Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sample Characterization
2.3. Sensing Response Measurements
3. Results
3.1. Microscopy
3.1.1. TEM
3.1.2. SEM
3.2. EDX
3.3. FTIR
3.4. Raman Spectroscopy
3.5. Structural Investigations Summary
3.6. Sensing Properties
4. Key Findings
- Drop-casting of the dissolved PVDF and its subsequent room-temperature dehydrohalogenation in KOH allows for the formation of the polyene-polyyne-based film with selected dimensions.
- Subsurface polyene-polyyne layers of the structure have resistive sensing properties.
- Selective highly-selective room-temperature sensing of ammonium hydroxide was observed.
- Polyene-polyyne graphitization induced by ion irradiation varied the type of sensing response, but reduced its selectivity to the ammonia-containing vapor.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Z.; Zhu, L.; Sun, S.; Wang, J.; Yan, W. One-Dimensional Nanomaterials in Resistive Gas Sensor: From Material Design to Application. Chemosensors 2021, 9, 198. [Google Scholar] [CrossRef]
- Zhou, T.; Zhang, T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure–Property-Application Relationship for Gas Sensors. Small Methods 2021, 5, 2100515. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Myung, N.V.; Tran, T.-T. 1D Metal Oxide Semiconductor Materials for Chemiresistive Gas Sensors: A Review. Adv. Electron. Mater. 2021, 7, 2100271. [Google Scholar] [CrossRef]
- Xiao, Z.; Kong, L.B.; Ruan, S.; Li, X.; Yu, S.; Li, X.; Jiang, Y.; Yao, Z.; Ye, S.; Wang, C.; et al. Recent Development in Nanocarbon Materials for Gas Sensor Applications. Sens. Actuators B Chem. 2018, 274, 235–267. [Google Scholar] [CrossRef]
- Nikolic, M.V.; Milovanovic, V.; Vasiljevic, Z.Z.; Stamenkovic, Z. Semiconductor Gas Sensors: Materials, Technology, Design, and Application. Sensors 2020, 20, 6694. [Google Scholar] [CrossRef]
- Roy, A.; Ray, A.; Sadhukhan, P.; Naskar, K.; Lal, G.; Bhar, R.; Sinha, C.; Das, S. Polyaniline-Multiwalled Carbon Nanotube (PANI-MWCNT): Room Temperature Resistive Carbon Monoxide (CO) Sensor. Synth. Met. 2018, 245, 182–189. [Google Scholar] [CrossRef]
- Seekaew, Y.; Pon-On, W.; Wongchoosuk, C. Ultrahigh Selective Room-Temperature Ammonia Gas Sensor Based on Tin–Titanium Dioxide/Reduced Graphene/Carbon Nanotube Nanocomposites by the Solvothermal Method. ACS Omega 2019, 4, 16916–16924. [Google Scholar] [CrossRef] [Green Version]
- Serban, B.C.; Buiu, O.; Dumbravescu, N.; Cobianu, C.; Avramescu, V.; Brezeanu, M.; Bumbac, M.; Pachiu, C.; Nicolescu, C.M. Oxidized Carbon Nanohorn-Hydrophilic Polymer Nanocomposite as the Resistive Sensing Layer for Relative Humidity. Anal. Lett. 2021, 54, 527–540. [Google Scholar] [CrossRef]
- Yang, M.; Zhang, X.; Guo, C.; Cheng, X.; Zhu, C.; Xu, Y.; Major, Z.; Huo, L. Resistive Room Temperature DMA Gas Sensor Based on the Forest-like Unusual n-Type PANI/TiO2 Nanocomposites. Sens. Actuators B Chem. 2021, 342, 130067. [Google Scholar] [CrossRef]
- Salman, Z.; Nair, A.; Tung, S. One-Dimensional Carbon Chains as Electrical Sensors for Single-Stranded DNA. In Proceedings of the 2017 IEEE 12th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS), Los Angeles, CA, USA, 9–12 April 2017; IEEE: Los Angeles, CA, USA, 2017; pp. 677–681. [Google Scholar]
