Green Hydrogen Generation from Eco-Friendly and Cost-Effective Red Sea Water Using a Highly Photocatalytic Nanocomposite Film, As2O3/Poly-3-methylaniline
Abstract
:1. Introduction
2. Experimental Details
2.1. Characterization and Materials
2.2. Preparation of P3MA and As2O3/P3MA
2.3. The Hydrogen Generation System
3. Results and Discussion
3.1. Analyses
3.2. Red Sea Water (Electrolyte) for Hydrogen Generation: The Electrochemical Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gado, M.G.; Hassan, H. Potential of Prospective Plans in MENA Countries for Green Hydrogen Generation Driven by Solar and Wind Power Sources. Sol. Energy 2023, 263, 111942. [Google Scholar] [CrossRef]
- AlZohbi, G.; AlShuhail, L.; Almoaikel, A. An Estimation of Green Hydrogen Generation from Wind Energy: A Case Study from KSA. Energy Rep. 2023, 9, 262–267. [Google Scholar] [CrossRef]
- Meda, U.S.; Rajyaguru, Y.V.; Pandey, A. Generation of Green Hydrogen Using Self-Sustained Regenerative Fuel Cells: Opportunities and Challenges. Int. J. Hydrogen Energy 2023, 48, 28289–28314. [Google Scholar] [CrossRef]
- Iñarrea, J. Photo-Oscillations in MgZnO/ZnO Heterostructures. Sci. Rep. 2022, 12, 22463. [Google Scholar] [CrossRef]
- El Nady, J.; Shokry, A.; Khalil, M.; Ebrahim, S.; Elshaer, A.M.; Anas, M. One-Step Electrodeposition of a Polypyrrole/NiO Nanocomposite as a Supercapacitor Electrode. Sci. Rep. 2022, 12, 3611. [Google Scholar] [CrossRef]
- Modibane, K.D.; Waleng, N.J.; Ramohlola, K.E.; Maponya, T.C.; Monama, G.R.; Makgopa, K.; Hato, M.J. Poly(3-Aminobenzoic Acid) Decorated with Cobalt Zeolitic Benzimidazolate Framework for Electrochemical Production of Clean Hydrogen. Polymers 2020, 12, 1581. [Google Scholar] [CrossRef]
- Zhang, N.; Ma, W.; Wu, T.; Wang, H.; Han, D.; Niu, L. Edge-Rich MoS2 Naonosheets Rooting into Polyaniline Nanofibers as Effective Catalyst for Electrochemical Hydrogen Evolution. Electrochim. Acta 2015, 180, 155–163. [Google Scholar] [CrossRef]
- Tilley, S.D. Recent Advances and Emerging Trends in Photo-Electrochemical Solar Energy Conversion. Adv. Energy Mater. 2019, 9, 1802877. [Google Scholar] [CrossRef]
- Yu, J.M.; Lee, J.; Kim, Y.S.; Song, J.; Oh, J.; Lee, S.M.; Jeong, M.; Kim, Y.; Kwak, J.H.; Cho, S.; et al. High-Performance and Stable Photoelectrochemical Water Splitting Cell with Organic-Photoactive-Layer-Based Photoanode. Nat. Commun. 2020, 11, 5509. [Google Scholar] [CrossRef]
- Nerkar, D.M.; Jaware, S.E.; Padhye, G.G. Fabrication of a Novel Flexible Room Temperature Hydrogen Sulfide (H2S) Gas Sensor Based on Polypyrrole Films. Int. J. Sci. Res. 2013, 5, 2319–7064. [Google Scholar]
- Lei, Y.; Huang, Z.H.; Yang, Y.; Shen, W.; Zheng, Y.; Sun, H.; Kang, F. Porous Mesocarbon Microbeads with Graphitic Shells: Constructing a High-Rate, High-Capacity Cathode for Hybrid Supercapacitor. Sci. Rep. 2013, 3, srep02477. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Chandra, A. Graphite Oxide/Polypyrrole Composite Electrodes for Achieving High Energy Density Supercapacitors. J. Appl. Electrochem. 2013, 43, 773–782. [Google Scholar] [CrossRef]
