Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of the Al2O3/ZnO/Fe(CO)5/SR Composites
2.3. Characterization of the Al2O3/ZnO/Fe(CO)5/SR Composites
3. Results and Discussion
3.1. Structure and Composition
3.2. Electromagnetic Properties
3.3. Heat Transfer Properties
3.4. Mechanical Properties
3.5. Mechanism Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lin, T.; Yu, H.; Wang, L.; Fahad, S.; Khan, A.; Naveed, K.-u.-R.; Haq, F.; Nazir, A.; Amin, B.U. A review of recent advances in the preparation of polyaniline-based composites and their electromagnetic absorption properties. J. Mater. Sci. 2021, 56, 5449–5478. [Google Scholar] [CrossRef]
- Song, Q.; Ye, F.; Yin, X.; Li, W.; Li, H.; Liu, Y.; Li, K.; Xie, K.; Li, X.; Fu, Q.; et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding. Adv. Mater. 2017, 29, 1701583. [Google Scholar] [CrossRef] [PubMed]
- Grimes, D.R. Radiofrequency Radiation and Cancer: A Review. JAMA Oncol. 2022, 8, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Xu, X.; Li, H.; Han, Z.; Hao, J.; Yang, G.; Xie, Z.; Chen, Y.; Liu, W.; Wang, Q.; et al. Soft liquid-metal@elastomer foam with compression-adjustable thermal conductivity and electromagnetic interference shielding. Chem. Eng. J. 2021, 410, 128288. [Google Scholar] [CrossRef]
- Singh, A.K.; Shishkin, A.; Koppel, T.; Gupta, N. A review of porous lightweight composite materials for electromagnetic interference shielding. Compos. B Eng. 2018, 149, 188–197. [Google Scholar] [CrossRef]
- Cui, Y.; Qin, Z.; Wu, H.; Li, M.; Hu, Y. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management. Nat. Commun. 2021, 12, 1284. [Google Scholar] [CrossRef]
- Guo, Y.; Qiu, H.; Ruan, K.; Zhang, Y.; Gu, J. Hierarchically Multifunctional Polyimide Composite Films with Strongly Enhanced Thermal Conductivity. Nano-Micro Lett. 2021, 14, 26. [Google Scholar] [CrossRef]
- Song, Y.; Perez, C.; Esteves, G.; Lundh, J.S.; Saltonstall, C.B.; Beechem, T.E.; Yang, J.I.; Ferri, K.; Brown, J.E.; Tang, Z.; et al. Thermal Conductivity of Aluminum Scandium Nitride for 5G Mobile Applications and Beyond. ACS Appl. Mater. Interfaces 2021, 13, 19031–19041. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Zhang, T.; Chang, H.; Xiao, P.; Chen, H.; Huang, Z.; Chen, Y. Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 2015, 27, 2049–2053. [Google Scholar] [CrossRef]
- Lee, S.H.; Yu, S.; Shahzad, F.; Kim, W.N.; Park, C.; Hong, S.M.; Koo, C.M. Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 2017, 9, 13432–13440. [Google Scholar] [CrossRef] [Green Version]
- An, D.; Duan, X.; Cheng, S.; Zhang, Z.; Yang, B.; Lian, Q.; Li, J.; Sun, Z.; Liu, Y.; Wong, C.-P. Enhanced thermal conductivity of natural rubber based thermal interfacial materials by constructing covalent bonds and three-dimensional networks. Compos. Part A Appl. Sci. Manuf. 2020, 135, 105928. [Google Scholar] [CrossRef]
- Mehra, N.; Mu, L.; Zhu, J. Developing heat conduction pathways through short polymer chains in a hydrogen bonded polymer system. Compos. Sci. Technol. 2017, 148, 97–105. [Google Scholar] [CrossRef]
- Mu, L.; Li, Y.; Mehra, N.; Ji, T.; Zhu, J. Expedited Phonon Transfer in Interfacially Constrained Polymer Chain along Self-Organized Amino Acid Crystals. ACS Appl. Mater. Interfaces 2017, 9, 12138–12145. [Google Scholar] [CrossRef] [PubMed]
