Sulfur-Doped Nickel–Iron LDH@Cu Core–Shell Nanoarrays on Copper Mesh as High-Performance Electrocatalysts for Oxygen Evolution Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. The Preparation of Cu Nanowires (NWs) as the Substrate
2.1.2. The Preparation of S-NiFe LDH@Cu Electrodes
2.2. Material Characterization
2.3. Electrochemical Measurements
3. Result and Discussion
3.1. Characterizations of Samples
3.2. Electrocatalytic Performance on OER for Different Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carroll, G.M.; Gebbie, M.A.; Stahl, S.S.; Johnson, M.R.; Luca, O.R.; Petersen, H.A.; Bomble, Y.J.; Neale, N.R.; Cortright, R.D. Alternative Energy Carriers: Unique Interfaces for Electrochemical Hydrogenic Transformations. Adv. Energy Mater. 2023, 13, 2203751. [Google Scholar] [CrossRef]
- Way, R.; Ives, M.C.; Mealy, P.; Farmer, J.D. Empirically grounded technology forecasts and the energy transition. Joule 2022, 9, 2057–2082. [Google Scholar] [CrossRef]
- Sun, B.; Chen, Y.; Wang, N.; Wang, Y.; Xie, X.; Zhong, L.; He, L.; Komarneni, S.; Hu, W. Redox Chemistry of Mn2+ on N-Doped Porous Carbon Fibers for High-Performance Electrochemical Energy Storage. Small Struct. 2023, 4, 2300077. [Google Scholar] [CrossRef]
- Xue, X.; Han, W.; Liu, C.; Li, J.; Jin, H.; Wang, X. Proposal and evaluation of a hydrogen and electricity cogeneration system based on thermochemical complementary utilization of coal and solar energy. Energy Convers. Manag. 2023, 291, 117266. [Google Scholar] [CrossRef]
- Bernt, M.; Hartig-Weiß, A.; Tovini, M.F.; El-Sayed, H.A.; Schramm, C.; Schröter, J.; Gebauer, C.; Gasteiger, H.A. Current challenges in catalyst development for PEM water electrolyzers. Chem. Ing. Tech. 2020, 92, 31–39. [Google Scholar] [CrossRef]
- Xie, X.; Du, L.; Yan, L.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Oxygen Evolution Reaction in Alkaline Environment: Material Challenges and Solutions. Adv. Funct. Mater. 2022, 32, 2110036. [Google Scholar] [CrossRef]
- Huang, H.; Xue, Y.; Xie, Y.; Yang, Y.; Yang, L.; He, H.; Jiang, Q.; Ying, G. MoS2 quantum dot-decorated MXene nanosheets as efficient hydrogen evolution electrocatalysts. Inorg. Chem. Front. 2022, 9, 1171–1178. [Google Scholar] [CrossRef]
- Kou, C.; Zhou, J.; Wang, H.; Han, J.; Han, M.; Vomiero, A.; Liu, Y.; Liang, H. Boron pretreatment promotes phosphorization of FeNi catalysts for oxygen evolution. Appl. Catal. B Environ. 2023, 330, 122598. [Google Scholar] [CrossRef]
- Sun, C.; Wang, C.; Ha, T.; Lee, J.; Shim, J.; Kim, Y. A brief review of characterization techniques with different length scales for hydrogen storage materials. Nano Energy 2023, 113, 108554. [Google Scholar] [CrossRef]
- He, Y.; Shen, J.; Li, Q.; Zheng, X.; Wang, Z.; Cui, L.; Xu, J.; Liu, J. In-situ growth of VS4 nanorods on Ni-Fe sulfides nanoplate array towards achieving a highly efficient and bifunctional electrocatalyst for total water splitting. Chem. Eng. J. 2023, 474, 145461. [Google Scholar] [CrossRef]
- Silva, G.C.; Fernandes, M.R.; Ticianelli, E.A. Activity and Stability of Pt/IrO2 Bifunctional Materials as Catalysts for the Oxygen Evolution/Reduction Reactions. ACS Catal. 2018, 8, 2081–2092. [Google Scholar] [CrossRef]
- Fu, G.T.; Cui, Z.M.; Chen, Y.F.; Xu, L.; Tang, Y.W.; Goodenough, J.B. Hierarchically mesoporous nickel-iron nitride as a cost-efficient and highly durable electrocatalyst for Zn-air battery. Nano Energy 2017, 39, 77–85. [Google Scholar] [CrossRef]
