Exploring the High Frequencies AC Conductivity Response in Disordered Materials by Using the Damped Harmonic Oscillator
Abstract
:1. Introduction
2. Theoretical Definitions and Relations
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jonscher, A.K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679. [Google Scholar] [CrossRef]
- Almond, D.P.; West, A.R.; Grant, R.J. Temperature dependence of the a.c. conductivity of Naβ-alumina. Sol. St. Commun. 1982, 44, 1277–1280. [Google Scholar] [CrossRef]
- Elliott, S.R.; Owens, A.P. A Target Diffusion Theory for Nuclear Spin Relaxation in Ionically-Conducting Glasses. Ber. Bunsenges. Phys. Chem. 1991, 95, 987–992. [Google Scholar] [CrossRef]
- Bunde, A.; Ingram, M.D.; Maass, P. The dynamic structure model for ion transport in glasses. J. Non-Cryst. Solids 1994, 172–174, 1222–1236. [Google Scholar] [CrossRef]
- Knoedler, D.; Pendzig, P.; Dieterich, W. Ion dynamics in structurally disordered materials: Effects of random Coulombic traps. Solid State Ion. 1996, 86–88, 29–39. [Google Scholar] [CrossRef]
- Tsang, K.Y.; Ngai, K.L. Dynamics of relaxing systems subjected to nonlinear interactions. Phys. Rev. E 1997, 56, R17–R20. [Google Scholar] [CrossRef]
- Maass, P. Towards a theory for the mixed alkali effect in glasses. J. Non-Cryst. Solids 1999, 255, 35–46. [Google Scholar] [CrossRef]
- Schrøder, T.B.; Dyre, J.C. Scaling and Universality of ac Conduction in Disordered Solids. Phys. Rev. Lett. 2000, 84, 310–313. [Google Scholar] [CrossRef] [Green Version]
- Couto, J.D.; Santos, M.C.; Bianchi, R.F. Exploring the universality of the alternating conductivity of disordered materials using the Gaussian distribution of activation energies. Mater. Res. Express 2019, 6, 046302. [Google Scholar] [CrossRef]
- Dyre, J.C. The random free-energy barrier model for ac conduction in disordered solids. J. Appl. Phys. 1988, 64, 2456–2468. [Google Scholar] [CrossRef] [Green Version]
- Almond, D.P.; Bowen, C.R. Anomalous Power Law Dispersions in ac Conductivity and Permittivity Shown to be Characteristics of Microstructural Electrical Networks. Phys. Rev. Lett. 2004, 92, 157601. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.K.; Liu, J.F.; Nowick, A.S. Limiting behavior of ac conductivity in ionically conducting crystals and glasses: A new universality. Phys. Rev. Lett. 1991, 67, 1559–1561. [Google Scholar] [CrossRef]
- Almond, D.P.; Vainas, B. The dielectric properties of random R-C networks as an explanation of the ‘universal’ power law dielectric response of solids. J. Phys. Condens. Matter 1999, 11, 9081–9093. [Google Scholar] [CrossRef]
- Chen, R.H.; Chang, R.Y.; Shern, S.C. Dielectric and AC ionic conductivity investigations in K3H(SeO4)2 single crystal. J. Phys. Chem. Solids 2002, 63, 2069–2077. [Google Scholar] [CrossRef]
- Louati, B.; Gargouri, M.; Guidara, K.; Mhiri, T. AC electrical properties of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58. J. Phys. Chem. Solids 2005, 66, 762–765. [Google Scholar] [CrossRef]