- Sharma, R.; Almáši, M.; Punia, R.C.; Chaudhary, R.; Nehra, S.P.; Dhaka, M.S.; Sharma, A. Solar-Driven Polymer Electrolyte Membrane Fuel Cell for Photovoltaic Hydrogen Production. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Ghosh, S.; Kouamé, N.A.; Ramos, L.; Remita, S.; Dazzi, A.; Deniset-Besseau, A.; Beaunier, P.; Goubard, F.; Aubert, P.H.; Remita, H. Conducting Polymer Nanostructures for Photocatalysis under Visible Light. Nat. Mater. 2015, 14, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Sarker, A.K. Multilayer Engineering of Polyaniline and Reduced Graphene Oxide Thin Films on a Plastic Substrate for Flexible Optoelectronic Applications Using NIR. Russ. J. Appl. Chem. 2020, 93, 1561–1570. [Google Scholar] [CrossRef]
- Wang, D.; Liu, Y.; Sun, J.; Sun, Z.; Liu, F.; Du, L.; Wang, D. Fabrication and Characterization of Gelatin/Zein Nanofiber Films Loading Perillaldehyde for the Preservation of Chilled Chicken. Foods 2021, 10, 1277. [Google Scholar] [CrossRef]
- Praveen Kumar, S.; Sharafudeen, P.C.; Elumalai, P. High Entropy Metal Oxide@graphene Oxide Composite as Electrocatalyst for Green Hydrogen Generation Using Anion Exchange Membrane Seawater Electrolyzer. Int. J. Hydrogen Energy 2023. [Google Scholar] [CrossRef]
- Peng, Y.P.; Liu, C.C.; Chen, K.F.; Huang, C.P.; Chen, C.H. Green Synthesis of Nano-Silver–Titanium Nanotube Array (Ag/TNA) Composite for Concurrent Ibuprofen Degradation and Hydrogen Generation. Chemosphere 2021, 264, 128407. [Google Scholar] [CrossRef]
- Kanwal, F.; Rani, I.; Batool, A.; Sandali, Y.; Li, C.; Shafique, S.; Irfan, A.; Sulaman, M. Enhanced Dielectric and Photocatalytic Properties of TiO2-Decorated RGO/PANI Hybrid Composites Synthesized by in-Situ Chemical Oxidation Polymerization Route. Mater. Sci. Eng. B 2023, 298, 116837. [Google Scholar] [CrossRef]
- Suresh, S.; Sindhu, V. CeO2/PANI/MoS2 Composite Electrode for Symmetric Supercapacitor Application. J. Indian Chem. Soc. 2022, 99, 100727. [Google Scholar] [CrossRef]
- Aka, C.; Akgöl, O.; Karaaslan, M.; Akyol, M. Broadband Electromagnetic Wave Absorbing via PANI Coated Fe3O4 Decorated MoS2 Hybrid Nanocomposite. J. Alloys Compd. 2023, 967, 171702. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, C.; Peng, G.; Chen, X.; Yao, X.; Bai, Y.; Wu, F.; Chen, S.; Xu, X. A New Solid Polymer Electrolyte Incorporating Li10GeP2S12 into a Polyethylene Oxide Matrix for All-Solid-State Lithium Batteries. J. Power Sources 2016, 301, 47–53. [Google Scholar] [CrossRef]
- Bioud, Y.A.; Boucherif, A.; Belarouci, A.; Paradis, E.; Drouin, D.; Arès, R. Chemical Composition of Nanoporous Layer Formed by Electrochemical Etching of P-Type GaAs. Nanoscale Res. Lett. 2016, 11, 446. [Google Scholar] [CrossRef]
- Basak, M.; Rahman, M.L.; Ahmed, M.F.; Biswas, B.; Sharmin, N. The Use of X-Ray Diffraction Peak Profile Analysis to Determine the Structural Parameters of Cobalt Ferrite Nanoparticles Using Debye-Scherrer, Williamson-Hall, Halder-Wagner and Size-Strain Plot: Different Precipitating Agent Approach. J. Alloys Compd. 2022, 895, 162694. [Google Scholar] [CrossRef]
- Tabačiarová, J.; Mičušík, M.; Fedorko, P.; Omastová, M. Study of Polypyrrole Aging by XPS, FTIR and Conductivity Measurements. Polym. Degrad. Stab. 2015, 120, 392–401. [Google Scholar] [CrossRef]
- Kuroki, S.; Nabae, Y.; Chokai, M.; Kakimoto, M.A.; Miyata, S. Oxygen Reduction Activity of Pyrolyzed Polypyrroles Studied by 15N Solid-State NMR and XPS with Principal Component Analysis. Carbon 2012, 50, 153–162. [Google Scholar] [CrossRef]
- Jubu, P.R.; Yam, F.K.; Igba, V.M.; Beh, K.P. Tauc-Plot Scale and Extrapolation Effect on Bandgap Estimation from UV–Vis–NIR Data—A Case Study of β-Ga2O3. J. Solid State Chem. 2020, 290, 121576. [Google Scholar] [CrossRef]