- Liu, Z.J.; Zhao, Z.H.; Wang, Y.Y.; Dou, S.; Yan, D.F.; Liu, D.D.; Xia, Z.H.; Wang, S.Y. In Situ Exfoliated, Edge-Rich, Oxygen-Functionalized Graphene from Carbon Fibers for Oxygen Electrocatalysis. Adv. Mater. 2017, 29, 1606207. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.M.; Cao, F.; Shen, C.; Li, G.Q.; Li, X.; Yang, X.; Li, S.; Qin, G.W. Nanoscale nickel-iron nitride-derived efficient electrochemical oxygen evolution catalysts. Catal. Sci. Technol. 2020, 10, 4458–4466. [Google Scholar] [CrossRef]
- Zhang, W.B.; Zeng, J.C.; Liu, H.G.; Shi, Z.P.; Tang, Y.; Gao, Q.S. CoxNi1−x nanoalloys on N-doped carbon nanofibers: Electronic regulation toward efficient electrochemical CO2 reduction. J. Catal. 2019, 372, 277–286. [Google Scholar] [CrossRef]
- Lu, L.; Wang, Y.; Ye, Q.; Zhao, Y.; Cheng, Y. Rapid fabrication of FexNi2−xP4O12 and graphene hybrids as electrocatalyst for highly efficient oxygen evolution reaction. Appl. Catal. B 2023, 334, 122834. [Google Scholar]
- Wang, A.J.; Shen, X.L.; Wang, Y.; Wang, Q.; Cheng, L.X.; Chen, X.D.; Lv, C.C.; Zhu, W.H.; Li, L.H. Rational design of FeOx-MoP@MWCNT composite electrocatalysts toward efficient overall water splitting. Chem. Commun. 2021, 57, 6149–6152. [Google Scholar] [CrossRef]
- Wang, C.H.; Yang, H.C.; Zhang, Y.J.; Wang, Q.B. NiFe Alloy Nanoparticles with hcp Crystal Structure Stimulate Superior Oxygen Evolution Reaction Electrocatalytic Activity. Angew. Chem. Int. Ed. 2019, 58, 6099–6103. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, C.; Zhang, Z.Y.; Song, Y.F.; Feng, B.; Na, P.; Wang, Z.L. Ultrafine NiFe-Based (Oxy)Hydroxide Nanosheet Arrays with Rich Edge Planes and Superhydrophilic-Superaerophobic Characteristics for Oxygen Evolution Reaction. Small 2023, 19, 2301609. [Google Scholar] [CrossRef]
- Song, Y.F.; Zhang, Z.Y.; Tian, H.; Bian, L.; Bai, Y.; Wang, Z.L. Corrosion Engineering towards NiFe-Layered Double Hydroxide Macroporous Arrays with Enhanced Activity and Stability for Oxygen Evolution Reaction. Chem. Eur. J. 2023, 29, e202301124. [Google Scholar] [CrossRef]
- Du, J.; Zhang, H.; Hu, W.; Li, Z.; Gao, W.; Wang, X.; Li, C. Grain Boundary Effects of Hierarchical Ni-Fe (Oxy)hydroxide Nanosheets in Water Oxidation. Small 2023, 21, e2304245. [Google Scholar] [CrossRef] [PubMed]
- Xin, R.; Liu, Y.; Li, X.; Yi, S.; Zhang, M.; Chen, H.; Li, H.; Lin, Z. Low-temperature pyrolysis enables FeNi3 nanoparticle implanted N-doped carbon nanosheets as an efficient bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2023, 11, 14015–14024. [Google Scholar] [CrossRef]
- Guo, D.; Yu, H.; Chi, J.; Zhao, Y.; Shao, Z. Cu2S@NiFe layered double hydroxides nanosheets hollow nanorod arrays self-supported oxygen evolution reaction electrode for efficient anion exchange membrane water electrolyzer. Int. J. Hydrog. Energy 2023, 48, 17743–17757. [Google Scholar] [CrossRef]
- Nam, G.; Son, Y.; Park, S.O.; Jeon, W.C.; Jang, H.; Park, J.; Chae, S.; Yoo, Y.; Ryu, J.; Kim, M.G.; et al. A Ternary Ni46Co40Fe14 Nanoalloy-Based Oxygen Electrocatalyst for Highly Efficient Rechargeable Zinc-Air Batteries. Adv. Mater. 2018, 30, 1803372. [Google Scholar] [CrossRef] [PubMed]
- Yan, X.; Zhang, W.; Xu, H.; Liu, B.; Hu, M.; Liu, J.; Gu, Z. Surface metal-EDTA coordination layer activates NixFe3−xO4 spinel as an outstanding electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2023, 632, 44–53. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Tan, T.; Xie, Y.; Chu, J.; Li, L.; Ouyang, B.; Kan, E.; Zhang, W. Bimetal-MOF and bacterial cellulose-derived three-dimensional N-doped carbon sheets loaded Co/CoFe nanoparticles wrapped graphite carbon supported on porous carbon nanofibers: An efficient multifunctional electrocatalyst for Zn-air batteries and overall water splitting. J. Colloid Interface Sci. 2023, 640, 78–90. [Google Scholar] [PubMed]