- Wu, B.; Li, M.; Xiao, S.; Qu, Y.; Qiu, X.; Liu, T.; Tian, F.; Li, H.; Xiao, S. A Graphyne-like Porous Carbon-Rich Network Synthesized via Alkyne Metathesis. Nanoscale 2017, 9, 11939–11943. [Google Scholar] [CrossRef]
- Li, J.; Wan, C.; Wang, C.; Zhang, H.; Chen, X. 2D Material Chemistry: Graphdiyne-Based Biochemical Sensing. Chem. Res. Chin. Univ. 2020, 36, 622–630. [Google Scholar] [CrossRef]
- Nikmanesh, S.; Safaiee, R.; Sheikhi, M.H. A Novel High-Performance Methane Sensor Based on Ti-Decorated 2D γ-Graphyne: A Dispersion-Corrected DFT Insight. Mater. Chem. Phys. 2021, 257, 123808. [Google Scholar] [CrossRef]
- Smirnov, A.V.; Kazakov, V.A.; Platonov, P.S.; Tyunterov, E.S. Synthesis and Study of the Gas Sensitive Properties of Composite Thin Films of Copper Oxide and Linear Chain Carbon. J. Phys. Conf. Ser. 2020, 1697, 012133. [Google Scholar] [CrossRef]
- Hsu, H.H.; Zhang, X.; Xu, K.; Wang, Y.; Wang, Q.; Luo, G.; Xing, M.; Zhong, W. Self-Powered and Plant-Wearable Hydrogel as LED Power Supply and Sensor for Promoting and Monitoring Plant Growth in Smart Farming. Chem. Eng. J. 2021, 422, 129499. [Google Scholar] [CrossRef]
- Zhu, M.; Zhang, J.; Xu, W.; Xiong, R.; Huang, C. Cellulose-Based Fibrous Materials for Self-Powered Wearable Pressure Sensor: A Mini Review. Cellulose 2023, 30, 1981–1998. [Google Scholar] [CrossRef]
- Zhu, M.; Yu, J.; Li, Z.; Ding, B. Self-Healing Fibrous Membranes. Angew. Chem. 2022, 134, e202208949. [Google Scholar] [CrossRef]
- Aziz, T.; Mehmood, S.; Haq, F.; Ullah, R.; Khan, F.U.; Ullah, B.; Raheel, M.; Iqbal, M.; Ullah, A. Synthesis and Modification of Silica-based Epoxy Nanocomposites with Different Sol–Gel Process Enhanced Thermal and Mechanical Properties. J. Appl. Polym. Sci. 2021, 138, 51191. [Google Scholar] [CrossRef]
- Aziz, T.; Farid, A.; Haq, F.; Kiran, M.; Ullah, N.; Faisal, S.; Ali, A.; Khan, F.U.; You, S.; Bokhari, A.; et al. Role of Silica-Based Porous Cellulose Nanocrystals in Improving Water Absorption and Mechanical Properties. Environ. Res. 2023, 222, 115253. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, H.; Liu, K.; Wang, T.; Yuan, C.; Yang, H. Effect of Dehydrofluorination Reaction on Structure and Properties of PVDF Electrospun Fibers. RSC Adv. 2021, 11, 30734–30743. [Google Scholar] [CrossRef]
- Krishnamoorthy, K.; Mariappan, V.K.; Pazhamalai, P.; Sahoo, S.; Kim, S.-J. Mechanical Energy Harvesting Properties of Free-Standing Carbyne Enriched Carbon Film Derived from Dehydrohalogenation of Polyvinylidene Fluoride. Nano Energy 2019, 59, 453–463. [Google Scholar] [CrossRef]
- Dias, A.J.; McCarthy, T.J. Dehydrofluorination of Poly(Vinylidene Fluoride) in Dimethylformamide Solution: Synthesis of an Operationally Soluble Semiconducting Polymer. J. Polym. Sci. Polym. Chem. Ed. 1985, 23, 1057–1061. [Google Scholar] [CrossRef]
- Yoshimura, S.; Tsukazaki, Y.; Kiuchi, M.; Sugimoto, S.; Hamaguchi, S. Sputtering Yields and Surface Modification of Poly(Methyl Methacrylate) (PMMA) by Low-Energy Ar + / Ion Bombardment with Vacuum Ultraviolet (VUV) Photon Irradiation. J. Phys. D Appl. Phys. 2012, 45, 505201. [Google Scholar] [CrossRef]