- Dolgonos, A.; Mason, T.O.; Poeppelmeier, K.R. Direct Optical Band Gap Measurement in Polycrystalline Semiconductors: A Critical Look at the Tauc Method. J. Solid State Chem. 2016, 240, 43–48. [Google Scholar] [CrossRef]
- Basyooni, M.A.; Zaki, S.E.; Eker, Y.R. Fast Optoelectronic Gas Sensing with P-Type V2O5/WS2/Si Heterojunction Thin Film. Mater. Chem. Phys. 2023, 310, 128491. [Google Scholar] [CrossRef]
- Ko, Y.H.; Nagaraju, G.; Lee, S.H.; Yu, J.S. Facile Preparation and Optoelectronic Properties of CuO Nanowires for Violet Light Sensing. Mater. Lett. 2014, 117, 217–220. [Google Scholar] [CrossRef]
- AlAbdulaal, T.H.; Yahia, I.S. Optical Linearity and Nonlinearity, Structural Morphology of TiO2-Doped PMMA/FTO Polymeric Nanocomposite Films: Laser Power Attenuation. Optik 2021, 227, 166036. [Google Scholar] [CrossRef]
- Huang, C.L.; Lee, K.M.; Liu, Z.X.; Lai, R.Y.; Chen, C.K.; Chen, W.C.; Hsu, J.F. Antimicrobial Activity of Electrospun Polyvinyl Alcohol Nanofibers Filled with Poly[2-(Tert-Butylaminoethyl) Methacrylate]-Grafted Graphene Oxide Nanosheets. Polymers 2020, 12, 1449. [Google Scholar] [CrossRef] [PubMed]
- Omar, H.H.; Abdullatif, B.M.; El-Kazan, M.M.; El-Gendy, A.M. Red Sea Water and Biochemical Composition of Seaweeds at Southern Coast of Jeddah, Saudi Arabia. Life Sci. J. 2013, 10, 1073–1080. [Google Scholar]
- Sagadevan, S.; Vennila, S.; Marlinda, A.R.; Al-Douri, Y.; Rafie Johan, M.; Anita Lett, J. Synthesis and Evaluation of the Structural, Optical, and Antibacterial Properties of Copper Oxide Nanoparticles. Appl. Phys. A Mater. Sci. Process. 2019, 125, 1–9. [Google Scholar] [CrossRef]
- Kim, J.S.; Choi, Y.J.; Woo, H.J.; Yang, J.; Song, Y.J.; Kang, M.S.; Cho, J.H. Schottky-Barrier-Controllable Graphene Electrode to Boost Rectification in Organic Vertical P–N Junction Photodiodes. Adv. Funct. Mater. 2017, 27, 1704475. [Google Scholar] [CrossRef]
- Periyanagounder, D.; Gnanasekar, P.; Varadhan, P.; He, J.H.; Kulandaivel, J. High Performance, Self-Powered Photodetectors Based on a Graphene/Silicon Schottky Junction Diode. J. Mater. Chem. C 2018, 6, 9545–9551. [Google Scholar] [CrossRef]
- Yuan, C.; Zhou, Y.; Zhu, Y.; Liang, J.; Wang, S.; Peng, S.; Li, Y.; Cheng, S.; Yang, M.; Hu, J.; et al. Polymer/Molecular Semiconductor All-Organic Composites for High-Temperature Dielectric Energy Storage. Nat. Commun. 2020, 11, 3919. [Google Scholar] [CrossRef]
- Shahi, M.; Paterson, A.F. Small Molecule versus Polymer Semiconductors. Ref. Modul. Mater. Sci. Mater. Eng. 2023, 1, 95–107. [Google Scholar] [CrossRef]
- Zeng, L.H.; Chen, Q.M.; Zhang, Z.X.; Wu, D.; Yuan, H.; Li, Y.Y.; Qarony, W.; Lau, S.P.; Luo, L.B.; Tsang, Y.H. Multilayered PdSe2/Perovskite Schottky Junction for Fast, Self-Powered, Polarization-Sensitive, Broadband Photodetectors, and Image Sensor Application. Adv. Sci. 2019, 6, 1901134. [Google Scholar] [CrossRef]
- Zhang, T.F.; Li, Z.P.; Wang, J.Z.; Kong, W.Y.; Wu, G.A.; Zheng, Y.Z.; Zhao, Y.W.; Yao, E.X.; Zhuang, N.X.; Luo, L.B. Broadband Photodetector Based on Carbon Nanotube Thin Film/Single Layer Graphene Schottky Junction. Sci. Rep. 2016, 6, 38569. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, W.W.; Yang, D.W.; Chang, W.J.; Kwon, S.S.; Park, W. Il Anomalous Photovoltaic Response of Graphene-on-GaN Schottky Photodiodes. ACS Appl. Mater. Interfaces 2018, 10, 14170–14174. [Google Scholar] [CrossRef] [PubMed]
- Hameed, S.A.; Ewais, H.A. Kinetics and Mechanism of the Redox Reaction between Malachite Green and Iron(III) in Aqueous and Micellar Media. Transit. Met. Chem. 2014, 39, 199–204. [Google Scholar] [CrossRef]