- El-Hakim, S.A.; El-Wahab, F.A.; Mohamed, A.S.; Kotkata, M.F. DC and ac electrical properties of the chalcogenide semiconductor Se0.9In0.1. Phys. Status Solidi 2003, 198, 128–136. [Google Scholar] [CrossRef]
- Roy, A.K.; Prasad, K.; Prasad, A. Piezoelectric, impedance, electric modulus and AC conductivity studies on (Bi0.5Na0.5)0.95Ba0.05TiO3 ceramic. Process. Appl. Ceram. 2013, 7, 81–91. [Google Scholar] [CrossRef]
- Cramer, C.; Brunklaus, S.; Ratai, E.; Gao, Y. New Mixed Alkali Effect in the ac Conductivity of Ion-Conducting Glasses. Phys. Rev. Lett. 2003, 91, 266601. [Google Scholar] [CrossRef]
- Nawar, A.M.; El-Khalek, H.M.A.; El-Nahass, M.M. Dielectric and Electric Modulus Studies on Ni (II) Tetraphenyl Porphyrin Thin Films. Org. Opto-Elect. 2015, 1, 25–38. [Google Scholar]
- Khazaka, R.; Locatelli, M.L.; Diaham, S.; Bidan, P.; Dupuy, L.; Grosset, G. Broadband dielectric spectroscopy of BPDA/ODA polyimide films. J. Phys. D Appl. Phys. 2013, 46, 065501. [Google Scholar] [CrossRef]
- Khadhraoui, S.; Triki, A.; Hcini, S.; Zemni, S.; Oumezzine, M. Variable-range-hopping conduction and dielectric relaxation in Pr0.6Sr0.4Mn0.6Ti0.4O3±δ perovskite. J. Magn. Magn. Mater. 2014, 371, 69–76. [Google Scholar] [CrossRef]
- Kanapitsas, A.; Tsonos, C.; Triantis, D.; Stavrakas, I.; Anastasiadis, C.; Photopoulos, P.; Pissis, P.; Vamvakas, V.E. Thermally activated conduction mechanisms in Silicon Nitride MIS structures. Thin Solid Film. 2010, 518, 2357–2360. [Google Scholar] [CrossRef]
- Singh, D.P.; Shahi, K.; Kar, K.K. Superlinear frequency dependence of AC conductivity and its scaling behavior in xAgI-(1−x) AgPO3 glass superionic conductors. Solid State Ion. 2016, 287, 89–96. [Google Scholar] [CrossRef]
- Tsonos, C. Comments on frequency dependent AC conductivity in polymeric materials at low frequency regime. Curr. Appl. Phys. 2019, 19, 491–497. [Google Scholar] [CrossRef] [Green Version]
- Lunkenheimer, P.; Loidl, A. Response of Disordered Matter to Electromagnetic Fields. Phys. Rev. Lett. 2003, 91, 207601. [Google Scholar] [CrossRef] [Green Version]
- Cramer, C.; Funke, K.; Saatkamp, T. Ion dynamics in glass-forming systems: I. Conductivity spectra below the glass transformation temperature. Philos. Mag. Part B 1995, 71, 701–711. [Google Scholar] [CrossRef]
- Stanguennec, M.L.; Elliott, S.R. Frequency-dependent ionic conductivity in AgI-AgPO3 glasses. Sol. St. Ion. 1994, 73, 199–208. [Google Scholar] [CrossRef]
- Dyre, J.C.; Schrøder, T.B. Universality of ac conduction in disordered solids. Rev. Mod. Phys. 2000, 72, 873–892. [Google Scholar] [CrossRef] [Green Version]
- Krishnaswami, S.; Jain, H.; Kamitsos, E.; Kapoutsis, J. Connection between the microwave and far infrared conductivity of oxide glasses. J. Non-Cryst. Solids 2000, 274, 307–312. [Google Scholar] [CrossRef]
- Sidebottom, D.L.; Green, P.F.; Brow, R.K. Two Contributions to the ac Conductivity of Alkali Oxide Glasses. Phys. Rev. Lett. 1995, 74, 5068–5071. [Google Scholar] [CrossRef]
- Schneider, U.; Lunkenheimer, P.; Brand, R.; Loidl, A. Dielectric and far-infrared spectroscopy of glycerol. J. Non-Cryst. Solids 1998, 235–237, 173–179. [Google Scholar] [CrossRef]
