Thermally Conductive Styrene-Butadiene Rubber/Boron Nitride Nanotubes Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Hansen Solubility Parameters of Styrene Butadiene Rubber
3.2. Fabrication Styrene-Butadiene Rubber/Boron Nitride Nanotubes Composites
3.2.1. Rheology
3.2.2. Transmission Electron Microscopy
3.2.3. Thermal Conductivity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhi, C.; Bando, Y.; Terao, T.; Tang, C.; Kuwahara, H.; Golberg, D. Towards Thermoconductive, Electrically Insulating Polymeric Composites with Boron Nitride Nanotubes as Fillers. Adv. Funct. Mater. 2009, 19, 1857–1862. [Google Scholar] [CrossRef]
- Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. Boron Nitride Nanotubes and Nanosheets. ACS Nano 2010, 4, 2979–2993. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Lee, C.H.; Yap, Y.K. Recent advancements in boron nitride nanotubes. Nanoscale 2010, 2, 2028–2034. [Google Scholar] [CrossRef]
- Chen, Y.; Zou, J.; Campbell, S.J.; Le Caer, G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432. [Google Scholar] [CrossRef]
- Terao, T.; Bando, Y.; Mitome, M.; Zhi, C.; Tang, C.; Golberg, D. Thermal Conductivity Improvement of Polymer Films by Catechin-Modified Boron Nitride Nanotubes. J. Phys. Chem. C 2009, 113, 13605–13609. [Google Scholar] [CrossRef]
- Terao, T.; Zhi, C.; Bando, Y.; Mitome, M.; Tang, C.; Golberg, D. Alignment of Boron Nitride Nanotubes in Polymeric Composite Films for Thermal Conductivity Improvement. J. Phys. Chem. C 2010, 114, 4340–4344. [Google Scholar] [CrossRef]
- Su, J.; Xiao, Y.; Ren, M. Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets. Phys. Status Solidi A 2013, 12, 2699–2705. [Google Scholar] [CrossRef]
- Huang, X.; Zhi, C.; Jiang, P.; Golberg, D.; Bando, Y.; Tanaka, T. Polyhedral Oligosilsesquioxane-Modified Boron Nitride Nanotube Based Epoxy Nanocomposites: An Ideal Dielectric Material with High Thermal Conductivity. Adv. Funct. Mater. 2013, 23, 1824–1831. [Google Scholar] [CrossRef]
- Jakubinek, M.B.; Niven, J.F.; Johnson, M.B.; Ashrafi, B.; Kim, K.S.; Simard, B.; White, M.A. Thermal conductivity of bulk boron nitride nanotube sheets and their epoxy-impregnated composites. Phys. Status Solidi A 2016, 213, 2237–2242. [Google Scholar] [CrossRef]
- Wang, L.; Han, D.; Luo, J.; Li, T.; Lin, Z.; Yao, Y. Highly Efficient Growth of Boron Nitride Nanotubes and the Thermal Conductivity of Their Polymer Composites. J. Phys. Chem. C 2018, 122, 1867–1873. [Google Scholar] [CrossRef]
- Sun, N.; Sun, J.; Zeng, X.; Chen, P.; Qian, J.; Xia, R.; Sun, R. Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos. Part A 2018, 110, 45–52. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Y.; Zeng, X.; Li, Q.; Ren, L.; Sun, R.; Xu, J.B.; Wong, C.P. Polymer composite with enhanced thermal conductivity and mechanical strength through orientation manipulating of BN. Compos. Sci. Technol. 2018, 160, 127–137. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, J.; Li, Z.; Tian, W.; Wang, L.; Luo, J.; Li, Q.; Fan, X.; Yao, Y. Enhanced through-plane thermal conductivity of boron nitride/epoxy composites. Compos. Part A 2017, 98, 25–31. [Google Scholar] [CrossRef]
