Effect of WS2 Nanotubes on the Mechanical and Wear Behaviors of AZ31 Stir Casted Magnesium Metal Matrix Composites
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Microstructural Characteristics
3.2. Mechanical Characterization
3.3. Wear Behavior
4. Conclusions
- The microstructure analysis revealed that the addition of aluminum and WS2 nanotubes significantly increased the presence of the secondary phase.
- The hardness and yield strength of the AZ31/ WS2 nanocomposite was enhanced significantly due to the strengthening mechanisms of the CTE, Orowan and load transfer.
- The WS2 nanotubes-incorporated nanocomposite shows better wear behaviors compared with the AZ31 alloy.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dinaharan, I.; Zhang, S.; Chen, G.; Shi, Q. Development of titanium particulate reinforced AZ31 magnesium matrix composites via friction stir processing. J. Alloys Compd. 2020, 820, 153071. [Google Scholar] [CrossRef]
- Zang, Q.; Chen, H.; Zhang, J.; Wang, L.; Chen, S.; Jin, Y. Microstructure, mechanical properties and corrosion resistance of AZ31/GNPs composites prepared by friction stir processing. J. Mater. Res. Technol. 2021, 14, 195–201. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Hu, X.; Wu, K. Microstructural modification and strength enhancement by SiC nanoparticles in AZ31 magnesium alloy during hot rolling. Mater. Sci. Eng. A 2018, 715, 49–61. [Google Scholar] [CrossRef]
- Khandelwal, A.; Mani, K.; Srivastava, N.; Gupta, R.; Chaudhari, G.P. Mechanical behavior of AZ31/Al2O3 magnesium alloy nanocomposites prepared using ultrasound assisted stir casting. Compos. Part B Eng. 2017, 123, 64–73. [Google Scholar] [CrossRef]
- Huang, S.J.; Subramani, M.; Ali, A.N.; Alemayehu, D.B.; Aoh, J.N.; Lin, P.C. The effect of micro-SiCp content on the tensile and fatigue behavior of AZ61 magnesium alloy matrix composites. Int. J. Met. 2021, 15, 780–793. [Google Scholar] [CrossRef]
- Paramsothy, M.; Chan, J.; Kwok, R.; Gupta, M. Al2O3 nanoparticle addition to commercial magnesium alloys: Multiple beneficial effects. Nanomaterials 2012, 2, 147–162. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Singh, J.; Singh, B.; Singh, N. Wear Behavior of B 4 C Reinforced AZ91 Matrix Composite Fabricated by FSP. Mater. Today Proc. 2018, 5, 19976–19984. [Google Scholar] [CrossRef]
- Jiang, Q.C.; Wang, H.Y.; Ma, B.X.; Wang, Y.; Zhao, F. Fabrication of B4C particulate reinforced magnesium matrix composite by powder metallurgy. J. Alloys Compd. 2005, 386, 177–181. [Google Scholar] [CrossRef]
- Say, Y.; Guler, O.; Dikici, B. Carbon nanotube (CNT) reinforced magnesium matrix composites: The effect of CNT ratio on their mechanical properties and corrosion resistance. Mater. Sci. Eng. A 2020, 798, 139636. [Google Scholar] [CrossRef]
- Abbas, A.; Huang, S.J. Investigation of severe plastic deformation effects on microstructure and mechanical properties of WS2/AZ91 magnesium metal matrix composites. Mater. Sci. Eng. A 2020, 780, 139211. [Google Scholar] [CrossRef]
- Huang, S.J.; Subramani, M.; Borodianskiy, K. Strength and ductility enhancement of AZ61/Al2O3/SiC hybrid composite by ECAP processing. Mater. Today Commun. 2022, 31, 103261. [Google Scholar] [CrossRef]
- Subramani, M.; Tzeng, Y.C.; Tseng, L.W.; Tsai, Y.K.; Chen, G.S.; Chung, C.Y.; Huang, S.J. Hot deformation behavior and processing map of AZ61/SiC composites. Mater. Today Commun. 2021, 29, 102861. [Google Scholar] [CrossRef]
- Huang, S.J.; Abbas, A. Effects of tungsten disulfide on microstructure and mechanical properties of AZ91 magnesium alloy manufactured by stir casting. J. Alloys Compd. 2020, 817, 153321. [Google Scholar] [CrossRef]
- Yang, J.; Voiry, D.; Ahn, S.J.; Kang, D.; Kim, A.Y.; Chhowalla, M.; Shin, H.S. Two-Dimensional Hybrid Nanosheets of Tungsten Disulfide and Reduced Graphene Oxide as Catalysts for Enhanced Hydrogen Evolution. Angew. Chem.—Int. Ed. 2013, 52, 13751–13754. [Google Scholar] [CrossRef]
- Wang, G.X.; Bewlay, S.; Yao, J.; Liu, H.K.; Dou, S.X. Tungsten disulfide nanotubes for lithium storage. Electrochem. Solid-State Lett. 2004, 7, A321. [Google Scholar] [CrossRef] [Green Version]