- Ewais, H.A.; Dahman, F.D.; Abdel-Khalek, A.A. Inner-Sphere Oxidation of Ternary Iminodiacetatochromium(III) Complexes Involving DL-Valine and L-Arginine as Secondary Ligands. Isokinetic Relationship for the Oxidation of Ternary Iminodiacetato-Chromium(III) Complexes by Periodate. Chem. Cent. J. 2009, 3, 3. [Google Scholar] [CrossRef] [PubMed]
- Ewais, H.A.; Al-Otaibi, F.D.; Abdel-Khalek, A.A. Kinetics and Mechanism of Oxidation of Iminodiacetatochromium(III) by Periodate. Inorg. React. Mech. 2006, 6, 39–47. [Google Scholar] [CrossRef]
- Almohammedi, A.; Shaban, M.; Mostafa, H.; Rabia, M. Nanoporous TiN/TiO2/Alumina Membrane for Photoelectrochemical Hydrogen Production from Sewage Water. Nanomaterials 2021, 11, 2617. [Google Scholar] [CrossRef]
- Hadia, N.M.A.; Abdelazeez, A.A.A.; Alzaid, M.; Shaban, M.; Mohamed, S.H.; Hoex, B.; Hajjiah, A.; Rabia, M. Converting Sewage Water into H2 Fuel Gas Using Cu/CuO Nanoporous Photocatalytic Electrodes. Materials 2022, 15, 1489. [Google Scholar] [CrossRef]
- Khalafalla, M.A.H.; Hadia, N.M.A.; Elsayed, A.M.; Alruqi, M.; El Malti, W.; Shaban, M.; Rabia, M. ATO/Polyaniline/PbS Nanocomposite as Highly Efficient Photoelectrode for Hydrogen Production from Wastewater with Theoretical Study for the Water Splitting. Adsorpt. Sci. Technol. 2022, 2022, 5628032. [Google Scholar] [CrossRef]
- Abdelazeez, A.A.A.; Hadia, N.M.A.; Mourad, A.H.I.; El-Fatah, G.A.; Shaban, M.; Ahmed, A.M.; Alzaid, M.; Cherupurakal, N.; Rabia, M. Effect of Au Plasmonic Material on Poly M-Toluidine for Photoelectrochemical Hydrogen Generation from Sewage Water. Polymers 2022, 14, 768. [Google Scholar] [CrossRef]
- Javed, M.S.; Shah, S.S.A.; Najam, T.; Siyal, S.H.; Hussain, S.; Saleem, M.; Zhao, Z.; Mai, W. Achieving High-Energy Density and Superior Cyclic Stability in Flexible and Lightweight Pseudocapacitor through Synergic Effects of Binder-Free CoGa2O4 2D-Hexagonal Nanoplates. Nano Energy 2020, 77, 105276. [Google Scholar] [CrossRef]
Heavy Metal | Conc. (mg/L) |
---|---|
B | 0.132 |
Pb | 0.008 |
Zn | 0.044 |
Ni | 0.001 |
Cr | 0.005 |
Mn | 0.009 |
Cd | 0.001 |
Cu | 0.10 |
Fe | 0.012 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rabia, M.; Elsayed, A.M.; Abdallah Alnuwaiser, M.; Awad, M.A. Green Hydrogen Generation from Eco-Friendly and Cost-Effective Red Sea Water Using a Highly Photocatalytic Nanocomposite Film, As2O3/Poly-3-methylaniline. J. Compos. Sci. 2023, 7, 463. https://doi.org/10.3390/jcs7110463
Rabia M, Elsayed AM, Abdallah Alnuwaiser M, Awad MA. Green Hydrogen Generation from Eco-Friendly and Cost-Effective Red Sea Water Using a Highly Photocatalytic Nanocomposite Film, As2O3/Poly-3-methylaniline. Journal of Composites Science. 2023; 7(11):463. https://doi.org/10.3390/jcs7110463
Chicago/Turabian StyleRabia, Mohamed, Asmaa M. Elsayed, Maha Abdallah Alnuwaiser, and Madeha A. Awad. 2023. "Green Hydrogen Generation from Eco-Friendly and Cost-Effective Red Sea Water Using a Highly Photocatalytic Nanocomposite Film, As2O3/Poly-3-methylaniline" Journal of Composites Science 7, no. 11: 463. https://doi.org/10.3390/jcs7110463
APA StyleRabia, M., Elsayed, A. M., Abdallah Alnuwaiser, M., & Awad, M. A. (2023). Green Hydrogen Generation from Eco-Friendly and Cost-Effective Red Sea Water Using a Highly Photocatalytic Nanocomposite Film, As2O3/Poly-3-methylaniline. Journal of Composites Science, 7(11), 463. https://doi.org/10.3390/jcs7110463