- Koval, Y.; Geworski, A.; Gieb, K.; Lazareva, I.; Müller, P. Fabrication and Characterization of Glassy Carbon Membranes. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2014, 32, 042001. [Google Scholar] [CrossRef]
- El-Saftawy, A.A.; Abd El Aal, S.A.; Badawy, Z.M.; Soliman, B.A. Investigating Wettability and Optical Properties of PADC Polymer Irradiated by Low Energy Ar Ions. Surf. Coat. Technol. 2014, 253, 249–254. [Google Scholar] [CrossRef]
- Streletskiy, O.; Zavidovskiy, I.; Yakubovsky, D.; Doroshina, N.; Syuy, A.; Lebedinskij, Y.; Markeev, A.; Arsenin, A.; Volkov, V.; Novikov, S. Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. Materials 2022, 15, 7721. [Google Scholar] [CrossRef]
- Chang, Y.; Pang, Y.; Dang, Q.; Kumar, A.; Zhang, G.; Chang, Z.; Sun, X. Converting Polyvinyl Chloride Plastic Wastes to Carbonaceous Materials via Room-Temperature Dehalogenation for High-Performance Supercapacitor. ACS Appl. Energy Mater. 2018, 1, 5685–5693. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, G.; Han, B.; Li, H.; Hu, C.; Pang, Y.; Chang, Z.; Sun, X. Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications. ACS Appl. Mater. Interfaces 2017, 9, 29753–29759. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, L.; Hao, Y.; Jin, X.; Xu, Y.; Kuang, Y.; Dai, L.; Sun, X. Unconventional Carbon: Alkaline Dehalogenation of Polymers Yields N-Doped Carbon Electrode for High-Performance Capacitive Energy Storage. Adv. Funct. Mater. 2016, 26, 3340–3348. [Google Scholar] [CrossRef]
- Zhang, G.; Jin, X.; Li, H.; Wang, L.; Hu, C.; Sun, X. N-Doped Crumpled Graphene: Bottom-up Synthesis and Its Superior Oxygen Reduction Performance. Sci. China Mater. 2016, 59, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Zhivulin, V.E.; Pesin, L.A.; Belenkov, E.A.; Greshnyakov, V.A.; Zlobina, N.; Brzhezinskaya, M. Ageing of Chemically Modified Poly(Vinylidene Fluoride) Film: Evolution of Triple Carbon-Carbon Bonds Infrared Absorption. Polym. Degrad. Stab. 2020, 172, 109059. [Google Scholar] [CrossRef]
- Wäsche, M.; Lippitz, A.; Pinnow, M.; Kunze, R. An XPS Study of Poly(Vinylidene Fluoride) Surfaces Irradiated by Low Energy Argon Ions. Acta Polym. 1988, 39, 403–405. [Google Scholar] [CrossRef]
- Cai, X.; Lei, T.; Sun, D.; Lin, L. A Critical Analysis of the α, β and γ Phases in Poly(Vinylidene Fluoride) Using FTIR. RSC Adv. 2017, 7, 15382–15389. [Google Scholar] [CrossRef] [Green Version]
- Bormashenko, Y.; Pogreb, R.; Stanevsky, O.; Bormashenko, E. Vibrational Spectrum of PVDF and Its Interpretation. Polym. Test. 2004, 23, 791–796. [Google Scholar] [CrossRef]
- Ţucureanu, V.; Matei, A.; Avram, A.M. FTIR Spectroscopy for Carbon Family Study. Crit. Rev. Anal. Chem. 2016, 46, 502–520. [Google Scholar] [CrossRef]
- Prabakaran, K.; Mohanty, S.; Nayak, S.K. Solid State Metal-Free Eosin-Y Dye Sensitized Solar Cell Based on PVdF-HFP Electrolytes: Combined Effect of Surface Modified TiO2 and Plasticizer on Electrochemical and Photovoltaic Properties. J. Solid State Electrochem. 2015, 19, 2465–2479. [Google Scholar] [CrossRef]
