Effect of Al2O3 and SiC Nano-Fillers on the Mechanical Properties of Carbon Fiber-Reinforced Epoxy Hybrid Composites
Abstract
:1. Introduction
2. Fabrication of CFRP and Hybrid Nano-Composites
2.1. Tensile Test
2.2. Hardness Test
3. Results and Discussions
3.1. Analysis of Nano-Fillers Using FESEM
3.2. Tensile Behavior of CFRP and Hybrid Nano-Composites
3.3. Characterization of Tensile Failed Specimens
3.4. Hardness Behavior of CFRP and Hybrid Nano-Composites
4. Conclusions
- The maximum tensile and hardness properties were noted for Al2O3 hybrid nano-composites at filler loading of 1.75 wt.%, for SiC hybrid nano-composites at 1.25 wt.% filler loading, in comparison to the unfilled composite.
- The ultrasonication technique followed by the magnetic stirring method was an effective method for dispersing the nano-fillers into the polymer matrix.
- The optimum range of filler loading obtained is 1.75 wt.% for Al2O3 and 1.25 wt.% for SiC nano-fillers for higher mechanical properties.
- The superior mechanical properties obtained for Al2O3 hybrid nano-composites represent the importance of solid bond formation, of oxygen-hydrogen bonding between Al2O3 and the epoxy polymer matrix.
- The lower mechanical properties for SiC hybrid nano-composites indicate the lower bond capacity of carbon–hydrogen bonding as compared to the oxygen–hydrogen bonding of Al2O3 and the polymer matrix.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuan, B.; Tan, B.; Hu, Y.; Shaw, J.; Hu, X. Improving Impact Resistance and Residual Compressive Strength of Carbon Fibre Composites Using Un-Bonded Non-Woven Short Aramid Fibre Veil. Compos. Part A Appl. Sci. Manuf. 2019, 121, 439–448. [Google Scholar] [CrossRef]
- Rajanish, M.; Nanjundaradhya, N.V.; Sharma, R.S. An Investigation On ILSS Properties of Unidirectional Glass Fibre/Alumina Nanoparticles Filled Epoxy Nanocomposite At Different Angles Of Fibre Orientations. Procedia Mater. Sci. 2015, 10, 555–562. [Google Scholar] [CrossRef] [Green Version]
- Mohan, N.; Kalam, S.A.; Mahaveerakannan, R.; Shah, M.; Yadav, J.S.; Sharma, V.; Naik, P.S.; Narasimha, D.B. Statistical Evaluation of Machining Parameters in Drilling of Glass Laminate Aluminum Reinforced Epoxy Composites Using Machine Learning Model. Eng. Sci. 2022, 20, 244–251. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, Y.; Zhou, J.; Zhao, C.; Wu, Y.; Liu, S.; Gong, X. Intralayer Interfacial Sliding Effect on the Anti-Impact Performance of STF/Kevlar Composite Fabric. Compos. Part A Appl. Sci. Manuf. 2021, 145, 106401. [Google Scholar] [CrossRef]
- Yuan, B.; Ye, M.; Hu, Y.; Cheng, F.; Hu, X. Flexure and Flexure-after-Impact Properties of Carbon Fibre Composites Interleaved with Ultra-Thin Non-Woven Aramid Fibre Veils. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105813. [Google Scholar] [CrossRef]
- Aisyah, H.A.; Paridah, M.T.; Sapuan, S.M.; Ilyas, R.A.; Khalina, A.; Nurazzi, N.M.; Lee, S.H.; Lee, C.H. A Comprehensive Review on Advanced Sustainable Woven Natural Fibre Polymer Composites. Polymers 2021, 13, 471. [Google Scholar] [CrossRef] [PubMed]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design; CRC Press: Boca Raton, FL, USA, 2007; ISBN 0429122063. [Google Scholar]
- Mostovoy, A.; Shcherbakov, A.; Yakovlev, A.; Arzamastsev, S.; Lopukhova, M. Reinforced Epoxy Composites Modified with Functionalized Graphene Oxide. Polymers 2022, 14, 338. [Google Scholar] [CrossRef]
