Aryloxyphosphazene-Modified and Graphite-Filled Epoxy Compositions with Reduced Flammability and Electrically Conductive Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Synthesis of Hexakis-[(4-formyl)phenoxy]cyclotriphosphazene (FPP)
2.4. Synthesis of the Phosphazene-Containing Curing Agent
2.5. Preparation of a Composition Based on Epoxy-Resorcinol Resin and Phosphazene-Containing Curing Agent
3. Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Belitskaya, O.A.; Fokina, A.A.; Belgorodskiy, V.S.; Sokolovskiy, A.R.; Panferova, E.G. Integral Assessment of Antistatic Properties of Materials Used in Individual Safety Gear. Mater. Sci. Forum 2023, 1085, 101–106. [Google Scholar] [CrossRef]
- Yadav, R.; Tirumali, M.; Wang, X.; Naebe, M.; Kandasubramanian, B. Polymer composite for antistatic application in aerospace. Def. Technol. 2020, 16, 107–118. [Google Scholar] [CrossRef]
- Liu, Y.; Lu, S.; Luo, J.; Zhao, Y.; He, J.; Liu, C.; Chen, Z.; Yu, X. Research progress of antistatic-reinforced polymer materials: A review. Polym. Adv. Technol. 2023, 34, 1393–1404. [Google Scholar] [CrossRef]
- Ivanov, L.A.; Demenev, A.V.; Muminova, S.R. The inventions in nanotechnologies as practical solutions. Part II. Nanotechnol. Constr. 2022, 11, 3677. [Google Scholar] [CrossRef]
- Ivanov, L.A.; Prokopiev, P.S. The inventions in nanotechnologies as practical solutions. Part IV. Nanotechnol. Constr. 2019, 12, 447–457. [Google Scholar] [CrossRef]
- Ivanov, L.A.; Xu, L.D.; Bokova, E.S.; Ishkov, A.D.; Muminova, S.R. Inventions of scientists, engineers and specialists from different countries in the area of nanotechnologies. Part I. Nanotechnol. Constr. 2021, 13, 23–31. [Google Scholar] [CrossRef]
- Moskalyuk, O.; Vol ‘nova, D.; Tsobkallo, E. Modeling of the Electrotransport Process in PP-Based and PLA-Based Composite Fibers Filled with Carbon Nanofibers. Polymers 2022, 14, 2362. [Google Scholar] [CrossRef]
- Moskalyuk, O.A.; Tsobkallo, E.S.; Stepashkina, A.S.; Yudin, V.E. Composites Based on Thermoplastic Polymeric Matrix and Carbon Nanoparticles with Special Functional Properties. Key Eng. Mater. 2019, 816, 244–249. [Google Scholar] [CrossRef]
- Kondrashov, S.V.; Soldatov, M.A.; Gunyaeva, A.G.; Shashkeev, K.A.; Komarova, O.A.; Barinov, D.Y.; Yurkov, G.Y.; Shevchenko, V.G.; Muzafarov, A.M. The use of noncovalently modified carbon nanotubes for preparation of hybrid polymeric composite materials with electrically conductive and lightning resistant properties. J. Appl. Polym. Sci. 2018, 135, 46108. [Google Scholar] [CrossRef]
- Kazakova, M.A.; Semikolenova, N.V.; Korovin, E.Y.; Moseenkov, S.I.; Andreev, A.S.; Kachalov, A.S.; Kuznetsov, V.L.; Suslyaev, V.I.; Mats’ko, M.A.; Zakharov, V.A. In situ polymerization technique for obtaining composite materials based on polyethylene, multi-walled carbon nanotubes and cobalt nanoparticles. Russ. J. Appl. Chem. 2018, 91, 127–135. [Google Scholar] [CrossRef]
- Li, G.; Fei, Y.; Kuang, T.; Liu, T.; Zhong, M.; Li, Y.; Jiang, J.; Turng, L.-S.; Chen, F. The Injected Foaming Study of Polypropylene/Multiwall Carbon Nanotube Composite with In Situ Fibrillation Reinforcement. Polymers 2022, 14, 5411. [Google Scholar] [CrossRef] [PubMed]