- Pamuła, E.; Błażewicz, M.; Paluszkiewicz, C.; Dobrzyński, P. FTIR Study of Degradation Products of Aliphatic Polyesters–Carbon Fibres Composites. J. Mol. Struct. 2001, 596, 69–75. [Google Scholar] [CrossRef]
- Dahmouchène, N.; Coppée, S.; Voué, M.; De Coninck, J. Silver Nanoparticles Embedded in Polymer Matrices—A FTIR-SE Study. Phys. Status Solidi C 2008, 5, 1210–1214. [Google Scholar] [CrossRef]
- Lucotti, A.; Tommasini, M.; Fazzi, D.; Del Zoppo, M.; Chalifoux, W.A.; Ferguson, M.J.; Zerbi, G.; Tykwinski, R.R. Evidence for Solution-State Nonlinearity of Sp-Carbon Chains Based on IR and Raman Spectroscopy: Violation of Mutual Exclusion. J. Am. Chem. Soc. 2009, 131, 4239–4244. [Google Scholar] [CrossRef]
- Leong, T.X.; Collins, B.K.; Dey Baksi, S.; Mackin, R.T.; Sribnyi, A.; Burin, A.L.; Gladysz, J.A.; Rubtsov, I.V. Tracking Energy Transfer across a Platinum Center. J. Phys. Chem. A 2022, 126, 4915–4930. [Google Scholar] [CrossRef]
- Zhivulin, V.E.; Chernov, V.M.; Osipov, A.A.; Shtenberg, M.V.; Evsyukov, S.E.; Pesin, L.A. Analysis of the Change in the Concentration of Fluorine and Hydrogen as a Result of Chemical Dehydrofluorination of Polyvinylidene Fluoride. Phys. Solid State 2017, 59, 1414–1419. [Google Scholar] [CrossRef]
- Ehrendorfer, C.; Neugebauer, H.; Neckel, A.; Bäuerle, P. An FTIR Spectroscopic Study on End-Capped Oligothiophenes as Model Compounds for Polythiophene. Synth. Met. 1993, 55, 493–498. [Google Scholar] [CrossRef]
- Guo, L.; Wu, S.; Zeng, F.; Zhao, J. Synthesis and Fluorescence Property of Terbium Complex with Novel Schiff-Base Macromolecular Ligand. Eur. Polym. J. 2006, 42, 1670–1675. [Google Scholar] [CrossRef]
- Alghunaim, N.S. Optimization and Spectroscopic Studies on Carbon Nanotubes/PVA Nanocomposites. Results Phys. 2016, 6, 456–460. [Google Scholar] [CrossRef] [Green Version]
- Streletskiy, O.A.; Nishchak, O.Y.; Zavidovskiy, I.A.; Maslakov, K.I.; Pavlikov, A.V. Sp-Based Thin Films Synthesized by Magnetron Sputtering of Dehydrohalogenated Polyvinylidenchloride. Thin Solid Film. 2021, 739, 138993. [Google Scholar] [CrossRef]
- Qu, P.; Liu, X.; Wang, S.; Xiao, C.; Liu, S. Moderate Dehydrofluorinated PVDF with High Energy Density. Mater. Lett. 2018, 221, 275–278. [Google Scholar] [CrossRef]
- Kuznetsov, S.M.; Sagitova, E.A.; Prokhorov, K.A.; Nikolaeva, G.Y.; Mendeleev, D.I.; Donfack, P.; Materny, A. Raman Spectroscopic Detection of Polyene-Length Distribution for High-Sensitivity Monitoring of Photo- and Thermal Degradation of Polyvinylchloride. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 252, 119494. [Google Scholar] [CrossRef]
- Kise, H.; Ogata, H. Phase Transfer Catalysis in Dehydrofluorination of Poly(Vinylidene Fluoride) by Aqueous Sodium Hydroxide Solutions. J. Polym. Sci. Polym. Chem. Ed. 1983, 21, 3443–3451. [Google Scholar] [CrossRef]
- Suslova, E.; Viktorova, A.; Osipov, N.; Maslakov, K.; Kuznetsova, N. The Influence of Heterosubstitution on Carbon Foams Characteristics as Electrode Materials for Lithium-Ion Batteries. Funct. Mater. Lett. 2020, 13, 2040003. [Google Scholar] [CrossRef]