- Subramani, M.; Huang, S.J.; Borodianskiy, K. Effect of SiC Nanoparticles on AZ31 Magnesium Alloy. Materials 2022, 15, 1004. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Subramani, M.; Chiang, C.C. Effect of hybrid reinforcement on microstructure and mechanical properties of AZ61 magnesium alloy processed by stir casting method. Compos. Commun. 2021, 25, 100772. [Google Scholar] [CrossRef]
- Chaudhary, R.; Joshi, S.; Singh, R.C. Mechanical and wear performance of surface composite fabricated by solid-state Technique-A review. Mater. Today Proc. 2018, 5, 28033–28042. [Google Scholar] [CrossRef]
- Huang, S.J.; Ali, A.N. Effects of heat treatment on the microstructure and microplastic deformation behavior of SiC particles reinforced AZ61 magnesium metal matrix composite. Mater. Sci. Eng. A 2018, 711, 670–682. [Google Scholar] [CrossRef]
- Sunil, B.R.; Ganesh, K.V.; Pavan, P.; Vadapalli, G.; Swarnalatha, C.; Swapna, P.; Bindukumar, P.; Reddy, G.P.K. Effect of aluminum content on machining characteristics of AZ31 and AZ91 magnesium alloys during drilling. J. Magnes. Alloys 2016, 4, 15–21. [Google Scholar] [CrossRef] [Green Version]
- Huang, S.J.; Lin, C.C.; Huang, J.Y.; Tenne, R. Mechanical behavior enhancement of AZ31/WS2 and AZ61/WS2 magnesium metal matrix nanocomposites. Adv. Mech. Eng. 2018, 10, 1687814017753442. [Google Scholar] [CrossRef] [Green Version]
- Sahoo, B.N.; Khan, F.; Babu, S.; Panigrahi, S.K.; Ram, G.D.J. Microstructural modification and its effect on strengthening mechanism and yield asymmetry of in-situ TiC-TiB2/AZ91 magnesium matrix composite. Mater. Sci. Eng. A 2018, 724, 269–282. [Google Scholar] [CrossRef]
- Mingbo, Y.; Fusheng, P.; Renju, C.; Jia, S. Comparison about effects of Sb, Sn and Sr on as-cast microstructure and mechanical properties of AZ61–0.7 Si magnesium alloy. Mater. Sci. Eng. A 2008, 489, 413–418. [Google Scholar] [CrossRef]
- Lu, L.; Lim, C.Y.H.; Yeong, W.M. Effect of reinforcements on strength of Mg9% Al composites. Compos. Struct. 2004, 66, 41–45. [Google Scholar] [CrossRef]
- Du, Y.Z.; Zheng, M.Y.; Xu, C.; Qiao, X.G.; Wu, K.; Liu, X.D.; Wang, G.J.; Lv, X.Y. Microstructures and mechanical properties of as-cast and as-extruded Mg-4.50 Zn-1.13 Ca (wt%) alloys. Mater. Sci. Eng. A 2013, 576, 6–13. [Google Scholar] [CrossRef]
- Archard, J.F. Contact and rubbing of flat surfaces. J. Appl. Phys. 1953, 24, 981–988. [Google Scholar] [CrossRef]
Al | Zn | Mn | Fe | Mg |
---|---|---|---|---|
2.95 | 0.64 | 0.26 | 0.005 | balance |
Material | YS (MPa) | UTS (MPa) | Fracture Strain (%) | Hardness (HV) | Theoretical YS (MPa) |
---|---|---|---|---|---|
AZ31 | 86.7 ± 9 | 180.5 ± 10 | 12.81 ± 3 | 40.4 ± 2 | - |
AZ31/WS2 | 112.9 ± 8 | 169.23 ± 13 | 5.9 ± 2 | 51.7 ± 4 | 139.64 |
AZ61 + 0.4%Sb [23] | 99 | 175 | 5 | - | - |
AZ61 + 0.56%Sn [23] | 92 | 161 | 4.3 | - | - |
AZ61 + 2%SiC [5] | 100.64 | 166.64 | 3.44 | - | - |
AZ91 + 0.6%WS2 [13] | 73.66 | 151.06 | 10.21 | - | - |
AZ91 + 0.5%CNT [9] | 76.5 | 153.5 | 5.7 | - | - |
Notations | Value | Meaning |
---|---|---|
(GPa) | 17.3 | Shear modulus |
(nm) | 0.32 | Burger’s vector of the matrix |
(nm) | 0.07 | Average particle size |
0.02 | The volume fraction of particle | |
Difference in the coefficients of the thermal expansion | ||
280 | Difference between the processing and test temperatures | |
(MPa) | 81.96 | Yield strength of the monolithic matrix |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subramani, M.; Huang, S.-J.; Borodianskiy, K. Effect of WS2 Nanotubes on the Mechanical and Wear Behaviors of AZ31 Stir Casted Magnesium Metal Matrix Composites. J. Compos. Sci. 2022, 6, 182. https://doi.org/10.3390/jcs6070182
Subramani M, Huang S-J, Borodianskiy K. Effect of WS2 Nanotubes on the Mechanical and Wear Behaviors of AZ31 Stir Casted Magnesium Metal Matrix Composites. Journal of Composites Science. 2022; 6(7):182. https://doi.org/10.3390/jcs6070182
Chicago/Turabian StyleSubramani, Murugan, Song-Jeng Huang, and Konstantin Borodianskiy. 2022. "Effect of WS2 Nanotubes on the Mechanical and Wear Behaviors of AZ31 Stir Casted Magnesium Metal Matrix Composites" Journal of Composites Science 6, no. 7: 182. https://doi.org/10.3390/jcs6070182
APA StyleSubramani, M., Huang, S. -J., & Borodianskiy, K. (2022). Effect of WS2 Nanotubes on the Mechanical and Wear Behaviors of AZ31 Stir Casted Magnesium Metal Matrix Composites. Journal of Composites Science, 6(7), 182. https://doi.org/10.3390/jcs6070182