Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete
Abstract
:1. Introduction
2. Materials and Methods
- -
- at the first stage, cement paste was made with the required amount of rice straw biochar additive or without it. Cement and additives were mixed dry automatically in a laboratory concrete mixer for 1 min, and then water was introduced in an amount of 25% by weight of cement. The resulting cement paste was mixed for another 1 min;
- -
- at the second stage, the resulting cement paste was unloaded from the concrete mixer and subjected to electromagnetic processing in the UAP unit [54];
- -
- at the third stage, the treated cement paste was again placed in a concrete mixer, and then fine aggregate and 50% of the remaining mixing water were introduced. This whole mixture was mixed for 1 min;
- -
- the fourth stage included the introduction of coarse aggregate and the remaining mixing water with the mixing of the concrete mixture until a homogeneous state.
3. Results and Discussion
4. Conclusions
- (1)
- The results of the joint influence of electromagnetic activation and nanomodification by rice straw biochar on the strength and deformation characteristics of concrete were experimentally verified and confirmed by microstructure analysis;
- (2)
- Electromagnetic treatment of the cement paste increased the compressive strength, axial compressive strength, tensile strength in bending, and axial tensile strength of concrete. The best performance was demonstrated by electromagnetically activated concrete containing 5 wt.% rice straw biochar. Strength characteristics increased from 23% to 28% depending on the type of strength, and deformations decreased from 8% to 14% in comparison with the control concrete composition. Replacing part of the cement with 10 wt.% and 15 wt.% biochar from rice straw led to a strong drop in strength characteristics from 14 to 34% and an increase in deformation characteristics from 9 to 21%;
- (3)
- The conducted microstructural studies prove the positive effect of electromagnetic treatment on the structure of the cement composite both with and without the addition of rice straw biochar. Improving the structure at the micro- and macrolevels is due to the creation of additional centers of crystallization, denser packing of particles, and a decrease in defectiveness at the phase boundaries due to the optimal nanomodification of concrete with activated finely dispersed rice straw biochar.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Doan, D.T.; Ghaffarianhoseini, A.; Naismith, N.; Zhang, T.; Ghaffarianhoseini, A.; Tookey, J. A critical comparison of green building rating systems. Build. Environ. 2017, 123, 243–260. [Google Scholar] [CrossRef]
- Hwang, B.-G.; Zhu, L.; Tan, J.S.H. Green business park project management: Barriers and solutions for sustainable development. J. Clean. Prod. 2017, 153, 209–219. [Google Scholar] [CrossRef]
- Tang, Z.; Li, W.; Tam, V.W.Y.; Xue, C. Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials. Resour. Conserv. Recycl. X 2020, 6, 100036. [Google Scholar] [CrossRef]
- Miller, S.A. Supplementary cementitious materials to mitigate greenhouse gas emissions from concrete: Can there be too much of a good thing? J. Clean. Prod. 2018, 178, 587–598. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Li, X.; Qin, D.; Hu, Y.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A systematic review of waste materials in cement-based composites for construction applications. J. Build. Eng. 2022, 45, 103447. [Google Scholar] [CrossRef]