- Palomo, L.; Rodríguez, R.; Medina, S.; Quiñoá, E.; Casado, J.; Freire, F.; Ramírez, F.J. Raman Optical Activity (ROA) as a New Tool to Elucidate the Helical Structure of Poly(Phenylacetylene)s. Angew. Chem. 2020, 132, 9165–9172. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Balabanyan, V.Y.; Tsiskarashvili, A.V. Antibacterial Properties of Modified A-C and Ta-C Coatings: The Effects of the Sp2/Sp3 Ratio, Oxidation, Nitridation, and Silver Incorporation. Appl. Phys. A 2022, 128, 929. [Google Scholar] [CrossRef]
- Maia, L.F.; De Oliveira, V.E.; Edwards, H.G.M.; De Oliveira, L.F.C. The Diversity of Linear Conjugated Polyenes and Colours in Nature: Raman Spectroscopy as a Diagnostic Tool. ChemPhysChem 2021, 22, 231–249. [Google Scholar] [CrossRef] [PubMed]
- Streletskiy, O.; Perevedentseva, E.; Zavidovskiy, I.; Karmenyan, A.; Sychev, V.; Sadykova, V.; Kuvarina, A.; Cheng, C.-L. Amorphous Carbon Films with Embedded Well-Dispersed Nanodiamonds: Plasmon-Enhanced Analysis and Possible Antimicrobial Applications. Magnetochemistry 2022, 8, 171. [Google Scholar] [CrossRef]
- Streletskiy, O.A.; Zavidovskiy, I.A.; Nischak, O.Y.; Pavlikov, A.V. Multiphonon Replicas in Raman Spectra and Conductivity Properties of Carbon Films with Different Concentrations of Sp1-Bonds. Thin Solid Films 2019, 671, 31–35. [Google Scholar] [CrossRef]
- Cataldo, F. Raman spectra and thermal analysis on polyyne and polyene-yne chain segments. J. Macromol. Sci. Part A 2000, 37, 881–892. [Google Scholar] [CrossRef]
- Tyagi, C.; Khan, S.A.; Sulania, I.; Meena, R.; Avasthi, D.K.; Tripathi, A. Evidence of Ion-Beam-Induced Annealing in Graphene Oxide Films Using in Situ X-Ray Diffraction and Spectroscopy Techniques. J. Phys. Chem. C 2018, 122, 9632–9640. [Google Scholar] [CrossRef]
- Schaffer, H.E.; Chance, R.R.; Silbey, R.J.; Knoll, K.; Schrock, R.R. Conjugation Length Dependence of Raman Scattering in a Series of Linear Polyenes: Implications for Polyacetylene. J. Chem. Phys. 1991, 94, 4161–4170. [Google Scholar] [CrossRef] [Green Version]
- Heimann, R.B. Diamond Synthesis from Carbyne. In Carbyne and Carbynoid Structures; Heimann, R.B., Evsyukov, S.E., Kavan, L., Eds.; Physics and Chemistry of Materials with Low-Dimensional Structures; Springer: Dordrecht, The Netherlands, 1999; pp. 409–425. ISBN 978-94-011-4742-2. [Google Scholar]
- Cataldo, F. Synthesis of Polyynes (and Ene-Ynes) Segments by Dechlorination Reactions of Chlorinated Polyethylene Wax and Chlorinated Docosane. J. Mater. Sci. 2000, 35, 2413–2419. [Google Scholar] [CrossRef]
- Lu, H.; Du, J.; Zhang, H.; Guo, X.; Du, J.; Zhang, Y.; Li, C.; Dong, L.; Chen, Y. High Energy Storage Capacitance of Defluorinated Polyvinylidene Fluoride and Polyvinylidene Fluoride Blend Alloy for Capacitor Applications. J. Appl. Polym. Sci. 2020, 137, 49055. [Google Scholar] [CrossRef]
- Zhivulin, V.E.; Evsyukov, S.E.; Chalov, D.A.; Morilova, V.M.; Andreychuk, V.P.; Khairanov, R.K.; Margamov, I.G.; Pesin, L.A. Evolution of the Molecular Structure of Partially Dehydrofluorinated Poly(Vinylidene Fluoride) Films upon Storage in Air. J. Surf. Investig. 2022, 16, 673–681. [Google Scholar] [CrossRef]
- Chakraborthy, A.; Nuthalapati, S.; Nag, A.; Afsarimanesh, N.; Alahi, M.E.E.; Altinsoy, M.E. A Critical Review of the Use of Graphene-Based Gas Sensors. Chemosensors 2022, 10, 355. [Google Scholar] [CrossRef]