- Cho, H.B.; Nakayama, T.; Suematsu, H.; Suzuki, T.; Jiang, W.; Niihara, K.; Song, E.; Eom, N.S.A.; Kim, S.; Choa, W.J. Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets. Compos. Sci. Technol. 2016, 129, 205–213. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; Tang, Z.; Guo, B. Scalable fabrication of thermally conductive elastomer/boron nitride nanosheets composites by slurry compounding. Compos. Sci. Technol. 2016, 123, 179–186. [Google Scholar] [CrossRef]
- Wu, X.; Yang, Z.; Kuang, W.; Tang, Z.; Guo, B. Coating polyrhodanine onto boron nitride nanosheets for thermally conductive elastomer composites. Compos. Part A 2017, 94, 77–85. [Google Scholar] [CrossRef]
- Hansen, C.M. Hansen Solubility Parameters, a User’s Handbook; Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Barton, A.F.M. Solubility parameters. Chem. Rev. 1975, 75, 731–753. [Google Scholar] [CrossRef]
- Hansen, C.M. Polymer additives and solubility parameters. Prog. Org. Coat. 2004, 51, 109–112. [Google Scholar] [CrossRef]
- Kim, K.S.; Kingston, C.T.; Hrdina, A.; Jakubinek, M.B.; Guan, J.; Plunkett, M.; Simard, B. Hydrogen-Catalyzed, Pilot-Scale Production of Small-Diameter Boron Nitride Nanotubes and Their Macroscopic Assemblies. ACS Nano 2014, 8, 6211–6220. [Google Scholar] [CrossRef]
- Cho, H.; Walker, S.; Plunkett, M.; Ruth, D.; Iannitto, R.; Martinez-Rubi, Y.; Kim, K.S.; Homenick, C.M.; Brinkmann, A.; Couillard, M.; et al. Scalable Gas-Phase Purification of Boron Nitride Nanotubes by Selective Chlorine Etching. Chem. Mater. 2020, 32, 3911–3921. [Google Scholar] [CrossRef]
- Girard, M.; Vidal, D.; Bertrand, F.; Tavares, J.R.; Heuzey, M.C. Evidence-based guidelines for the ultrasonic dispersion of cellulose nanocrystals. Ultrason. Sonochem. 2021, 71, 105378. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.S.; Li, X.P.; Qi, P.J.; Song, Z.J.; Zhang, Z.; Wang, K.; Qiu, G.X.; Liu, G.Y. Determination of three-dimensional solubility parameters of styrene butadiene rubber and the potential application in tire tread formula design. Polym. Test. 2020, 81, 106170. [Google Scholar] [CrossRef]
- Abbott, S.; Hansen, C.M.; Yamamoto, H. Hansen Solubility Parameters in Practice. 2008. Available online: https://www.hansen-solubility.com/(accessed on 25 August 2022).
- Torres Castillo, C.S.; Bruel, C.; Tavares, J.R. Chemical affinity and dispersibility of boron nitride nanotubes. Nanoscale Adv. 2020, 2, 2497–2506. [Google Scholar] [CrossRef]
- Wang, M.J. Effect of Polymer-Filler and Filler-Filler Interactions on Dynamic Properties of Filled Vulcanizates. Rubber Chem. Technol. 1998, 71, 520–589. [Google Scholar] [CrossRef]
- Chazeau, L.; Brown, J.D.; Yanyo, L.C.; Sternstein, S.S. Modulus Recovery Kinetics and Other Insights Into the Payne Effect for Filled Elastomers. Polym. Compos. 2000, 21, 202–222. [Google Scholar] [CrossRef]
- Leblanc, J.L. Rubber-filler interactions and rheological properties in filled compounds. Prog. Polym. Sci. 2002, 27, 627–687. [Google Scholar] [CrossRef]