- Javid, M.; Zhou, Y.; Zhou, T.; Wang, D.; Zhou, L.; Shah, A.; Duan, Y.; Dong, X.; Zhang, Z. In-situ fabrication of Fe@ZrO2 nanochains for the heat-resistant electromagnetic wave absorber. Mater. Lett. 2019, 242, 199–202. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, P.; Gupta, R.; Verma, V. Electromagnetic interference shielding behaviors of in-situ polymerized ferrite-polyaniline nano-composites and ferrite-polyaniline deposited fabrics in X-band frequency range. J. Alloys Compd. 2021, 862, 158331. [Google Scholar] [CrossRef]
- Mittal, G.; Dhand, V.; Rhee, K.Y.; Park, S.J.; Lee, W.R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25. [Google Scholar] [CrossRef]
- Si, T.; Xie, S.; Ji, Z.; Ma, C.; Wu, Z.; Wu, J.; Wang, J. Synergistic effects of carbon black and steel fibers on electromagnetic wave shielding and mechanical properties of graphite/cement composites. J. Buil. Eng. 2022, 45, 103561. [Google Scholar] [CrossRef]
- Liu, L.; Chen, X.; Pan, F.; Tang, A.; Wang, X.; Liu, J.; Gao, S. Microstructure, texture, mechanical properties and electromagnetic shielding effectiveness of Mg–Zn–Zr–Ce alloys. Mater. Sci. Eng. A 2016, 669, 259–268. [Google Scholar] [CrossRef]
- Wang, B.; Wu, Q.; Fu, Y.; Liu, T. A review on carbon/magnetic metal composites for microwave absorption. J. Mater. Sci. Technol. 2021, 86, 91–109. [Google Scholar] [CrossRef]
- Choudhary, H.K.; Kumar, R.; Pawar, S.P.; Sundararaj, U.; Sahoo, B. Effect of morphology and role of conductivity of embedded metallic nanoparticles on electromagnetic interference shielding of PVDF-carbonaceous-nanofiller composites. Carbon 2020, 164, 357–368. [Google Scholar] [CrossRef]
- Seshadri, I.; Esquenazi, G.L.; Borca-Tasciuc, T.; Keblinski, P.; Ramanath, G. Multifold Increases in Thermal Conductivity of Polymer Nanocomposites through Microwave Welding of Metal Nanowire Fillers. Adv. Mater. Interfaces 2015, 2, 1500186. [Google Scholar] [CrossRef]
- Rajeh, A.; Ragab, H.M.; Abutalib, M.M. Co doped ZnO reinforced PEMA/PMMA composite: Structural, thermal, dielectric and electrical properties for electrochemical applications. J. Mol. Struct. 2020, 1217, 128447. [Google Scholar] [CrossRef]
- Yang, C.R.; Chen, C.D.; Cheng, C.; Shi, W.H.; Chen, P.H.; Teng, T.P. Thermal conductivity enhancement of AlN/PDMS composites using atmospheric plasma modification techniques. Int. J. Therm. Sci. 2020, 155, 106431. [Google Scholar] [CrossRef]
- Yu, X.; Xue, M.; Yin, Z.; Luo, Y.; Hong, Z.; Xie, C.; Yang, Y.; Ren, Z. Flexible boron nitride composite membranes with high thermal conductivity, low dielectric constant and facile mass production. Compos. Sci. Technol. 2022, 222, 109400. [Google Scholar] [CrossRef]
- He, J.; Wang, H.; Qu, Q.; Su, Z.; Qin, T.; Tian, X. Three-dimensional network constructed by vertically oriented multilayer graphene and SiC nanowires for improving thermal conductivity and operating safety of epoxy composites with ultralow loading. Compos. Part A Appl. Sci. Manuf. 2020, 139, 106062. [Google Scholar] [CrossRef]
- Lee, W.; Wie, J.; Kim, J. Enhancement of thermal conductivity of alumina/epoxy composite using poly(glycidyl methacrylate) grafting and crosslinking. Ceram. Int. 2021, 47, 18662–18668. [Google Scholar] [CrossRef]
- Dai, W.; Lv, L.; Lu, J.; Hou, H.; Yan, Q.; Alam, F.E.; Li, Y.; Zeng, X.; Yu, J.; Wei, Q.; et al. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods. ACS Nano 2019, 13, 1547–1554. [Google Scholar] [CrossRef]