- Bueno, E.T.; Paris, J.M.; Clavier, K.A.; Spreadbury, C.; Ferraro, C.C.; Townsend, T.G. A review of ground waste glass as a supplementary cementitious material: A focus on alkali-silica reaction. J. Clean. Prod. 2020, 257, 120180. [Google Scholar] [CrossRef]
- Sood, D.; Hossain, K.M.A. Strength, Shrinkage and Early Age Characteristics of One-Part Alkali-Activated Binders with High-Calcium Industrial Wastes, Solid Reagents and Fibers. J. Compos. Sci. 2021, 5, 315. [Google Scholar] [CrossRef]
- Sood, D.; Hossain, K.M.A. Optimizing Precursors and Reagents for the Development of Alkali-Activated Binders in Ambient Curing Conditions. J. Compos. Sci. 2021, 5, 59. [Google Scholar] [CrossRef]
- Camara, L.A.; Wons, M.; Esteves, I.C.A.; Medeiros-Junior, R.A. Monitoring the Self-healing of Concrete from the Ultrasonic Pulse Velocity. J. Compos. Sci. 2019, 3, 16. [Google Scholar] [CrossRef] [Green Version]
- Boakye, K.; Khorami, M.; Saidani, M.; Ganjian, E.; Dunster, A.; Ehsani, A.; Tyrer, M. Mechanochemical Characterisation of Calcined Impure Kaolinitic Clay as a Composite Binder in Cementitious Mortars. J. Compos. Sci. 2022, 6, 134. [Google Scholar] [CrossRef]
- Luhar, S.; Luhar, I.; Shaikh, F.U.A. A Review on the Performance Evaluation of Autonomous Self-Healing Bacterial Concrete: Mechanisms, Strength, Durability, and Microstructural Properties. J. Compos. Sci. 2022, 6, 23. [Google Scholar] [CrossRef]
- Wang, H.; Mustaffar, A.; Phan, A.N.; Zivkovic, V.; Reay, D.; Law, R.; Boodhoo, K. A review of process intensification applied to solids handling. Chem. Eng. Process. Process. Intensif. 2017, 118, 78–107. [Google Scholar] [CrossRef]
- Bhatty, J.I.; Miller, F.M.; Boahn, R.P. Innovations in Portland Cement Manufacturing, 2nd ed.; Portland Cement Association: Skokie, IL, USA, 2004; p. 1734. [Google Scholar]
- Genç, Ö. Energy-Efficient Technologies in Cement Grinding. High. Performance Concrete Technology and Applications. 2016. Available online: https://doi.org/10.5772/64427 (accessed on 5 August 2022). [CrossRef]
- Frances, C.; Le Bolay, N.; Belaroui, K.; Pons, M.N. Particle morphology of ground gibbsite in different grinding environments. Int. J. Miner. Process. 2001, 61, 41–56. [Google Scholar] [CrossRef]
- Bond, F.C. Control Particle Shape and Size. Chem. Eng. Aug. 1954, 61, 195–198. [Google Scholar]
- Holt, C.B. The Shape of Particles Produced by Comminution, A Review. Powder Technol. 1981, 28, 59–63. [Google Scholar] [CrossRef]
- Durney, T.E.; Meloy, T.P. Particle Shape Effects due to Crushing Method and Size. Int. J. Miner. Process. 1986, 16, 109–123. [Google Scholar] [CrossRef]
- Kaya, E.; Hogg, R.; Kumar, S.R. Particle Shape Modification in Comminution. KONA Powder Part. J. 2002, 20, 188–195. [Google Scholar] [CrossRef]
- Dumm, T.F.; Hogg, R. Characterization of Particle Shape. In Proceedings of the International Symposium on Respirable Dust in the Mineral Industries, Pittsburgh, PA, USA; SME: Littleton, CO, USA, 1990; pp. 283–288. [Google Scholar]
- Panigrahy, P.K.; Medhe, M.; Sahu, R.M.; Pandey, S.P.; Chatterjee, A.K. Quantitative morphological Characterization of Cement Particles of Different Milling Systems and Its Relationship with Physical Properties of Cements. Available online: https://en.jcement.ru/magazine/329/10177/ (accessed on 5 August 2022).