- Xu, Y.; Deng, P.; Chen, G.; Chen, J.; Yan, Y.; Qi, K.; Liu, H.; Xia, B.Y. 2D Nitrogen-Doped Carbon Nanotubes/Graphene Hybrid as Bifunctional Oxygen Electrocatalyst for Long-Life Rechargeable Zn-Air Batteries. Adv. Funct. Mater. 2020, 30, 1906081. [Google Scholar] [CrossRef]
- Lei, H.; Peng, M.; Liu, J.; Zhang, J.; Li, W. Boron & nitrogen synergistically enhance the performance of LiNi0.6Co0.1Mn0.3O2. J. Alloys Compd. 2023, 959, 170522. [Google Scholar]
- Chen, K.; Cao, Y.; Yadav, S.; Kim, G.C.; Han, Z.; Wang, W.; Zhang, W.J.; Dao, V.; Lee, I.-H. Electronic structure reconfiguration of nickel-cobalt layered double hydroxide nanoflakes via engineered heteroatom and oxygen-vacancies defect for efficient electrochemical water splitting. Chem. Eng. J. 2023, 463, 142396. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhang, H.; Guo, W.; Zhou, H.; Zhou, Y.; Liang, W.; He, M.; Wei, W.; Yu, T.; Zhao, H.; et al. Mo, V and M (M = Mn, Fe, Co, Cu) Co-modulated Ni oxides in-situ derived from nickel foam as efficient electrocatalysts for alkaline hydrogen evolution and oxygen evolution. Mol. Catal. 2023, 542, 113132. [Google Scholar] [CrossRef]
- Wu, C.C.; Li, H.Q.; Xia, Z.X.; Zhang, X.M.; Deng, R.Y.; Wang, S.L.; Sun, G.Q. NiFe Layered Double Hydroxides with Unsaturated Metal Sites via Precovered Surface Strategy for Oxygen Evolution Reaction. ACS Catal. 2020, 10, 11127–11135. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, F.; Qiu, L.; Han, W.; Zeng, Z.; Lei, L.; He, Y.; Li, P.; Zhang, X. Optimizing electronic structure of NiFe LDH with Mn-doping and Fe0.64Ni0.36 alloy for alkaline water oxidation under industrial current density. Nano Res. 2023, 16, 8953–8960. [Google Scholar] [CrossRef]
- Cao, F.; Li, M.Y.; Hu, Y.X.; Wu, X.G.; Li, X.; Meng, X.Y.; Zhang, P.; Li, S.; Qin, G.W. Kinetically accelerated oxygen evolution reaction in metallic (oxy)hydroxides enabled by Cr-dopant and heterostructure. Chem. Eng. J. 2023, 472, 14497. [Google Scholar] [CrossRef]
- Zhang, F.S.; Wang, J.W.; Luo, J.; Liu, R.R.; Zhang, Z.M.; He, C.T.; Lu, T.B. Extraction of Nickel from NiFe-LDH into Ni2P@NiFe Hydroxide as a Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Chem. Sci. 2018, 9, 1375–1384. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Han, Z.Z.; Liu, T.L.; Ding, X.; Gao, Y. Amazing enhancement of OER performances: Creating a well-designed functional Ni and N-doped carbon layer as a support material for fabricating a NiFe-LDH electrocatalyst. Chem. Commun. 2023, 59, 11572–11575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Shen, X.P.; Song, C.S.; Ji, Z.Y.; Du, F.H. Sulfur-doped NiFe(CN)5NO nanoparticles as efficient electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2023, 11, 8904–8911. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Duan, S.; Wang, T.; Li, Q. Tuning the oxygen evolution electrocatalysis on NiFe-layered double hydroxides via sulfur doping. Chin. J. Catal. 2020, 41, 847–852. [Google Scholar] [CrossRef]
- Rafique, N.; Asif, A.H.; Hirani, R.A.K.; Wu, H.; Shi, L.; Zhang, S.; Sun, H. Binder free 3D core-shell NiFe layered double hydroxide (LDH) nanosheets (NSs) supported on Cu foam as a highly efficient non-enzymatic glucose sensor. J. Colloid Interface Sci. 2022, 615, 865–875. [Google Scholar] [CrossRef]
- Zhou, J.; Yu, L.; Zhu, Q.; Huang, C.; Yu, Y. Defective and ultrathin NiFe LDH nanosheets decorated on V-doped Ni3S2 nanorod arrays: A 3D core-shell electrocatalyst for efficient water oxidation. J. Mater. Chem. A 2019, 7, 18118. [Google Scholar] [CrossRef]