- Oun, A.; Manalo, A.; Alajarmeh, O.; Abousnina, R.; Gerdes, A. Influence of Elevated Temperature on the Mechanical Properties of Hybrid Flax-Fiber-Epoxy Composites Incorporating Graphene. Polymers 2022, 14, 1841. [Google Scholar] [CrossRef]
- Burmistrov, I.N.; Mostovoi, A.S.; Shatrova, N.V.; Panova, L.G.; Kuznetsov, D.V.; Gorokhovskii, A.V.; Il’inykh, I.A. Influence of Surface Modification of Potassium Polytitanates on the Mechanical Properties of Polymer Composites Thereof. Russ. J. Appl. Chem. 2013, 86, 765–771. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, Z.; Breidt, C. Comparison of Short Carbon Fibre Surface Treatments on Epoxy Composites: I. Enhancement of the Mechanical Properties. Compos. Sci. Technol. 2004, 64, 2021–2029. [Google Scholar] [CrossRef]
- Jain, K.; Agrawal, V.; Ahmad, S.S.; Mohapatra, S.; Srivastava, P.K.; Narasimha, D.B.; Bhat, R. Multi-Parametric Optimization of Wired Electrical Discharge Machining Process to Minimize Damage Cause in Steel—A Soft Computing Based Taguchi-Grey Relation Analysis Approach. Eng. Sci. 2022, 20, 267–274. [Google Scholar] [CrossRef]
- Saldívar-Guerra, E.; Vivaldo-Lima, E. Introduction to Polymers and Polymer Types. In Handbook of Polymer Synthesis, Characterization, and Processing; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2013; pp. 1–14. ISBN 9781118480793. [Google Scholar]
- Aljeboree, A.M.; Mahdi, A.B.; Albahadly, W.K.Y.; Izzat, S.E.; Kubaisy, M.M.R.A.L.; Abid, F.M.; Aldulaimi, A.K.O.; Alkaim, A.F. Enhancement of Adsorption of Paracetamol Drug on Carbon Nanotubes Concerning Wastewater Treatment. Eng. Sci. 2022, 20, 321–329. [Google Scholar] [CrossRef]
- Balsure, S.; More, V.; Kadam, S.; Kadam, R.; Kadam, A. Synthesis, Structural, Magnetic, Dielectric and Optical Properties of Co Doped Cr-Zn Oxide Nanoparticles for Spintronic Devices. Eng. Sci. 2023, 21, 774. [Google Scholar] [CrossRef]
- Mostovoi, A.S.; Plakunova, E.V.; Panova, L.G. New Epoxy Composites Based on Potassium Polytitanates. Int. Polym. Sci. Technol. 2013, 40, 49–51. [Google Scholar] [CrossRef]
- Buketov, A.V.; Sapronov, O.O.; Brailo, M.V.; Maruschak, P.O.; Yakushchenko, S.V.; Panin, S.V.; Nigalatiy, V.D. Dynamics of Destruction of Epoxy Composites Filled with Ultra-Dispersed Diamond under Impact Conditions. Mech. Adv. Mater. Struct. 2020, 27, 725–733. [Google Scholar] [CrossRef]
- Mostovoy, A.S.; Nurtazina, A.S.; Burmistrov, I.N.; Kadykova, Y.A. Effect of Finely Dispersed Chromite on the Physicochemical and Mechanical Properties of Modified Epoxy Composites. Russ. J. Appl. Chem. 2018, 91, 1758–1766. [Google Scholar] [CrossRef]
- Bekeshev, A.; Mostovoy, A.; Tastanova, L.; Kadykova, Y.; Kalganova, S.; Lopukhova, M. Reinforcement of Epoxy Composites with Application of Finely-Ground Ochre and Electrophysical Method of the Composition Modification. Polymers 2020, 12, 1437. [Google Scholar] [CrossRef]
- Vahedi, V.; Pasbakhsh, P. Instrumented Impact Properties and Fracture Behaviour of Epoxy/Modified Halloysite Nanocomposites. Polym. Test. 2014, 39, 101–114. [Google Scholar] [CrossRef]
- Bekeshev, A.; Mostovoy, A.; Kadykova, Y.; Akhmetova, M.; Tastanova, L.; Lopukhova, M. Development and Analysis of the Physicochemical and Mechanical Properties of Diorite-Reinforced Epoxy Composites. Polymers 2021, 13, 2421. [Google Scholar] [CrossRef]