- Łukawski, D.; Hochmańska-Kaniewska, P.; Janiszewska, D.; Wróblewski, G.; Patmore, J.; Lekawa-Raus, A. Enriching WPCs and NFPCs with Carbon Nanotubes and Graphene. Polymers 2022, 14, 745. [Google Scholar] [CrossRef] [PubMed]
- Taratanov, N.A.; Syrbu, S.A. Preparation and properties of composite nanomaterials using two-layer copper particles. ChemChemTech 2021, 64, 76–83. [Google Scholar] [CrossRef]
- Mikhailov, M.M.; Goronchko, V.A. Changes in the Electrical Conductivity of Polypropylene Modified with Nanoparticles of Oxide Compounds. J. Surf. Investig. X-Ray Synchrotron Neutron 2022, 16, 343–346. [Google Scholar] [CrossRef]
- Chen, S.-H.; Ahmad, N.; Kuo, C.-F.J. Development of Multifunctional Nano-Graphene-Grafted Polyester to Enhance Thermal Insulation and Performance of Modified Polyesters. Polymers 2022, 14, 3821. [Google Scholar] [CrossRef] [PubMed]
- Bleija, M.; Platnieks, O.; Macutkevič, J.; Starkova, O.; Gaidukovs, S. Comparison of Carbon-Nanoparticle-Filled Poly(Butylene Succinate-co-Adipate) Nanocomposites for Electromagnetic Applications. Nanomaterials 2022, 12, 3671. [Google Scholar] [CrossRef] [PubMed]
- Su, M.; Chen, X.; Zhang, L.; Min, J. Synthesis of Active Graphene with Para-Ester on Cotton Fabrics for Antistatic Properties. Nanomaterials 2020, 10, 1147. [Google Scholar] [CrossRef]
- Koran, K. Structural, chemical and electrical characterization of organocyclotriphosphazene derivatives and their graphene-based composites. J. Mol. Struct. 2019, 1179, 224–232. [Google Scholar] [CrossRef]
- Meng, Z.; Lu, S.; Zhang, D.; Liu, Q.; Chen, X.; Liu, W.; Ke, Y. Grafting macromolecular chains on the surface of graphene oxide through crosslinker for antistatic and thermally stable polyethylene terephthalate nanocomposites. RSC Adv. 2022, 12, 33329–33339. [Google Scholar] [CrossRef]
- Sharma, S.; Sudhakara, P.; Omran, A.A.B.; Singh, J.; Ilyas, R.A. Recent Trends and Developments in Conducting Polymer Nanocomposites for Multifunctional Applications. Polymers 2021, 13, 2898. [Google Scholar] [CrossRef]
- Jiao, Q.; Chen, Q.; Wang, L.; Chen, H.; Li, Y. Investigation on the Crystallization Behaviors of Polyoxymethylene with a Small Amount of Ionic Liquid. Nanomaterials 2019, 9, 206. [Google Scholar] [CrossRef] [PubMed]
- Sangermano, M.; Pegel, S.; Pötschke, P.; Voit, B. Antistatic epoxy coatings with carbon nanotubes obtained by cationic photopolymerization. Macromol. Rapid Commun. 2008, 29, 396–400. [Google Scholar] [CrossRef]
- Horrocks, A.R. The Potential for Bio-Sustainable Organobromine-Containing Flame Retardant Formulations for Textile Applications—A Review. Polymers 2020, 12, 2160. [Google Scholar] [CrossRef] [PubMed]
- Qi, B.; Yao, T.-P.; Zhang, Y.-D.; Shang, H.-K. Endowing the sustainable antistatic properties to epoxy-based composites through adding graphene nanoplatelets. J. Clean. Prod. 2021, 281, 124594. [Google Scholar] [CrossRef]
- Wang, L.; Hu, X.; Mao, Z.; Wang, J.; Wang, X. Phosphorylated Metal–Organic Framework for Reducing Fire Hazards of Poly(Methyl Methacrylate). Polymers 2022, 14, 4871. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Tang, Z.; Zhu, J. Synergistic flame retardant effect of aluminum hydroxide and ammonium polyphosphate on epoxy resin. J. Appl. Polym. Sci. 2022, 139, 53168. [Google Scholar] [CrossRef]