- Li, M.; Ali, Z.; Wei, X.; Li, L.; Song, G.; Hou, X.; Do, H.; Greer, J.C.; Pan, Z.; Lin, C.T.; et al. Stress induced carbon fiber orientation for enhanced thermal conductivity of epoxy composites. Compos. B Eng. 2021, 208, 108599. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Z.; Li, T.; Ma, P.; Zhang, X.; Xia, B.; Chen, M.; Du, M.; Liu, T.; Dong, W. Artificial Nacre Epoxy Nanomaterials Based on Janus Graphene Oxide for Thermal Management Applications. ACS Appl. Mater. Interfaces 2020, 12, 44273–44280. [Google Scholar] [CrossRef]
- Xu, Z.; Lin, G.; Sui, G. The synergistic effects on enhancing thermal conductivity and mechanical strength of hBN/CF/PE composite. J. Appl. Polym. Sci. 2020, 137, 49212. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, Z.; Zeng, H.; Yang, T.; Wang, X. Effects of graphene on various properties and applications of silicone rubber and silicone resin. Compos. Part A Appl. Sci. Manuf. 2021, 142, 106240. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.Y.Y. Investigation of electrophoretic deposition of PANI nano fibers as a manufacturing technology for corrosion protection. Prog. Org. Coat. 2022, 171, 107015. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.M.; Zaghloul, M.Y.Y.; Zaghloul, M.Y.Y. Developments in polyester composite materials—An in-depth review on natural fibres and nano fillers. Compos. Struct. 2021, 278, 114698. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.Y.; Zaghloul, M.Y.M.; Zaghloul, M.Y.Y. Experimental and modeling analysis of mechanical-electrical behaviors of polypropylene composites filled with graphite and MWCNT fillers. Polym. Test. 2017, 63, 467–474. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.Y.; Mohamed, Y.S.; El-Gamal, H. Fatigue and tensile behaviors of fiber-reinforced thermosetting composites embedded with nanoparticles. J. Compos. Mater. 2019, 53, 709–718. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.Y.M. Mechanical properties of linear low-density polyethylene fire-retarded with melamine polyphosphate. J. Appl. Polym. Sci. 2018, 135, 46770. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.Y.Y. Influence of flame retardant magnesium hydroxide on the mechanical properties of high density polyethylene composites. J. Reinf. Plast. Comp. 2017, 36, 1802–1816. [Google Scholar] [CrossRef]
- Chaudhary, A.; Kumar, R.; Teotia, S.; Dhawan, S.K.; Dhakate, S.R.; Kumari, S. Integration of MCMBs/MWCNTs with Fe3O4 in a flexible and light weight composite paper for promising EMI shielding applications. J. Mater. Chem. C 2017, 5, 322–332. [Google Scholar] [CrossRef]
- Zaghloul, M.Y.M.; Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Physical analysis and statistical investigation of tensile and fatigue behaviors of glass fiber-reinforced polyester via novel fibers arrangement. J. Compos. Mater. 2022. online first. [Google Scholar] [CrossRef]
- Li, R.; Gao, Q.; Xing, H.; Su, Y.; Zhang, H.; Zeng, D.; Fan, B.; Zhao, B. Lightweight, multifunctional MXene/polymer composites with enhanced electromagnetic wave absorption and high-performance thermal conductivity. Carbon 2021, 183, 301–312. [Google Scholar] [CrossRef]
- Chen, C.; Pu, N.; Liu, Y.; Chen, L.; Wu, C.; Cheng, T.; Lin, M.; Ger, M.; Gong, Y.; Peng, Y. Microwave absorption properties of holey graphene/silicone rubber composites. Compos. B Eng. 2018, 135, 119–128. [Google Scholar] [CrossRef]
