 | 4.9 44.5 | 3.1 48.6 | 3.7 52.3 | 3.7 50.3 | 2.7 35.9 | |
MF | 2.1 28.5 | 1.6 38.8 | 1.6 34.2 | 1.4 41.4 | 1.6 39.4 | 0.6 25.4 | ||
surface | CM | 1.2 27.1 | 0.7 21.3 | 0.4 42.0 | 0.4 38.4 | 0.4 44.4 | 0.6 45.1 | |
MF | 1.2 12.1 | 1.7 5.1 | 1.7 7.8 | 1.9 10.3 | 1.7 8.4 | 0.7 13.8 |
Mode Shape | Layer | 1 | 2 | 3 | 4 | 5 | 6 | |
---|---|---|---|---|---|---|---|---|
Sim. | ||||||||
Relative deviation frequency [%] Relative deviation amplitude [%] | ||||||||
torsion | CM | 1.4 8.8 | 0.4 46.2 | 1.5 44.1 | 0.8 45.0 | 0.4 43.0 | 0.1 41.2 | |
MF | 2.3 43.7 | 1.9 42.5 | 1.9 41.8 | 2.4 42.9 | 2.6 41.7 | 2.9 38.6 | ||
bending | CM | 3.7 45.5 | 2.7 42.8 | 1.0 42.4 | 0.4 38.2 | 0.1 36.9 | 0.6 33.6 | |
MF | 2.2 47.0 | 2.5 46.0 | 2.4 46.7 | 1.8 41.1 | 1.6 39.9 | 1.3 36.8 | ||
surface | CM | 3.4 38.5 | 2.4 35.4 | 0.2 31.9 | 0.6 34.1 | 1.0 32.8 | 1.5 29.2 | |
MF | 2.7 42.0 | 3.1 40.9 | 3.1 43.6 | 3.1 50.3 | 2.9 49.3 | 2.6 46.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kriwet, A.; Stommel, M. The Impact of Fiber Orientation on Structural Dynamics of Short-Fiber Reinforced, Thermoplastic Components—A Comparison of Simulative and Experimental Investigations. J. Compos. Sci. 2022, 6, 106. https://doi.org/10.3390/jcs6040106
Kriwet A, Stommel M. The Impact of Fiber Orientation on Structural Dynamics of Short-Fiber Reinforced, Thermoplastic Components—A Comparison of Simulative and Experimental Investigations. Journal of Composites Science. 2022; 6(4):106. https://doi.org/10.3390/jcs6040106
Chicago/Turabian StyleKriwet, Alexander, and Markus Stommel. 2022. "The Impact of Fiber Orientation on Structural Dynamics of Short-Fiber Reinforced, Thermoplastic Components—A Comparison of Simulative and Experimental Investigations" Journal of Composites Science 6, no. 4: 106. https://doi.org/10.3390/jcs6040106
APA StyleKriwet, A., & Stommel, M. (2022). The Impact of Fiber Orientation on Structural Dynamics of Short-Fiber Reinforced, Thermoplastic Components—A Comparison of Simulative and Experimental Investigations. Journal of Composites Science, 6(4), 106. https://doi.org/10.3390/jcs6040106