- Wang, W.; Wang, F.; Li, H.; Liu, Y. Synthesis of phosphorus-nitrogen hybrid flame retardant and investigation of its efficient flame-retardant behavior in PA6/PA66. J. Appl. Polym. Sci. 2023, 140, 53536. [Google Scholar] [CrossRef]
- Dou, Y.; Zhong, Z.; Huang, J.; Ju, A.; Yao, W.; Zhang, C.; Guan, D. A New Phosphorous/Nitrogen-Containing Flame-Retardant Film with High Adhesion for Jute Fiber Composites. Polymers 2023, 15, 1920. [Google Scholar] [CrossRef]
- Xiaojing, L.; Wang, J.; Guo, Y. Evaluation of bisphenol-A epoxy cured with diethylenetriamine by using phosphorus containing liquid poly (1, 2-butadiene) as multifunctional additives. J. Appl. Polym. Sci. 2022, 139, 53224. [Google Scholar] [CrossRef]
- Kim, Y.; Lee, S.; Yoon, H. Fire-Safe Polymer Composites: Flame-Retardant Effect of Nanofillers. Polymers 2021, 13, 540. [Google Scholar] [CrossRef]
- Kim, M.; Ko, H.; Park, S.M. Synergistic effects of amine-modified ammonium polyphosphate on curing behaviors and flame retardation properties of epoxy composites. Compos. B Eng. 2019, 170, 19–30. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, S.; Basharat, M.; Liu, W.; Dai, S.; Zhang, T.; Wu, Z. Performances of novel poly (diaryloxyphosphazene) based heat shielding materials with various fibrous reinforcements. J. Appl. Polym. Sci. 2021, 138, 51222. [Google Scholar] [CrossRef]
- Qu, L.; Zhang, C.; Li, P.; Dai, X.; Xu, T.; Sui, Y.; Gu, J.; Dou, Y. Improved thermal properties of epoxy resin modified with polymethyl methacrylate-microencapsulated phosphorus-nitrogen-containing flame retardant. RSC Adv. 2018, 8, 29816–29829. [Google Scholar] [CrossRef] [PubMed]
- Waldin, N.A.; Jamain, Z. The Effect of Alkyl Terminal Chain Length of Schiff-Based Cyclotriphosphazene Derivatives towards Epoxy Resins on Flame Retardancy and Mechanical Properties. Polymers 2023, 15, 1431. [Google Scholar] [CrossRef] [PubMed]
- Zarybnicka, L.; Machotova, J.; Kopecka, R.; Sevcik, R.; Hudakova, M.; Pokorny, J.; Sal, J. Effect of cyclotriphosphazene-based curing agents on the flame resistance of epoxy resins. Polymers 2020, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; Wang, J.; Wang, J.; Chen, K.; Yang, S.; Huo, S.; Wang, H. A benzimidazolyl-substituted cyclotriphosphazene and its application in benzoxazine: Curing behaviors, thermal properties, and fire safety. J. Polym. Sci. 2023, 61, 422–431. [Google Scholar] [CrossRef]
- Zhi, M.; Yang, X.; Fan, R.; Yue, S.; Zheng, L.; Liu, Q.; He, Y. A comprehensive review of reactive flame-retardant epoxy resin: Fundamentals, recent developments, and perspectives. Polym. Degrad. Stab. 2022, 201, 109976. [Google Scholar] [CrossRef]
- Dagdag, O.; El Gouri, M.; El Mansouri, A.; Outzourhit, A.; El Harfi, A.; Cherkaoui, O.; El Bachini, A.; Hamed, O.; Jodeh, S.; Hanbali, G.; et al. Rheological and electrical study of a composite material based on an epoxy polymer containing cyclotriphosphazene. Polymers 2020, 12, 921. [Google Scholar] [CrossRef]
- ISO 3219:1993; Plastics—Polymers/Resins in the Liquid State or as Emulsions or Dispersions—Determination of Viscosity Using a Rotational Viscometer with Defined Shear Rate. 1993. Available online: https://www.iso.org/standard/8426.html (accessed on 1 October 2023).