- Gailitis, R.; Figiela, B.; Abelkalns, K.; Sprince, A.; Sahmenko, G.; Choinska, M.; Guigou, M.D. Creep and Shrinkage Behaviour of Disintegrated and Non-Disintegrated Cement Mortar. Materials 2021, 14, 7510. [Google Scholar] [CrossRef]
- Marzouki, A.; Lecomte, A.; Beddey, A.; Diliberto, C.; Ouezdou, M.B. The effects of grinding on the properties of Portland-limestone cement. Constr. Build. Mater. 2013, 48, 1145–1155. [Google Scholar] [CrossRef]
- Pacana, A.; Siwiec, D.; Bednarova, L.; Sofranko, M.; Vegsoova, O.; Cvoliga, M. Influence of Natural Aggregate Crushing Process on Crushing Strength Index. Sustainability 2021, 13, 8353. [Google Scholar] [CrossRef]
- Tole, I.; Habermehl-Cwirzen, K.; Cwirzen, A. Optimization of the Process Parameters Controlling the Degree of Amorphization during Mechanical Activation of Clay Using the Taguchi Method. In Proceedings of the 1st International Conference on Smart Materials for Sustainable Construction (SMASCO 2019), Luleå, Sweden, 10–12 December 2019. [Google Scholar] [CrossRef]
- Ostrowski, K.A.; Kinasz, R.; Dybeł, P. The Impact of Surface Preparation for Self-Compacting, High-Performance, Fiber-Reinforced Concrete Confined with CFRP Using a Cement Matrix. Materials 2020, 13, 2830. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Sena-Cruz, J.; Cruz, J.R.; Fernandes, P. Influence of Surface Preparation Method on the Bond Behavior of Externally Bonded CFRP Reinforcements in Concrete. Materials 2019, 12, 414. [Google Scholar] [CrossRef] [PubMed]
- Khan, K.; Ishfaq, M.; Amin, M.N.; Shahzada, K.; Wahab, N.; Faraz, M.I. Evaluation of Mechanical and Microstructural Properties and Global Warming Potential of Green Concrete with Wheat Straw Ash and Silica Fume. Materials 2022, 15, 3177. [Google Scholar] [CrossRef]
- Ibragimov, R.A.; Korolev, E.V.; Deberdeev, T.R.; Leksin, V.V. Durability of heavy-weight concrete with portland cement treated in apparatus of vortex layer. Constr. Mater. 2017, 10, 28–31. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B.; Shuyskiy, A. Improvement of Strength and Strain Characteristics of Lightweight Fiber Concrete by Electromagnetic Activation in a Vortex Layer Apparatus. Appl. Sci. 2022, 12, 104. [Google Scholar] [CrossRef]
- Adoshev, A.; Antonov, S.; Yastrebov, S.; Melnikov, M. Ferro-vortex apparatus. Eng. Rural. Dev. 2017, 1, 804–810. [Google Scholar] [CrossRef]
- Sekulic, Z.; Popov, S.; Đuričić, M.; Rosić, A. Mechanical activation of cement with addition of fly ash. Mater. Lett. 1999, 39, 115–121. [Google Scholar] [CrossRef]
- Sayer, S.M.; Dahlin, A. Propagation of ultrasound through hydrating cement parts at early times. Adv. Cem. Based Mater. 1993, 1, 12–21. [Google Scholar] [CrossRef]
- Kennedy, D.P. A Study to Determine and Quantify the Benefits of Using Power Ultrasound Technology in a Precast Concrete Manyfacturing Environment; Trinity College: Dublin, Ireland, 2012; pp. 184–191. [Google Scholar]
- Intini, G.; Liberti, L.; Notarnicola, M.; Di Canio, F. Mechanochemical activation of coal fly ash for production of high strength cement conglomerates. Chem. Sustain. Dev. 2009, 17, 567–571. Available online: https://www.sibran.ru/upload/iblock/411/mechanochemical_activation_of_coal_fly_ash_for_production_of_high_strength_cement_conglomerates.pdf (accessed on 5 August 2022).