- Trukhanov, A.V.; Turchenko, V.O.; Bobrikov, I.A.; Trukhanov, S.V.; Kazakevich, I.S.; Balagurov, A.M. Crystal structure and magnetic properties of the BaFe12−xAlxO19 (x = 0.1–1.2) solid solutions. J. Magn. Magn. Mater. 2015, 393, 253–259. [Google Scholar] [CrossRef]
- Vinnik, D.A.; Zhivulin, V.E.; Sherstyuk, D.P.; Starikov, A.Y.; Zuzina, P.A.; Gudkova, S.A.; Zherebtsov, D.A.; Rozanov, K.N.; Trukhanov, S.V.; Astapovich, K.A.; et al. Electromagnetic properties of zinc-nickel ferrites in frequency range of 0.05–10 GHz. Mater. Today Chem. 2021, 20, 100460. [Google Scholar] [CrossRef]
- Almessiere, M.A.; Trukhanov, A.V.; Slimani, Y.; You, K.; Trukhanov, S.V.; Trukhanova, E.L.; Esa, F.; Sadaqat, A.; Chaudhary, K.; Zdorovets, M.; et al. Correlation between composition and electrodynamics properties in nanocomposites based on hard/soft ferrimagnetics with strong exchange coupling. Nanomaterials 2019, 9, 202. [Google Scholar] [CrossRef] [Green Version]
- Almessiere, M.A.; Slimani, Y.; Algarou, N.; Vakhitov, M.G.; Klygach, D.S.; Baykal, A.; Zubar, T.I.; Trukhanov, S.V.; Trukhanov, A.V.; Attia, H.; et al. Tuning the structure, magnetic and high frequency properties of Sc-doped Sr0.5Ba0.5ScxFe12−xO19/NiFe2O4 hard/soft nanocomposites. Adv. Electr. Mater. 2022, 8, 2101124. [Google Scholar] [CrossRef]
- Havriliak, S.; Negami, S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer 1967, 8, 161–210. [Google Scholar] [CrossRef]
- Tsonos, C.; Kanapitsas, A.; Kechriniotis, A.; Petropoulos, N. AC and DC conductivity correlation: The coefficient of Barton–Nakajima–Namikawa relation. J. Non-Cryst. Solids 2012, 358, 1638–1643. [Google Scholar] [CrossRef] [Green Version]
- Lee, Y.S. Principles of Terahertz Science and Technology; Springer Science & Business Media: New York, NY, USA, 2009. [Google Scholar]
- Stevels, J.M. Dielectric losses in glass. Philips Tech. Rev. 1952, 13, 360–372. [Google Scholar]
- Stevels, J.M. Relaxation phenomena in glass. J. Phys. Colloq. 1985, 46, C8-613–C8-616. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, F.; Mics, Z.; Bonn, M.; Turchinovich, D. Ultra-broadband THz time-domain spectroscopy of common polymers using THz air photonics. Opt. Express 2014, 22, 12475–12485. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Wan, F.; Zhu, Z.; Zhang, W. Dielectric response of soft mode in ferroelectric SrTiO3. Appl. Phys. Lett. 2007, 90, 031104. [Google Scholar] [CrossRef]
- Yomogida, Y.; Sato, Y.; Nozaki, R.; Mishina, T.; Nakahara, J. Dielectric study of normal alcohols with THz time-domain spectroscopy. J. Mol. Liq. 2010, 154, 31–35. [Google Scholar] [CrossRef]
- Fukasawa, T.; Sato, T.; Watanabe, J.; Hama, Y.; Kunz, W.; Buchner, R. Relation between Dielectric and Low-Frequency Raman Spectra of Hydrogen-Bond Liquids. Phys. Rev. Lett. 2005, 95, 197802. [Google Scholar] [CrossRef] [Green Version]
- Stejskal, J.; Bober, P.; Trchová, M.; Nuzhnyy, D.; Bovtun, V.; Savinov, M.; Petzelt, J.; Prokeš, J. Interfaced conducting polymers. Synth. Met. 2017, 224, 109–115. [Google Scholar] [CrossRef]