- ISO 527-2:2012; Plastics—Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics. 2017. Available online: https://www.iso.org/standard/56046.html (accessed on 1 October 2023).
- ISO 604:2002; Plastics—Determination of Compressive Properties. 2002. Available online: https://www.iso.org/standard/31261.html (accessed on 1 October 2023).
- ISO 4587-79; Adhesives—Determination of Tensile Lap-Shear Strength of High Strength Adhesive Bonds. 1979. Available online: https://www.iso.org/standard/10522.html (accessed on 1 October 2023).
- ISO 62:2008; Plastics—Determination of Water Absorption. 2008. Available online: https://www.iso.org/obp/ui/#iso:std:iso:62:ed-3:v1:en (accessed on 1 October 2023).
- ISO 3915:2022; Plastics—Measurement of Resistivity of Conductive Plastics. 2022. Available online: https://www.iso.org/standard/81838.html (accessed on 1 October 2023).
- ISO 7784-1:2023; Paints and Varnishes—Determination of Resistance to Abrasion—Part 1: Method with Abrasive-Paper Covered Wheels and Rotating Test Specimen. 2023. Available online: https://www.iso.org/standard/83327.html (accessed on 1 October 2023).
- Yudaev, P.; Tamboura, B.; Chistyakov, E. Antistatic polymer materials. Nanotechnol. Constr. 2023, 15, 139–151. [Google Scholar] [CrossRef]
- Piddubnyi, V.K.; Zin’, I.M.; Lavryshyn, B.M.; Bilyi, L.M.; Kolodii, Y.I.; Ratushna, M.B. Effect of carbon-containing conducting fillers on the properties of epoxy coatings. Mater. Sci. 2005, 41, 265–270. [Google Scholar] [CrossRef]
- Klonos, P.A.; Papadopoulos, L.; Kourtidou, D.; Chrissafis, K.; Peoglos, V.; Kyritsis, A.; Bikiaris, D.N. Effects of Expandable Graphite at Moderate and Heavy Loadings on the Thermal and Electrical Conductivity of Amorphous Polystyrene and Semicrystalline High-Density Polyethylene. Appl. Nano 2021, 2, 31–45. [Google Scholar] [CrossRef]
- Tanabi, H.; Erdal, M. Effect of CNTs dispersion on electrical, mechanical and strain sensing properties of CNT/epoxy nanocomposites. Results Phys. 2019, 12, 486–503. [Google Scholar] [CrossRef]
Ingredients | Weight of FPP Added to IPDA, wt. % | ||
---|---|---|---|
10 | 20 | 30 | |
FPP, g | 4 | 8 | 12 |
MgSO4, g | 0.65 | 1.32 | 1.98 |
Epoxy-Resorcinol Resin Weight, g | Content of Phosphazene Modifier in the Curing Agent, wt. % | Filler Weight, g |
---|---|---|
4.54 | 0 | 1.2 |
4.02 | 10 | 1.1 |
3.51 | 20 | 1.0 |
2.99 | 30 | - |
Parameter | Content of PCA in IPDA, wt. % | ||||||
---|---|---|---|---|---|---|---|
Without Filler | With Filler | ||||||
0 | 10 | 20 | 30 | 0 | 10 | 20 | |
Phosphorus content in cured compositions, wt. % | 0 | 0.14 | 0.31 | 0.52 | 0 | 0.12 | 0.25 |
Burning rate of cured compositions, (±0.5), mm/min | 50 | 5 | 5 | 25 | 5 | 2 | 2 |
p | p < 0.05 | p < 0.05 | |||||