- Sprince, A.; Pakrastins, L.; Baskers, B.; Gaile, L. Crack development research in extra fine aggregate cement composites. Proc. Int. Sci. Pract. Conf. 2015, 1, 205–208. [Google Scholar] [CrossRef]
- Ibragimov, R.; Korolev, E.; Kayumov, R.A.; Deberdeev, R.; Leksin, V.V.; Sprince, A. Efficiency of activation of mineral binders in vortex-layer devices. Mag. Civ. Eng. 2018, 82, 191–198. [Google Scholar] [CrossRef]
- Al-Maliki, A.A.K.; Aswed, K.K.; Abraheem, A.K. Properties of concrete with magnetic mixing water. AIP Conf. Proc. 2020, 2213, 020146. [Google Scholar] [CrossRef]
- Isam, T.; Abdel-Magid, M.; Hamdan, R.M.; Abdelgader, A.A.B.; Omer, M.E.A.; Ahmed, N.M.R.-A. Effect of Magnetized Water on Workability and Compressive Strength of Concrete. Procedia Eng. 2017, 193, 494–500. [Google Scholar] [CrossRef]
- Milton, J.C.; Gnanaraj, P.A. Compressive Strength of Concrete with Nano Cement. In Cement Industry: Optimization, Characterization and Sustainable Application; IntechOpen: London, UK, 2021. [Google Scholar] [CrossRef]
- Malathy, R.; Shanmugam, R.; Chung, I.-M.; Kim, S.-H.; Prabakaran, M. Mechanical and Microstructural Properties of Composite Mortars with Lime, Silica Fume and Rice Husk Ash. Processes 2022, 10, 1424. [Google Scholar] [CrossRef]
- Sobuz, M.H.R.; Saha, A.; Anamika, J.F.; Houda, M.; Azab, M.; Akid, A.S.M.; Rana, M.J. Development of Self-Compacting Concrete Incorporating Rice Husk Ash with Waste Galvanized Copper Wire Fiber. Buildings 2022, 12, 1024. [Google Scholar] [CrossRef]
- Safari, J.; Mirzaei, M.; Rooholamini, H.; Hassani, A. Effect of rice husk ash and macro-synthetic fibre on the properties of self-compacting concrete. Constr. Build. Mater. 2018, 175, 371–380. [Google Scholar] [CrossRef]
- Le, H.T.; Ludwig, H.-M. Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete. Mater. Des. 2016, 89, 156–166. [Google Scholar] [CrossRef]
- Chopra, D.; Siddique, R.; Kunal. Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst. Eng. 2015, 130, 72–80. [Google Scholar] [CrossRef]
- Zhao, W.; Ji, C.; Sun, Q.; Gu, Q. Preparation and Microstructure of Alkali-Activated Rice Husk Ash-Granulated Blast Furnace Slag Tailing Composite Cemented Paste Backfill. Materials 2022, 15, 4397. [Google Scholar] [CrossRef]
- Amin, M.N.; Ahmad, W.; Khan, K.; Sayed, M.M. Mapping Research Knowledge on Rice Husk Ash Application in Concrete: A Scientometric Review. Materials 2022, 15, 3431. [Google Scholar] [CrossRef]
- Zareei, S.A.; Ameri, F.; Dorostkar, F.; Ahmadi, M. Rice husk ash as a partial replacement of cement in high strength concrete containing micro silica: Evaluating durability and mechanical properties. Case Stud. Constr. Mater. 2017, 7, 73–81. [Google Scholar] [CrossRef]
- Ahmed, A.; Ameer, S.; Abbas, S.; Abbass, W.; Razzaq, A.; Mohamed, A.M.; Mohamed, A. Effectiveness of Ternary Blend Incorporating Rice Husk Ash, Silica Fume, and Cement in Preparing ASR Resilient Concrete. Materials 2022, 15, 2125. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. Enhanced Eco-Friendly Concrete Nano-Change with Eggshell Powder. Appl. Sci. 2022, 12, 6606. [Google Scholar] [CrossRef]