- Karpov, V.G.; Klinger, M.I.; Ignatiev, F.N. Theory of the low-temperature anomalies in the thermal properties of amorphous structures. Sov. Phys. JETP 1983, 57, 439–448. [Google Scholar]
- Buchenau, U.; Galperin, Y.M.; Gurevich, V.L.; Parshin, D.A.; Ramos, M.A.; Schober, H.R. Interaction of soft modes and sound waves in glasses. Phys. Rev. B 1992, 46, 2798–2808. [Google Scholar] [CrossRef]
- Elliott, S.R. A Unified Model for the Low-Energy Vibrational Behaviour of Amorphous Solids. Eur. Lett. 1992, 19, 201–206. [Google Scholar] [CrossRef]
- Malinovsky, V.; Novikov, V.; Sokolov, A. Investigation of structural correlations in disordered materials by Raman scattering measurements. J. Non-Crystalline Solids 1987, 90, 485–488. [Google Scholar] [CrossRef]
- Schirmacher, W.; Diezemann, G.; Ganter, C. Harmonic Vibrational Excitations in Disordered Solids and the “Boson Peak”. Phys. Rev. Lett. 1998, 81, 136. [Google Scholar] [CrossRef] [Green Version]
- Götze, W.; Mayr, M.R. Evolution of vibrational excitations in glassy systems. Phys. Rev. E 2000, 61, 587–606. [Google Scholar] [CrossRef] [Green Version]
- Leutheusser, E. Dynamical model of the liquid-glass transition. Phys. Rev. A 1984, 29, 2765–2773. [Google Scholar] [CrossRef]
- Gotze, W.; Sjogren, L. Relaxation processes in supercooled liquids. Rep. Prog. Phys. 1992, 55, 241–376. [Google Scholar] [CrossRef]
- Götze, W. Properties of the glass instability treated within a mode coupling theory. Z. Phys. B Condens. Matter 1985, 60, 195–203. [Google Scholar] [CrossRef]
- Bengtzelius, U.; Gotze, W.; Sjolander, A. Dynamics of supercooled liquids and the glass transition. J. Phys. C 1984, 17, 5915–5934. [Google Scholar] [CrossRef]
- Prots’, I.V.; Malinovsky, V.K.; Surovtsev, N.V. Investigation of the fast relaxation in glass-forming selenium by low-frequency Raman spectroscopy. Glas. Phys. Chem. 2008, 34, 30–36. [Google Scholar] [CrossRef]
γ/2π (ΤHz) | A/(2π)2 (ΤHz2) | ωο/2π (ΤHz) | n |
---|---|---|---|
2 | 3 | 2.5 | 2.00 |
2 | 1 | 2.5 | 1.92 |
2 | 3 | 5.0 | 1.46 |
1 | 3 | 5.0 | 1.23 |
1 | 1 | 2.5 | 1.82 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsonos, C. Exploring the High Frequencies AC Conductivity Response in Disordered Materials by Using the Damped Harmonic Oscillator. J. Compos. Sci. 2022, 6, 200. https://doi.org/10.3390/jcs6070200
Tsonos C. Exploring the High Frequencies AC Conductivity Response in Disordered Materials by Using the Damped Harmonic Oscillator. Journal of Composites Science. 2022; 6(7):200. https://doi.org/10.3390/jcs6070200
Chicago/Turabian StyleTsonos, Christos. 2022. "Exploring the High Frequencies AC Conductivity Response in Disordered Materials by Using the Damped Harmonic Oscillator" Journal of Composites Science 6, no. 7: 200. https://doi.org/10.3390/jcs6070200
APA StyleTsonos, C. (2022). Exploring the High Frequencies AC Conductivity Response in Disordered Materials by Using the Damped Harmonic Oscillator. Journal of Composites Science, 6(7), 200. https://doi.org/10.3390/jcs6070200