- Das, A.; Stockelhuber, K.W.; Jurk, R.; Saphiannikova, M.; Fritzsche, J.; Lorenz, H.; Kluppel, M.; Heinrich, G. Modified and unmodified multiwalled carbon nanotubes in high performance solution-styrene–butadiene and butadiene rubber blends. Polymer 2008, 49, 5276–5283. [Google Scholar] [CrossRef]
- Zhong, B.; Jia, Z.; Luo, Y.; Jia, D. A method to improve the mechanical performance of styrene-butadiene rubber via vulcanization accelerator modified silica. Compos. Sci. Technol. 2015, 117, 46–53. [Google Scholar] [CrossRef]
- Spanjaards, M.M.A.; Peters, G.W.M.; Hulsen, M.A.; Anderson, P.D. Towards the Development of a Strategy to Characterize and Model the Rheological Behavior of Filled, Uncured Rubber Compounds. Polymers 2021, 13, 4068. [Google Scholar] [CrossRef]
- Kim, K.; Kim, J. Fabrication of thermally conductive composite with surface modified boron nitride by epoxy wetting method. Ceram. Int. 2014, 40, 5181–5189. [Google Scholar] [CrossRef]
- Xie, B.H.; Huang, X.; Zhang, G.J. High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers. Compos. Sci. Technol. 2013, 85, 98–103. [Google Scholar] [CrossRef]
- Song, S.; Zhang, Y. Carbon nanotube/reduced graphene oxide hybrid for simultaneously enhancing the thermal conductivity and mechanical properties of styrene-butadiene rubber. Carbon 2017, 123, 158–167. [Google Scholar] [CrossRef]
- Liu, Y.; Kumar, S. Polymer/Carbon Nanotube Nano Composite Fibers—A Review. ACS Appl. Mater. Interfaces 2014, 6, 6069–6087. [Google Scholar] [CrossRef] [PubMed]
- Moisala, A.; Li, Q.; Kinloch, I.; Windle, A. Thermal and electrical conductivity of single- and multi-walled carbon nanotube-epoxy composites. Compos. Sci. Technol. 2006, 66, 1285–1288. [Google Scholar] [CrossRef]
- Ma, P.; Siddiqui, N.; Marom, g.; Kim, J. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Kapadia, R.; Louie, B.; Bandaru, P. The Influence of Carbon Nanotube Aspect Ratio on Thermal Conductivity Enhancement in Nanotube–Polymer Composites. J. Heat Transf. 2014, 136, 011303. [Google Scholar] [CrossRef]
- Kwon, S.; Kwon, I.; Kim, Y.; Lee, S.; Seo, Y. A large increase in the thermal conductivity of carbon nanotube/polymer composites produced by percolation phenomena. Carbon 2013, 55, 285–290. [Google Scholar] [CrossRef]
Matrix | BN Material | Aligned or Modified | Loading | TC Composite (W/(m∙K)) | % TC Increase | Ref. |
---|---|---|---|---|---|---|
PS | BNNTs | No | 35 wt% | 3.61 | 1905 | [1] |
PMMA PEVA | 24 wt% | 3.16 | 2006 | |||
37 wt% | 2.5 | 1370 | ||||
PVB | 18 wt% | 1.81 | 654 | |||
PVF | BNNTs | No | 10 wt% | 0.45 | 150 | [5] |
PVA | m-BNNTs | Yes | 3 wt% | ~0.30 | 267 | |
PVA | (O)BNNTs | Yes | 10 wt% | 0.54 | 237 | [6] |
Epoxy | BNNTs-BNNSs | Yes | 2 wt% | 0.47 | 147 | [7] |
Epoxy | BNNTs | Yes | 30 wt% | 2.77 | 1285 | [8] |
Epoxy | BNNTs | No | 30 wt% | 2.9 | 1350 | [9] |
TPU | BNNTs | No | 1 wt% | 14.5 | ≥400 | [10] |
PC | BN plates | Yes | 18.5 vol% | 3.09 | 115 | [11] |
Epoxy | BN platelets | Yes | 50 wt% | 6.09 | 2800 | [12] |
Epoxy resin | h-BN | Yes | 44 vol% | 9.0 | 4400 | [13] |
