Physical and Chemical Foam Injection Moulding of Natural-Fibre-Reinforced Polypropylene—Assessment of Weight-Reduction Potential and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Injection Moulding
2.2.1. Physical Foaming
2.2.2. Chemical Foaming
2.3. Characterisation of the Injection-Moulded Samples
3. Results and Discussion
3.1. Mechanical Properties
3.1.1. Physical Foaming Trials
Density versus Plate Thickness
- In the compact specimens and at low foaming degrees (small mould opening gaps), the absolute density of PPWood was slightly lower than the density of PPCell. At higher foaming degrees (large mould opening gaps), this difference became negligible.
- A lower gas loading resulted in a higher density, indicating a lower foaming degree (see the curve of PPCell_N03_T60 in Figure 4).
- The influence of the tool temperature on the density-versus-thickness curve was negligible for PPCell, whereas for PPWood, slightly lower densities were achieved at a 40 °C tool temperature than at 60 °C (except for an outlier at a thickness of 2.6 mm).
Tensile and Flexural Properties
Impact Properties
3.1.2. Comparison with Chemical Foaming Trials
3.2. Optical Microscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Dufresne, A. Cellulose-Based Composites and Nanocomposites. In Handbook of Biopolymers and Biodegradable Plastics; Ebnesajjad, S., Ed.; William Andrew Publishing: Norwich, NY, USA, 2013; pp. 153–169. ISBN 9781455728343. [Google Scholar] [CrossRef]
- Sobczak, L.; Lang, R.W.; Haider, A. Polypropylene Composites with Natural Fibers and Wood—General Mechanical Property Profiles. Compos. Sci. Technol. 2012, 72, 550–557. [Google Scholar] [CrossRef]
- Civancik-Uslu, D.; Ferrer, L.; Puig, R.; Fullana-i-Palmer, P. Are functional fillers improving environmental behavior of plastics? A review on LCA studies. Sci. Total Environ. 2018, 626, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Hesser, F. Environmental advantage by choice: Ex-ante LCA for a new Kraft pulp fibre reinforced polypropylene composite in comparison to reference materials. Compos. Part B Eng. 2015, 79, 197–203. [Google Scholar] [CrossRef]
- Badji, C.; Beigbeder, J.; Garay, H.; Bergeret, A.; Bénézet, J.-C.; Desauziers, V. Under glass weathering of hemp fibers reinforced polypropylene biocomposites: Impact of Volatile Organic Compounds emissions on indoor air quality. Polym. Degrad. Stab. 2018, 149, 85–95. [Google Scholar] [CrossRef]
- Mihalic, M.; Sobczak, L.; Pretschuh, C.; Unterweger, C. Increasing the Impact Toughness of Cellulose Fiber Reinforced Polypropylene Composites—Influence of Different Impact Modifiers and Production Scales. J. Compos. Sci. 2019, 3, 82. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Ando, M.; Kubota, M.; Ishihara, S.; Hikima, Y.; Ohshima, M.; Sekiguchi, T.; Sato, A.; Yano, H. Effects of hydrophobic-modified cellulose nanofibers (CNFs) on cell morphology and mechanical properties of high void fraction polypropylene nanocomposite foams. Compos. Part A Appl. Sci. Manuf. 2017, 98, 166–173. [Google Scholar] [CrossRef]
- Ding, W.; Jahani, D.; Chang, E.; Alemdar, A.; Park, C.B.; Sain, M. Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Compos. Compos. Part A Appl. Sci. Manuf. 2016, 83, 130–139. [Google Scholar] [CrossRef]
- Zhan, J.; Li, J.; Wang, G.; Guan, Y.; Zhao, G.; Lin, J.; Naceur, H.; Coutellier, D. Review on the performances, foaming and injection molding simulation of natural fiber composites. Polym. Compos. 2021, 42, 1305–1324. [Google Scholar] [CrossRef]
- Ding, Y.; Hassan, M.H.; Bakker, O.; Hinduja, S.; Bártolo, P. A Review on Microcellular Injection Moulding. Materials 2021, 14, 4209. [Google Scholar] [CrossRef]
- Lee, Y.H.; Kuboki, T.; Park, C.B.; Sain, M. The Effects of Nanoclay on the Extrusion Foaming of Wood Fiber/Polyethylene Nanocomposites. Polym. Eng. Sci. 2011, 51, 1014–1022. [Google Scholar] [CrossRef]
- Gong, S.; Yuan, M.; Chandra, A.; Kharbas, H.; Osorio, A.; Turng, L.S. Microcellular injection molding. Int. Polym. Proc. 2005, 20, 202–214. [Google Scholar] [CrossRef]
- Altstädt, V.; Mantey, A. Thermoplast-Schaumspritzgießen, 1st ed.; Carl Hanser Verlag GmbH & Co. KG: Munich, Germany, 2010; ISBN 9783446412514. [Google Scholar]
- Lee, J.; Turng, L.S.; Dougherty, E.; Gorton, P. Novel foam injection molding technology using carbon dioxide-laden pellets. Polym. Eng. Sci. 2011, 51, 2295–2303. [Google Scholar] [CrossRef]
- Kharbas, H.A.; McNulty, J.D.; Ellingham, T.; Thompson, C.; Manitiu, M.; Scholz, G.; Turng, L.-S. Comparative study of chemical and physical foaming methods for injection-molded thermoplastic polyurethane. J. Cell. Plast. 2016, 53, 373–388. [Google Scholar] [CrossRef]
- Štěpek, J.; Daoust, H. Chemical and physical blowing agents. In Additives for Plastics; Springer: New York, NY, USA, 1983; Volume 5, pp. 112–123. [Google Scholar]
- Kutz, M. Applied Plastics Engineering Handbook: Processing and Materials; Elsevier Science: Amsterdam, The Netherlands, 2011; pp. 1–574. [Google Scholar]
- Michaeli, W.; Florez, L.; Obeloer, D.; Brinkmann, M. Analysis of the impact properties of structural foams. J. Cell. Plast. 2009, 45, 321–351. [Google Scholar] [CrossRef]
- Ruiz, J.A.R.; Vincent, M.; Agassant, J.-F.; Sadik, T.; Pillon, C.; Carrot, C. Polymer foaming with chemical blowing agents: Experiment and modeling. Polym. Eng. Sci. 2015, 55, 2018–2029. [Google Scholar] [CrossRef]
- Trexel, Inc. Chemical vs. Physical Foaming. Available online: https://trexel.com/chemical-vs-physical-foaming/ (accessed on 14 November 2022).