Initial viscosity of uncured compositions, (±0.1), Pa·s | 0.63 | 1.23 | 2.12 | 3.7 | 7.61 | 8.5 | 10.2 |
Specific volume electrical resistance of cured compositions, (±3), Ohm·m | - | - | - | - | 20.9 | 16.55 | 18.5 |
p | p > 0.05 |
Parameter | Content of PCA in IPDA, wt. % | |||||
---|---|---|---|---|---|---|
Without Filler | With Filler | |||||
0 | 10 | 20 | 0 | 10 | 20 | |
Tensile strength, (±0.5), MPa | 46.6 | 53.39 | 70.38 | 45.96 | 40.34 | 38.57 |
p | (p < 0.05) | (p < 0.05) | ||||
Ultimate tensile strain, (±0.05), % | 2.2 | 2.26 | 2.56 | 1.3 | 1.12 | 1.00 |
p | (p < 0.05) | (p < 0.05) | ||||
Compressive strength, (±1), MPa | 132 | 135 | 142 | 129 | 131 | 135 |
p | (p < 0.05) | (p < 0.05) | ||||
Ultimate compression strain, (±0.1), % | 12 | 12.52 | 12.68 | 13.1 | 12.4 | 12.3 |
p | (p < 0.05) | (p < 0.05) |
Parameter | Content of PCA in IPDA, wt. % | |||||
---|---|---|---|---|---|---|
Without Filler | With Filler | |||||
0 | 10 | 20 | 0 | 10 | 20 | |
Water absorption, (±0.2), % | 0.3 | 0.3 | 0.4 | 0.2 | 0.3 | 0.2 |
p | p > 0.05 | p > 0.05 | ||||
Water solubility, (±0.2), % | 0.2 | 0.3 | 0.3 | 0.4 | 0.3 | 0.3 |
p | p > 0.05 | p > 0.05 | ||||
Glass transition temperature, (±3), °C | 116 | 119 | 119 | 116 | 116 | 124 |
p | p > 0.05 | p < 0.05 | ||||
Abrasion resistance, (±1), kg/mm | 35 | 34 | 36 | 48 | 51 | 51 |
p | p > 0.05 | p > 0.05 | ||||
Adhesion strength, (±0.05), MPa | 3.1 | 3.35 | 3.41 | 2.4 | 2.87 | 3.2 |
p < 0.05 | p < 0.05 | |||||
Type of destruction of the glue line | Adhesive |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Konstantinova, A.; Yudaev, P.; Orlov, A.; Loban, O.; Lukashov, N.; Chistyakov, E. Aryloxyphosphazene-Modified and Graphite-Filled Epoxy Compositions with Reduced Flammability and Electrically Conductive Properties. J. Compos. Sci. 2023, 7, 417. https://doi.org/10.3390/jcs7100417
Konstantinova A, Yudaev P, Orlov A, Loban O, Lukashov N, Chistyakov E. Aryloxyphosphazene-Modified and Graphite-Filled Epoxy Compositions with Reduced Flammability and Electrically Conductive Properties. Journal of Composites Science. 2023; 7(10):417. https://doi.org/10.3390/jcs7100417
Chicago/Turabian StyleKonstantinova, Anastasia, Pavel Yudaev, Alexey Orlov, Oleg Loban, Nikolay Lukashov, and Evgeniy Chistyakov. 2023. "Aryloxyphosphazene-Modified and Graphite-Filled Epoxy Compositions with Reduced Flammability and Electrically Conductive Properties" Journal of Composites Science 7, no. 10: 417. https://doi.org/10.3390/jcs7100417
APA StyleKonstantinova, A., Yudaev, P., Orlov, A., Loban, O., Lukashov, N., & Chistyakov, E. (2023). Aryloxyphosphazene-Modified and Graphite-Filled Epoxy Compositions with Reduced Flammability and Electrically Conductive Properties. Journal of Composites Science, 7(10), 417. https://doi.org/10.3390/jcs7100417