- Lai, C.G.; Guo, Z.L.; Nie, L.; Zhang, D.H.; Li, F.J.; Ji, S. Sulphur- and nitrogen-codoped layered double hydroxides with expanded interlayer distance for enhanced overall water splitting. J. Electroanal. Chem. 2023, 944, 117640. [Google Scholar] [CrossRef]
- Pang, X.; Bai, H.; Zhao, H.; Fan, W.; Shi, W. Efficient Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Coupled with 4-Nitrophenol Hydrogenation in a Water System. ACS Catal. 2022, 12, 1545–1557. [Google Scholar] [CrossRef]
- Zhou, Y.N.; Yu, W.L.; Cao, Y.N.; Zhao, J.; Dong, B.; Ma, Y.; Wang, F.L.; Fan, R.Y.; Zhou, Y.L.; Chai, Y.M. S-doped nickel-iron hydroxides synthesized by room-temperature electrochemical activation for efficient oxygen evolution. Appl. Catal. B 2021, 292, 120150. [Google Scholar] [CrossRef]
- Yu, L.; Wu, L.; McElhenny, B.; Song, S.; Luo, D.; Zhang, F.; Yu, Y.; Chen, S.; Ren, Z. Ultrafast room-temperature synthesis of porous S-doped Ni/Fe (oxy)hydroxide electrodes for oxygen evolution catalysis in seawater splitting. Energy Environ. Sci. 2020, 13, 3439–3446. [Google Scholar] [CrossRef]
- Lei, H.; Ma, L.; Wan, Q.; Tan, S.; Yang, B.; Wang, Z.; Mai, W.; Fan, H.J. Promoting Surface Reconstruction of NiFe Layered Double Hydroxide for Enhanced Oxygen Evolution. Adv. Energy Mater. 2022, 12, 2202522. [Google Scholar] [CrossRef]
- Łukaszewski, M.; Soszko, M.; Czerwiński, A. Electrochemical Methods of Real Surface Area Determination of Noble Metal Electrodes-an Overview. Int. J. Electrochem. Sci. 2016, 11, 4442–4469. [Google Scholar] [CrossRef]
- Tan, Y.; Wei, Y.; Liang, K.; Wang, L.; Zhang, S. Facile in-situ deposition of Pt nanoparticles on nano-pore stainless steel composite electrodes for high active hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 26340–26346. [Google Scholar] [CrossRef]
- Shaheen, I.; Ahmad, K.S.; Jaffri, S.B.; Ali, D. Biomimetic [MoO3@ZnO] semiconducting nanocomposites: Chemo-proportional fabrication, characterization and energy storage potential exploration. Renew Energ. 2020, 167, 568–579. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, K.; Liu, D.; Yang, X.; Wu, H.; Xiao, C.; Ding, S. Surface dual-oxidation induced metallic copper doping into NiFe electrodes for electrocatalytic water oxidation. J. Mater. Chem. A 2019, 7, 22889–22897. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Guo, J.; Sun, Y.; Wang, Q.; Li, M.; Cao, F.; Han, S. Sulfur-Doped Nickel–Iron LDH@Cu Core–Shell Nanoarrays on Copper Mesh as High-Performance Electrocatalysts for Oxygen Evolution Reaction. J. Compos. Sci. 2023, 7, 486. https://doi.org/10.3390/jcs7120486
Zhang Z, Guo J, Sun Y, Wang Q, Li M, Cao F, Han S. Sulfur-Doped Nickel–Iron LDH@Cu Core–Shell Nanoarrays on Copper Mesh as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Journal of Composites Science. 2023; 7(12):486. https://doi.org/10.3390/jcs7120486
Chicago/Turabian StyleZhang, Zhichao, Jiahao Guo, Yuhan Sun, Qianwei Wang, Mengyang Li, Feng Cao, and Shuang Han. 2023. "Sulfur-Doped Nickel–Iron LDH@Cu Core–Shell Nanoarrays on Copper Mesh as High-Performance Electrocatalysts for Oxygen Evolution Reaction" Journal of Composites Science 7, no. 12: 486. https://doi.org/10.3390/jcs7120486
APA StyleZhang, Z., Guo, J., Sun, Y., Wang, Q., Li, M., Cao, F., & Han, S. (2023). Sulfur-Doped Nickel–Iron LDH@Cu Core–Shell Nanoarrays on Copper Mesh as High-Performance Electrocatalysts for Oxygen Evolution Reaction. Journal of Composites Science, 7(12), 486. https://doi.org/10.3390/jcs7120486