- Nduka, D.O.; Olawuyi, B.J.; Fagbenle, O.I.; Fonteboa, B.G. Assessment of the Durability Dynamics of High-Performance Concrete Blended with a Fibrous Rice Husk Ash. Crystals 2022, 12, 75. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, S.; Yang, F.; Weng, Y.; Qian, S. Sustainable high strength, high ductility engineered cementitious composites (ECC) with substitution of cement by rice husk ash. J. Clean. Prod. 2021, 317, 128379. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Beskopylny, N. High-Performance Concrete Nanomodified with Recycled Rice Straw Biochar. Appl. Sci. 2022, 12, 5480. [Google Scholar] [CrossRef]
- Goodman, B.A. Utilization of waste straw and husks from rice production: A review. J. Bioresour. Bioprod. 2020, 5, 143–162. [Google Scholar] [CrossRef]
- Hidalgo, S.; Soriano, L.; Monzó, J.; Payá, J.; Font, A.; Borrachero, M.V. Evaluation of Rice Straw Ash as a Pozzolanic Addition in Cementitious Mixtures. Appl. Sci. 2021, 11, 773. [Google Scholar] [CrossRef]
- Shcherban’, E.M.; Stel’makh, S.A.; Beskopylny, A.; Mailyan, L.R.; Meskhi, B. Influence of Mechanochemical Activation of Concrete Components on the Properties of Vibro-Centrifugated Heavy Concrete. Appl. Sci. 2021, 11, 10647. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Butko, D.; Smolyanichenko, A.S. Influence of Composition and Technological Factors on Variatropic Efficiency and Constructive Quality Coefficients of Lightweight Vibro-Centrifuged Concrete with Alkalized Mixing Water. Appl. Sci. 2021, 11, 9293. [Google Scholar] [CrossRef]
- Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Varavka, V.; Beskopylny, N.; El’shaeva, D. A Study on the Cement Gel Formation Process during the Creation of Nanomodified High-Performance Concrete Based on Nanosilica. Gels 2022, 8, 346. [Google Scholar] [CrossRef] [PubMed]
- Beskopylny, A.N.; Shcherban’, E.M.; Stel’makh, S.A.; Mailyan, L.R.; Meskhi, B.; Evtushenko, A.; Varavka, V.; Beskopylny, N. Nano-Modified Vibrocentrifuged Concrete with Granulated Blast Slag: The Relationship between Mechanical Properties and Micro-Structural Analysis. Materials 2022, 15, 4254. [Google Scholar] [CrossRef] [PubMed]
- Stel’makh, S.A.; Shcherban’, E.M.; Beskopylny, A.N.; Mailyan, L.R.; Meskhi, B.; Beskopylny, N.; Dotsenko, N.; Kotenko, M. Nanomodified Concrete with Enhanced Characteristics Based on River Snail Shell Powder. Appl. Sci. 2022, 12, 7839. [Google Scholar] [CrossRef]
- GOST 30744 Methods of Testing with Using Polyfraction Standard Sand. Available online: https://docs.cntd.ru/document/1200011363 (accessed on 12 August 2022).
- GOST 10180 Concretes. Methods for Strength Determination Using Reference Specimens. Available online: https://docs.cntd.ru/document/1200100908 (accessed on 12 August 2022).
- GOST 24452 Concretes. Methods of Prismatic, Compressive Strength, Modulus of Elasticity and Poisson’s Ratio Determination. Available online: https://docs.cntd.ru/document/9056198 (accessed on 12 August 2022).
- Kuznetsov, D.V.; Kostitsyn, M.A.; Konyukhov, Y.V.; Mitrofanov, A.V.; Lysov, D.V.; Yudin, A.G.; Muratov, D.S.; Burmistrov, I.N. Development of a procedure for modifying nanomaterials of mullite-corundum mixes in equipment with a high-intensity rotating electromagnetic field. Refract. Ind. Ceram. 2012, 53, 54–58. [Google Scholar] [CrossRef]
- Pourghahramani, P.; Forssberg, E. Comparative study of microstructural characteristics and stored energy of mechanically activated hematite in different grinding environments. Int. J. Mineral. Process. 2006, 79, 120–139. [Google Scholar] [CrossRef]
Property | Value |
---|---|
Specific surface, cm2/g | 3124 |
Normal consistency, % | 25.5 |