- Standau, T.; Zhao, C.; Castellón, S.M.; Bonten, C.; Altstädt, V. Chemical Modification and Foam Processing of Polylactide (PLA). Polymers 2019, 11, 306. [Google Scholar] [CrossRef] [Green Version]
- Shaayegan, V.; Wang, C.; Costa, F.; Han, S.; Park, C.B. Effect of the melt compressibility and the pressure drop rate on the cell-nucleation behavior in foam injection molding with mold opening. Eur. Polym. J. 2017, 92, 314–325. [Google Scholar] [CrossRef]
- Ishikawa, T.; Ohshima, M. Visual observation and numerical studies of polymer foaming behavior of polypropylene/carbon dioxide system in a core-back injection molding process. Polym. Eng. Sci. 2011, 51, 1617–1625. [Google Scholar] [CrossRef]
- Starlinger, A. Development of Efficient Finite Shell Elements for the Analysis of Sandwich Structures under Large Deformations and Global As Well As Local Instabilities; VDI Verlag: Duesseldorf, Germany, 1991; ISBN 318149318X. [Google Scholar]
- Chong, T.-H.; Ha, Y.-W.; Jeong, D.-J. Effect of Dissolved Gas on the Viscosity of HIPS in the Manufacture of Microcellular Plastics. Polym. Eng. Sci. 2003, 43, 1337–1344. [Google Scholar] [CrossRef]
- Mallick, P.K. Thermoplastics and thermoplastic-matrix composites for lightweight automotive structures. In Materials, Design and Manufacturing for Lightweight Vehicles; Mallick, P.K., Ed.; Woodhead Publishing: Sawston, UK, 2010; pp. 174–207. [Google Scholar]
- Volpe, V.; De Filitto, M.; Klofacova, V.; De Santis, F.; Pantani, R. Effect of mold opening on the properties of PLA samples obtained by foam injection molding. Polym. Eng. Sci. 2018, 58, 475–484. [Google Scholar] [CrossRef]
- Guanghong, H.; Yue, W. Microcellular Foam Injection Molding Process. In Some Critical Issues for Injection Molding; Wang, J., Ed.; Intech: London, UK, 2012; pp. 175–202. ISBN 9789537619992. [Google Scholar]
- Unterweger, C.; Ranzinger, M.; Duchoslav, J.; Piana, F.; Pasti, I.; Zeppetzauer, F.; Breitenbach, S.; Stifter, D.; Fürst, C. Electrically conductive bio-composites based on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and wood-derived carbon fillers. J. Compos. Sci. 2022, 6, 228. [Google Scholar] [CrossRef]
- Beaugrand, J.; Berzin, F. Lignocellulosic Fiber Reinforced Composites: Influence on Compounding Conditions of Defibrization and Mechanical Properties. J. Appl. Polym. Sci. 2013, 128, 1227–1238. [Google Scholar] [CrossRef]
- Shaayegan, V. Investigation of Cell Nucleation and Growth in Foam Injection Molding through Visualization. PhD Thesis, University of Toronto, Toronto, ON, Canada, 2016. [Google Scholar]
- Hwang, S.-S.; Hsu, P.P. Effects of silica particle size on the structure and properties of polypropylene/silica composites foams. J. Ind. Eng. Chem. 2013, 19, 1377–1383. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mihalic, M.; Pretschuh, C.; Lummerstorfer, T.; Unterweger, C. Physical and Chemical Foam Injection Moulding of Natural-Fibre-Reinforced Polypropylene—Assessment of Weight-Reduction Potential and Mechanical Properties. J. Compos. Sci. 2023, 7, 144. https://doi.org/10.3390/jcs7040144
Mihalic M, Pretschuh C, Lummerstorfer T, Unterweger C. Physical and Chemical Foam Injection Moulding of Natural-Fibre-Reinforced Polypropylene—Assessment of Weight-Reduction Potential and Mechanical Properties. Journal of Composites Science. 2023; 7(4):144. https://doi.org/10.3390/jcs7040144
Chicago/Turabian StyleMihalic, Matthias, Claudia Pretschuh, Thomas Lummerstorfer, and Christoph Unterweger. 2023. "Physical and Chemical Foam Injection Moulding of Natural-Fibre-Reinforced Polypropylene—Assessment of Weight-Reduction Potential and Mechanical Properties" Journal of Composites Science 7, no. 4: 144. https://doi.org/10.3390/jcs7040144
APA StyleMihalic, M., Pretschuh, C., Lummerstorfer, T., & Unterweger, C. (2023). Physical and Chemical Foam Injection Moulding of Natural-Fibre-Reinforced Polypropylene—Assessment of Weight-Reduction Potential and Mechanical Properties. Journal of Composites Science, 7(4), 144. https://doi.org/10.3390/jcs7040144