- Namsheer, K.; Rout, C.S. Conducting Polymers: A Comprehensive Review on Recent Advances in Synthesis, Properties and Applications. RSC Adv. 2021, 11, 5659–5697. [Google Scholar] [CrossRef]
- Kwak, D.; Lei, Y.; Maric, R. Ammonia Gas Sensors: A Comprehensive Review. Talanta 2019, 204, 713–730. [Google Scholar] [CrossRef]
- Muangrat, W.; Obata, M.; Hashimoto, Y. Enhancement Sensitivity and Selectivity of Ammonium Hydroxide Using Nitrogen-Doped Double-Walled Carbon Nanotubes. Trends Sci. 2022, 19, 2891. [Google Scholar] [CrossRef]
- Ahmadi, S.; Afzalzadeh, R. Few-Layer Graphene Doped with Boron to Enhance Ammonium Hydroxide Vapour Detection at Low Temperature. Micro Nano Lett. 2018, 13, 363–368. [Google Scholar] [CrossRef]
- Liu, K.; Yang, P.; Li, S.; Li, J.; Ding, T.; Xue, G.; Chen, Q.; Feng, G.; Zhou, J. Induced Potential in Porous Carbon Films through Water Vapor Absorption. Angew. Chem. Int. Ed. 2016, 55, 8003–8007. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Goel, N.; Kumar, M. UV-Activated MoS 2 Based Fast and Reversible NO 2 Sensor at Room Temperature. ACS Sens. 2017, 2, 1744–1752. [Google Scholar] [CrossRef] [PubMed]
- Piazza, A.; Giannazzo, F.; Buscarino, G.; Fisichella, G.; La Magna, A.; Roccaforte, F.; Cannas, M.; Gelardi, F.M.; Agnello, S. Effect of Air on Oxygen P-Doped Graphene on SiO2. Phys. Status Solidi A 2016, 213, 2341–2344. [Google Scholar] [CrossRef]
- Yuan, W.; Huang, L.; Zhou, Q.; Shi, G. Ultrasensitive and Selective Nitrogen Dioxide Sensor Based on Self-Assembled Graphene/Polymer Composite Nanofibers. ACS Appl. Mater. Interfaces 2014, 6, 17003–17008. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, V.; Savagatrup, S.; He, M.; Lin, S.; Swager, T.M. Carbon Nanotube Chemical Sensors. Chem. Rev. 2019, 119, 599–663. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Buldum, A.; Han, J.; Lu, J.P. Gas Molecule Adsorption in Carbon Nanotubes and Nanotube Bundles. Nanotechnology 2002, 13, 195. [Google Scholar] [CrossRef]
- Harra, D.J. Review of Sticking Coefficients and Sorption Capacities of Gases on Titanium Films. J. Vac. Sci. Technol. 1998, 13, 471. [Google Scholar] [CrossRef]
- Levko, D.S.; Tsymbalyuk, A.N. Analysis of Possibilities for the Development of Ultraviolet Emitters Based on Ethanol Molecules. Tech. Phys. Lett. 2013, 39, 271–273. [Google Scholar] [CrossRef]
- Su, K.; Hu, X.; Li, X.; Wang, Y.; Web, Z. High-Level Ab Initio Calculation and Assessment of the Dissociation and Ionization Energies of NH2 and NH3 Neutrals or Cations. Chem. Phys. Lett. 1996, 258, 431–435. [Google Scholar] [CrossRef]
- McCarthy, M.I.; Rosmus, P.; Werner, H.-J.; Botschwina, P.; Vaida, V. Dissociation of NH 3 to NH 2 +H. J. Chem. Phys. 1987, 86, 6693–6700. [Google Scholar] [CrossRef]
- Han, J.-W.; Kim, B.; Li, J.; Meyyappan, M. Carbon Nanotube Based Humidity Sensor on Cellulose Paper. J. Phys. Chem. C 2012, 116, 22094–22097. [Google Scholar] [CrossRef]
- Bartlett, P.N.; Ling-Chung, S.K. Conducting Polymer Gas Sensors Part II: Response of Polypyrrole to Methanol Vapour. Sens. Actuators 1989, 19, 141–150. [Google Scholar] [CrossRef]