- De Cicco, D.; Asaee, Z.; Taheri, F. Use of Nanoparticles for Enhancing the Interlaminar Properties of Fiber-Reinforced Composites and Adhesively Bonded Joints—A Review. Nanomaterials 2017, 7, 360. [Google Scholar] [CrossRef] [Green Version]
- Jiang, W.; Jin, F.-L.; Park, S.-J. Thermo-Mechanical Behaviors of Epoxy Resins Reinforced with Nano-Al2O3 Particles. J. Ind. Eng. Chem. 2012, 18, 594–596. [Google Scholar] [CrossRef]
- Zhai, L.L.; Ling, G.P.; Wang, Y.W. Effect of Nano-Al2O3 on Adhesion Strength of Epoxy Adhesive and Steel. Int. J. Adhes. Adhes. 2008, 28, 23–28. [Google Scholar] [CrossRef]
- Zheng, Y.-P.; Zhang, J.-X.; Li, Q.; Chen, W.; Zhang, X. The Influence of High Content Nano-Al2O3 on the Properties of Epoxy Resin Composites. Polym. Plast. Technol. Eng. 2009, 48, 384–388. [Google Scholar] [CrossRef]
- Wetzel, B.; Haupert, F.; Qiu Zhang, M. Epoxy Nanocomposites with High Mechanical and Tribological Performance. Compos. Sci. Technol. 2003, 63, 2055–2067. [Google Scholar] [CrossRef]
- Rafiee, M.A.; Rafiee, J.; Wang, Z.; Song, H.; Yu, Z.-Z.; Koratkar, N. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content. ACS Nano 2009, 3, 3884–3890. [Google Scholar] [CrossRef]
- Levy, A.; Papazian, J.M. Tensile Properties of Short Fiber-Reinforced SiC/Al Composites: Part II. Finite-Element Analysis. Metall. Trans. A 1990, 21, 411–420. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Qaderi, S. Stability Analysis of Embedded Graphene Platelets Reinforced Composite Plates in Thermal Environment. Eur. Phys. J. Plus 2019, 134, 349. [Google Scholar] [CrossRef]
- Shariati, A.; Qaderi, S.; Ebrahimi, F.; Toghroli, A. On Buckling Characteristics of Polymer Composite Plates Reinforced with Graphene Platelets. Eng. Comput. 2022, 38, 513–524. [Google Scholar] [CrossRef]
- Qaderi, S.; Ebrahimi, F. Vibration Analysis of Polymer Composite Plates Reinforced with Graphene Platelets Resting on Two-Parameter Viscoelastic Foundation. Eng. Comput. 2022, 38, 419–435. [Google Scholar] [CrossRef]
- Qaderi, S.; Ebrahimi, F.; Mahesh, V. Free Vibration Analysis of Graphene Platelets–Reinforced Composites Plates in Thermal Environment Based on Higher-Order Shear Deformation Plate Theory. Int. J. Aeronaut. Sp. Sci. 2019, 20, 902–912. [Google Scholar] [CrossRef]
- Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-level Dispersion of Graphene into Poly (Vinyl Alcohol) and Effective Reinforcement of Their Nanocomposites. Adv. Funct. Mater. 2009, 19, 2297–2302. [Google Scholar] [CrossRef]
- Parashar, A.; Mertiny, P. Representative Volume Element to Estimate Buckling Behavior of Graphene/Polymer Nanocomposite. Nanoscale Res. Lett. 2012, 7, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Yan, H.; Jiang, K. Mechanical Properties of Graphene Platelet-Reinforced Alumina Ceramic Composites. Ceram. Int. 2013, 39, 6215–6221. [Google Scholar] [CrossRef]
- Mouritz, A.P.; Leong, K.H.; Herszberg, I. A Review of the Effect of Stitching on the In-Plane Mechanical Properties of Fibre-Reinforced Polymer Composites. Compos. Part A Appl. Sci. Manuf. 1997, 28, 979–991. [Google Scholar] [CrossRef]
- Vaggar, G.B.; Kamate, S.C.; Badyankal, P.V. A Study on Thermal Conductivity Enhancement of Silicon Carbide Filler Glass Fiber Epoxy Resin Hybrid Composites. Mater. Today Proc. 2020, 35, 330–334. [Google Scholar] [CrossRef]
- Shafi, S.; Navik, R.; Ding, X.; Zhao, Y. Improved Heat Insulation and Mechanical Properties of Silica Aerogel/Glass Fiber Composite by Impregnating Silica Gel. J. Non-Cryst. Solids 2019, 503, 78–83. [Google Scholar] [CrossRef]