Density, kg/m3 | 3112 |
Setting time, hour–min. - start - end | 2–20 3–25 |
Compressive strength at the age of 28 days, MPa | 43.7 |
Tensile strength in bending at the age of 28 days, MPa | 5.3 |
Cement Type | C3S | C2S | C3A | C4AF |
---|---|---|---|---|
CEM I 42.5 N | 68.9 | 13.4 | 6.3 | 11.4 |
Characteristic Name | Value |
---|---|
Fraction size | 10–20 |
Bulk density, kg/m3 | 1456 |
True density, kg/m3 | 2670 |
Crushability, % by weight | 11.2 |
The content of flaky grains, % by weight | 6.4 |
Indicator Title | Indicator Value | ||||||
---|---|---|---|---|---|---|---|
Grain composition of sand | Sieve size, mm | 2.5 | 1.25 | 0.63 | 0.315 | 0.16 | <0.16 |
Parttial rests, % | 3.0 | 3.9 | 6.1 | 38.6 | 46.8 | 1.7 | |
Full rests, % | 3.0 | 6.8 | 13.0 | 51.5 | 98.3 | ||
Fineness modulus | 1.73 | ||||||
Content of Dust and Clay Particles, % | 0.25 | ||||||
True grain density, kg/m3 | 2665 | ||||||
Bulk density, kg/m3 | 1428 |
Sorbent Type | C, % | O, % | Si, % | K, % | Ca, % | Mg, % | Na, % | Cl, % | Fe, % | Al, % |
---|---|---|---|---|---|---|---|---|---|---|
Rice straw biochar with electromagnetic treatment [54] | 78.5 | 18.5 | 2.1 | 0.5 | 0.1 | 0.1 | 0.1 | - | 0.1 | - |
Rice straw biochar without electromagnetic treatment | 43.3 | 42.5 | 8.2 | 1.0 | 1.1 | 0.8 | 0.3 | 0.1 | - | 2.7 |
Composition Number | Composition Type | Cement, kg/m3 | Water, L/m3 | RSA, kg/m3 |
---|---|---|---|---|
1 | Control composition | 375 | 94 | 0 |
2 | Electromagnetically treated cement paste | 375 | 94 | 0 |
3 | Electromagnetic treated cement paste with RSA 5% instead of part of the cement | 356.3 | 94 | 18.7 |
4 | Electromagnetically processed cement paste with RSA 10% instead of part of the cement | 337.5 | 94 | 37.5 |
5 | Electromagnetically treated cement with RSA 15% instead of part of the cement | 318.7 | 94 | 56.3 |
Composition Number | Compressive Strength, MPa | Tensile Strength in Bending, MPa |
---|---|---|
1 | 40.8 ± 2.4 | 5.82 ± 0.36 |
2 | 47.9 ± 2.7 | 6.41 ± 0.33 |
3 | 49.5 ± 2.5 | 7.09 ± 0.34 |
4 | 38.4 ± 2.4 | 5.71 ± 0.38 |
5 | 28.5 ± 1.7 | 5.02 ± 0.36 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beskopylny, A.N.; Stel’makh, S.A.; Shcherban’, E.M.; Mailyan, L.R.; Meskhi, B.; Smolyanichenko, A.S.; Varavka, V.; Beskopylny, N.; Dotsenko, N. Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. J. Compos. Sci. 2022, 6, 268. https://doi.org/10.3390/jcs6090268
Beskopylny AN, Stel’makh SA, Shcherban’ EM, Mailyan LR, Meskhi B, Smolyanichenko AS, Varavka V, Beskopylny N, Dotsenko N. Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. Journal of Composites Science. 2022; 6(9):268. https://doi.org/10.3390/jcs6090268
Chicago/Turabian StyleBeskopylny, Alexey N., Sergey A. Stel’makh, Evgenii M. Shcherban’, Levon R. Mailyan, Besarion Meskhi, Alla S. Smolyanichenko, Valery Varavka, Nikita Beskopylny, and Natal’ya Dotsenko. 2022. "Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete" Journal of Composites Science 6, no. 9: 268. https://doi.org/10.3390/jcs6090268
APA StyleBeskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Meskhi, B., Smolyanichenko, A. S., Varavka, V., Beskopylny, N., & Dotsenko, N. (2022). Influence of Electromagnetic Activation of Cement Paste and Nano-Modification by Rice Straw Biochar on the Structure and Characteristics of Concrete. Journal of Composites Science, 6(9), 268. https://doi.org/10.3390/jcs6090268