Polysiloxane | BNNSs | Yes | 15 vol% | 1.56 | 290 | [14] |
SBR | BN | Yes | 10. 5 vol% | 0.28 | 82 | [15] |
BNNSs | 0.43 | 119 | ||||
Si-BNNSs | 0.57 | 253 | ||||
SBR | IBNNSs | Yes | 27.5 vol% | 0.55 | 189 | [16] |
(O)BNNSs | 1.08 | 468 | ||||
(R)PRh-BNNSs | 0.75 | 295 | ||||
(O)PRh-BNNSs | 1.50 | 689 |
BNNT Loading | Mass SBR | Mass BNNT |
---|---|---|
0 wt% | 1 g | 0 g |
1 wt% | 0.990 g | 0.010 g |
5 wt% | 0.950 g | 0.050 g |
10 wt% | 0.900 g | 0.100 g |
Solvent | δd | δp | δh | Score | Ra | RED |
---|---|---|---|---|---|---|
d-Limonene | 17.2 | 1.8 | 4.3 | 2 | 0.81 | 0.16 |
Chloroform | 17.8 | 3.1 | 5.7 | 2 | 1.64 | 0.33 |
Toluene | 18 | 1.4 | 2 | 2 | 2.90 | 0.58 |
Ethyl benzene | 17.8 | 0.6 | 1.4 | 2 | 3.64 | 0.73 |
Ethyl benzoate | 17.9 | 6.2 | 6 | 2 | 4.15 | 0.83 |
1,4-Dioxane | 17.5 | 1.8 | 9 | 2 | 4.66 | 0.93 |
Tetrahydrofuran | 16.8 | 5.7 | 8 | 2 | 4.96 | 0.99 |
Cyclohexane | 16.8 | 0 | 0.2 | 2 | 5.03 | 1.01 |
Ethyl acetate | 15.8 | 5.3 | 7.2 | 1 | 5.09 | 1.02 |
Methyl ethyl ketone | 16 | 9 | 5.1 | 1 | 7.11 | 1.42 |
Benzyl alcohol | 18.4 | 6.3 | 13.7 | 1 | 10.24 | 2.05 |
Acetone | 15.5 | 10.4 | 7 | 0 | 9.14 | 1.83 |
2-Propanol | 15.8 | 6.1 | 16.4 | 0 | 12.93 | 2.59 |
N,N′-Dimethylformamide | 17.4 | 13.7 | 11.3 | 0 | 13.15 | 2.63 |
Dimethylsulfoxide | 18.4 | 16.4 | 10.2 | 0 | 15.19 | 3.04 |
Propylene carbonate | 20 | 18 | 4.1 | 0 | 16.35 | 3.27 |
Ethanol | 15.8 | 8.8 | 19.4 | 0 | 16.58 | 3.32 |
Methanol | 15.1 | 12.3 | 22.3 | 0 | 20.92 | 4.18 |
Ethylene glicol | 17 | 11 | 26 | 0 | 23.23 | 4.65 |
Formamide | 17.2 | 26.2 | 19 | 0 | 27.84 | 5.57 |
Tol/EA (20/80) 1 | 16.2 | 4.5 | 6.2 | 2 | 3.61 | 0.72 |
Tol:EA Volume Ratio | δd | δp | δh | Ra | RED |
---|---|---|---|---|---|
0/1 | 15.8 | 5.3 | 7.2 | 5.09 | 1.02 |
0.1/0.9 | 16.0 | 4.9 | 6.7 | 4.32 | 0.86 |
0.2/0.8 | 16.2 | 4.5 | 6.2 | 3.54 | 0.71 |
0.3/0.7 | 16.5 | 4.1 | 5.6 | 2.78 | 0.56 |
0.4/0.6 | 16.7 | 3.7 | 5.1 | 2.03 | 0.41 |
0.5/0.5 | 16.9 | 3.4 | 4.6 | 1.33 | 0.27 |
0.6/0.4 | 17.1 | 3.0 | 4.1 | 0.79 | 0.16 |
0.7/0.3 | 17.3 | 2.6 | 3.6 | 0.85 | 0.17 |
0.8/0.2 | 17.6 | 2.2 | 3.0 | 1.43 | 0.29 |
0.9/0.1 | 17.8 | 1.8 | 2.5 | 2.15 | 0.43 |
1/0 | 18 | 1.4 | 2 | 2.90 | 0.58 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Castillo, C.S.; Tavares, J.R. Thermally Conductive Styrene-Butadiene Rubber/Boron Nitride Nanotubes Composites. J. Compos. Sci. 2022, 6, 272. https://doi.org/10.3390/jcs6090272
Torres-Castillo CS, Tavares JR. Thermally Conductive Styrene-Butadiene Rubber/Boron Nitride Nanotubes Composites. Journal of Composites Science. 2022; 6(9):272. https://doi.org/10.3390/jcs6090272
Chicago/Turabian StyleTorres-Castillo, Cristina S., and Jason R. Tavares. 2022. "Thermally Conductive Styrene-Butadiene Rubber/Boron Nitride Nanotubes Composites" Journal of Composites Science 6, no. 9: 272. https://doi.org/10.3390/jcs6090272
APA StyleTorres-Castillo, C. S., & Tavares, J. R. (2022). Thermally Conductive Styrene-Butadiene Rubber/Boron Nitride Nanotubes Composites. Journal of Composites Science, 6(9), 272. https://doi.org/10.3390/jcs6090272