- Kocaman, M.; Çuvalcı, H. The Evolution of Tribological Properties of Graphite and Glass Fiber Reinforced Novolac Matrix Hybrid Composites. Polym. Compos. 2022, 43, 9100–9118. [Google Scholar] [CrossRef]
- Kaybal, H.B.; Ulus, H.; Demir, O.; Şahin, Ö.S.; Avcı, A. Effects of Alumina Nanoparticles on Dynamic Impact Responses of Carbon Fiber Reinforced Epoxy Matrix Nanocomposites. Eng. Sci. Technol. Int. J. 2018, 21, 399–407. [Google Scholar] [CrossRef]
- Suresha, B.; Chandramohan, G.; Samapthkumaran, P.; Seetharamu, S. Investigation of the Friction and Wear Behavior of Glass-Epoxy Composite with and without Graphite Filler. J. Reinf. Plast. Compos. 2007, 26, 81–93. [Google Scholar] [CrossRef]
- Suresha, B.; Chandramohan, G.; Sadananda Rao, P.R.; Sampathkumaran, P.; Seetharamu, S. Influence of SiC Filler on Mechanical and Tribological Behavior of Glass Fabric Reinforced Epoxy Composite Systems. J. Reinf. Plast. Compos. 2007, 26, 565–578. [Google Scholar] [CrossRef]
- Hussain, M.; Nakahira, A.; Niihara, K. Mechanical Property Improvement of Carbon Fiber Reinforced Epoxy Composites by Al2O3 Filler Dispersion. Mater. Lett. 1996, 26, 185–191. [Google Scholar] [CrossRef]
- Ozsoy, I.; Demirkol, A.; Mimaroglu, A.; Unal, H.; Demir, Z. The Influence of Micro-and Nano-Filler Content on the Mechanical Properties of Epoxy Composites. Stroj. Vestn. J. Mech. Eng. 2015, 61, 601–609. [Google Scholar] [CrossRef]
- Kadhim, M.J.; Abdullah, A.K.; Al-Ajaj, I.A.; Khalil, A.S. Mechanical Properties of Epoxy/Al2O3 Nanocomposites. Int. J. Appl. Innov. Eng. Manag. 2013, 2, 10–16. [Google Scholar]
- Megahed, M.; Tobbala, D.E.; El-baky, M.A.A. The Effect of Incorporation of Hybrid Silica and Cobalt Ferrite Nanofillers on the Mechanical Characteristics of Glass Fiber-reinforced Polymeric Composites. Polym. Compos. 2021, 42, 271–284. [Google Scholar] [CrossRef]
- Chisholm, N.; Mahfuz, H.; Rangari, V.K.; Ashfaq, A.; Jeelani, S. Fabrication and Mechanical Characterization of Carbon/SiC-Epoxy Nanocomposites. Compos. Struct. 2005, 67, 115–124. [Google Scholar] [CrossRef]
- Su, F.-H.; Zhang, Z.-Z.; Wang, K.; Jiang, W.; Men, X.-H.; Liu, W.-M. Friction and Wear Properties of Carbon Fabric Composites Filled with Nano-Al2O3 and Nano-Si3N4. Compos. Part A Appl. Sci. Manuf. 2006, 37, 1351–1357. [Google Scholar] [CrossRef]
- Shi, G.; Zhang, M.Q.; Rong, M.Z.; Wetzel, B.; Friedrich, K. Sliding Wear Behavior of Epoxy Containing Nano-Al2O3 Particles with Different Pretreatments. Wear 2004, 256, 1072–1081. [Google Scholar] [CrossRef]
- Shahabaz, S.M.; Shetty, P.K.; Shetty, N.; Sharma, S.; Divakara Shetty, S.; Naik, N. Effect of Alumina and Silicon Carbide Nanoparticle-Infused Polymer Matrix on Mechanical Properties of Unidirectional Carbon Fiber-Reinforced Polymer. J. Compos. Sci. 2022, 6, 381. [Google Scholar] [CrossRef]
- Kobayashi, S.; Kitagawa, J. Effect of Fine Particle Incorporation into Matrix on Mechanical Properties of Plain Woven Carbon Fiber Reinforced Plastics Fabricated with Vacuum Assisted Resin Transfer Molding. Compos. Part B Eng. 2016, 85, 31–40. [Google Scholar] [CrossRef]
- Shahid, N.; Villate, R.G.; Barron, A.R. Chemically Functionalized Alumina Nanoparticle Effect on Carbon Fiber/Epoxy Composites. Compos. Sci. Technol. 2005, 65, 2250–2258. [Google Scholar] [CrossRef]