- Ren, W.; Zhu, H.; Yang, Y.; Chen, Y.; Duan, H.; Zhao, G.; Liu, Y. Flexible and robust silver coated non-woven fabric reinforced waterborne polyurethane films for ultra-efficient electromagnetic shielding. Compos. B Eng. 2020, 184, 107745. [Google Scholar] [CrossRef]
- Zhang, P.; Tian, R.; Zhang, X.; Ding, X.; Wang, Y.; Xiao, C.; Zheng, K.; Liu, X.; Chen, L.; Tian, X. Electromagnetic interference shielding epoxy composites with satisfactory thermal conductivity and electrical insulation performance enabled by low-melting-point alloy layered structure. Compos. B Eng. 2022, 232, 109611. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Li, W.; Ding, R.; Xu, Y. CoFe2O4 and/or Co3Fe7 loaded porous activated carbon balls as a lightweight microwave absorbent. Phys. Chem. Chem. Phys. 2014, 16, 12385–12392. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, C.; Xue, Z.; Jiang, T.; Fang, G.; Peng, K.; Zhang, Y. Excellent microwave absorption of Fe3O4/Ag composites attained by synergy of considerable magnetic loss and dielectric loss. Ceram. Int. 2022, 48, 5824–5830. [Google Scholar] [CrossRef]
- Meng, F.; Zhao, R.; Zhan, Y.; Lei, Y.; Zhong, J.; Liu, X. Preparation and microwave absorption properties of Fe-phthalocyanine oligomer/Fe3O4 hybrid microspheres. Appl. Surf. Sci. 2011, 257, 5000–5006. [Google Scholar] [CrossRef]
- Dey, C.C.; Mallick, A.; Mahapatra, A.S.; Dalal, M.; Chakrabarti, P.K. Electromagnetic-wave shielding promulgation of cluster like FZ@MWCNT composite incorporated in GO matrices by polarization relaxation and potential degradation. Mater. Charact. 2021, 172, 110884. [Google Scholar] [CrossRef]
- Lin, J.L.; Su, S.M.; He, Y.B.; Kang, F.Y. Improving the thermal and mechanical properties of an alumina-filled silicone rubber composite by incorporating carbon nanotubes. Carbon 2020, 167, 931–932. [Google Scholar] [CrossRef]
- Suresha, B.; Saini, M.S. Influence of organo-modified montmorillonite nanolayers on static mechanical and dynamic mechanical behavior of carbon/epoxy composites. J. Compos. Mater. 2016, 50, 3589–3601. [Google Scholar] [CrossRef]
Raw Materials | Mean Diameter (μm) | Particle Size Distribution D50 (μm) | Thermal Conductivity W/(m × K) | Microwave-Absorbing Properties |
---|---|---|---|---|
ZnO/Al2O3 power | 20.3 | 15.799 | 29.98 | moderate |
Fe(CO)5 power | 1.9 | 1.799 | 7.85 | strong |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hong, Z.; Yu, X.; Xing, Y.; Xue, M.; Luo, Y.; Yin, Z.; Xie, C.; Yang, Y.; Ren, Z. Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties. J. Compos. Sci. 2023, 7, 15. https://doi.org/10.3390/jcs7010015
Hong Z, Yu X, Xing Y, Xue M, Luo Y, Yin Z, Xie C, Yang Y, Ren Z. Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties. Journal of Composites Science. 2023; 7(1):15. https://doi.org/10.3390/jcs7010015
Chicago/Turabian StyleHong, Zhen, Xingxing Yu, Yun Xing, Mingshan Xue, Yidan Luo, Zuozhu Yin, Chan Xie, Yingbin Yang, and Zeming Ren. 2023. "Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties" Journal of Composites Science 7, no. 1: 15. https://doi.org/10.3390/jcs7010015
APA StyleHong, Z., Yu, X., Xing, Y., Xue, M., Luo, Y., Yin, Z., Xie, C., Yang, Y., & Ren, Z. (2023). Tunable Head-Conducting Microwave-Absorbing Multifunctional Composites with Excellent Microwave Absorption, Thermal Conductivity and Mechanical Properties. Journal of Composites Science, 7(1), 15. https://doi.org/10.3390/jcs7010015