- Kareem, A.A. Enhanced Thermal and Electrical Properties of Epoxy/Carbon Fiber–Silicon Carbide Composites. Adv. Compos. Lett. 2020, 29, 2633366X19894598. [Google Scholar] [CrossRef] [Green Version]
Material | Density (g/cm3) | Viscosity (mPa) | Size | Color |
---|---|---|---|---|
UD carbon fibre | 1.8 | - | 7 µm | Black |
Epoxy resin | 1.2 | 11,000 | - | Transparent |
Hardener | 0.95 | 50 | - | Transparent |
Al2O3 | 3.9 | - | 20–30 nm | White |
SiC | 3.2 | - | 50 nm | Grey |
Composites | Fiber (wt.%) | Epoxy Resin (wt.%) | Nano-Filler Loading (wt.%) |
---|---|---|---|
CFRP (neat composite) | 50 | 50 | - |
1 wt.% Al2O3 | 50 | 49 | 1 |
1.5 wt.% Al2O3 | 50 | 48.5 | 1.5 |
1.75 wt.% Al2O3 | 50 | 48.25 | 1.75 |
2 wt.% Al2O3 | 50 | 48 | 2 |
1 wt.% SiC | 50 | 49 | 1 |
1.25 wt.% SiC | 50 | 48.75 | 1.25 |
1.5 wt.% SiC | 50 | 48.5 | 1.5 |
2 wt.% SiC | 50 | 48 | 2 |
Material | Tensile Strength (MPa) | Strength Gain in (%) | Tensile Modulus (GPa) | Modulus Gain in (%) | ||
---|---|---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | |||
CFRP | 233 | 14.96 | - | 148 | 2.12 | - |
1 wt.% Al2O3 | 257 | 14.05 | 10.34 | 149 | 3.41 | 0.67 |
1.5 wt.% Al2O3 | 286 | 9.92 | 22.66 | 150 | 2.16 | 1.28 |
1.75 wt.% Al2O3 | 302 | 18.10 | 29.54 | 152 | 2.40 | 2.42 |
2 wt.% Al2O3 | 279 | 4.46 | 19.65 | 149 | 3.23 | 1.13 |
Material | Tensile Strength (MPa) | Strength Gain in (%) | Tensile Modulus (GPa) | Modulus Gain in (%) | ||
---|---|---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | |||
CFRP | 233 | 14.96 | - | 148 | 1.34 | - |
1 wt.% SiC | 266 | 11.85 | 14.22 | 149 | 2.35 | 1.03 |
1.25 wt.% SiC | 293 | 10.34 | 25.75 | 150 | 3.40 | 1.17 |
1.5 wt.% SiC | 268 | 13.35 | 15.10 | 149 | 4.50 | 1.03 |
2 wt.% SiC | 240 | 18.03 | 3.19 | 148 | 2.10 | 0.22 |
Material | Hardness Number | Material | Hardness Number | ||
---|---|---|---|---|---|
Average | Std. Dev. | Average | Std. Dev. | ||
CFRP | 27 | 3.78 | CFRP | 27 | 3.78 |
1 wt.% Al2O3 | 39 | 2.17 | 1 wt.% SiC | 32 | 2.55 |
1.5 wt.% Al2O3 | 43 | 2.30 | 1.25 wt.% SiC | 43 | 3.61 |
1.75 wt.% Al2O3 | 47 | 1.82 | 1.5 wt.% SiC | 37 | 1.95 |
2 wt.% Al2O3 | 36 | 2.70 | 2 wt.% SiC | 33 | 1.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shahabaz, S.M.; Mehrotra, P.; Kalita, H.; Sharma, S.; Naik, N.; Noronha, D.J.; Shetty, N. Effect of Al2O3 and SiC Nano-Fillers on the Mechanical Properties of Carbon Fiber-Reinforced Epoxy Hybrid Composites. J. Compos. Sci. 2023, 7, 133. https://doi.org/10.3390/jcs7040133
Shahabaz SM, Mehrotra P, Kalita H, Sharma S, Naik N, Noronha DJ, Shetty N. Effect of Al2O3 and SiC Nano-Fillers on the Mechanical Properties of Carbon Fiber-Reinforced Epoxy Hybrid Composites. Journal of Composites Science. 2023; 7(4):133. https://doi.org/10.3390/jcs7040133
Chicago/Turabian StyleShahabaz, S.M., Prakhar Mehrotra, Hridayneel Kalita, Sathyashankara Sharma, Nithesh Naik, Dilifa Jossley Noronha, and Nagaraja Shetty. 2023. "Effect of Al2O3 and SiC Nano-Fillers on the Mechanical Properties of Carbon Fiber-Reinforced Epoxy Hybrid Composites" Journal of Composites Science 7, no. 4: 133. https://doi.org/10.3390/jcs7040133
APA StyleShahabaz, S. M., Mehrotra, P., Kalita, H., Sharma, S., Naik, N., Noronha, D. J., & Shetty, N. (2023). Effect of Al2O3 and SiC Nano-Fillers on the Mechanical Properties of Carbon Fiber-Reinforced Epoxy Hybrid Composites. Journal of Composites Science, 7(4), 133. https://doi.org/10.3390/jcs7040133