- Quang, N.H.; Van Trinh, M.; Lee, B.-H.; Huh, J.-S. Effect of NH3 Gas on the Electrical Properties of Single-Walled Carbon Nanotube Bundles. Sens. Actuators B Chem. 2006, 113, 341–346. [Google Scholar] [CrossRef]
- Nguyen, H.-Q.; Huh, J.-S. Behavior of Single-Walled Carbon Nanotube-Based Gas Sensors at Various Temperatures of Treatment and Operation. Sens. Actuators B Chem. 2006, 117, 426–430. [Google Scholar] [CrossRef]
- Kong, J.; Franklin, N.R.; Zhou, C.; Chapline, M.G.; Peng, S.; Cho, K.; Dai, H. Nanotube Molecular Wires as Chemical Sensors. Science 2000, 287, 622–625. [Google Scholar] [CrossRef]
- Camargo Moreira, Ó.L.; Cheng, W.-Y.; Fuh, H.-R.; Chien, W.-C.; Yan, W.; Fei, H.; Xu, H.; Zhang, D.; Chen, Y.; Zhao, Y.; et al. High Selectivity Gas Sensing and Charge Transfer of SnSe2. ACS Sens. 2019, 4, 2546–2552. [Google Scholar] [CrossRef]
- Niu, L.; Luo, Y.; Li, Z. A Highly Selective Chemical Gas Sensor Based on Functionalization of Multi-Walled Carbon Nanotubes with Poly(Ethylene Glycol). Sens. Actuators B Chem. 2007, 126, 361–367. [Google Scholar] [CrossRef]
- Kumar, R.; Ghosh, R. Selective Determination of Ammonia, Ethanol and Acetone by Reduced Graphene Oxide Based Gas Sensors at Room Temperature. Sens. Bio-Sens. Res. 2020, 28, 100336. [Google Scholar] [CrossRef]
- Freddi, S.; Vergari, M.; Pagliara, S.; Sangaletti, L. A Chemiresistor Sensor Array Based on Graphene Nanostructures: From the Detection of Ammonia and Possible Interfering VOCs to Chemometric Analysis. Sensors 2023, 23, 882. [Google Scholar] [CrossRef] [PubMed]
- Hijazi, M.; Stambouli, V.; Rieu, M.; Tournier, G.; Pijolat, C.; Viricelle, J.-P. Sensitive and Selective Ammonia Gas Sensor Based on Molecularly Modified SnO2. Proceedings 2017, 1, 399. [Google Scholar] [CrossRef] [Green Version]
- Kroutil, J.; Laposa, A.; Povolny, V.; Klimsa, L.; Husak, M. Gas Sensor with Different Morphology of PANI Layer. Sensors 2023, 23, 1106. [Google Scholar] [CrossRef] [PubMed]
- Nadekar, B.; Khollam, Y.B.; Shaikh, S.F.; Trimukhe, A.; Deshmukh, R.; More, P.S.; Siddiqui, M.U.H.; Rana, A.u.H.S.; Palaniswami, M. Plasma-Polymerized Thiophene-Reduced Graphene Oxide Composite Film Sensor for Ammonia/Amine Detection at Room Temperature. Chemosensors 2023, 11, 42. [Google Scholar] [CrossRef]
- Ravagnan, L.; Siviero, F.; Lenardi, C.; Piseri, P.; Barborini, E.; Milani, P.; Casari, C.S.; Li Bassi, A.; Bottani, C.E. Cluster-Beam Deposition and in Situ Characterization of Carbyne-Rich Carbon Films. Phys. Rev. Lett. 2002, 89, 285506. [Google Scholar] [CrossRef] [Green Version]
- Baughman, R.H.; Chance, R.R. Comments on the Optical Properties of Fully Conjugated Polymers: Analogy between Polyenes and Polydiacetylenes. J. Polym. Sci. Polym. Phys. Ed. 1976, 14, 2037–2045. [Google Scholar] [CrossRef]
- Majhi, S.M.; Mirzaei, A.; Navale, S.; Kim, H.W.; Kim, S.S. Boosting the Sensing Properties of Resistive-Based Gas Sensors by Irradiation Techniques: A Review. Nanoscale 2021, 13, 4728–4757. [Google Scholar] [CrossRef]
- Srivastava, A.; Singh, V.; Dhand, C.; Kaur, M.; Singh, T.; Witte, K.; Scherer, U.W. Study of Swift Heavy Ion Modified Conducting Polymer Composites for Application as Gas Sensor. Sensors 2006, 6, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Fink, D.; Muñoz Hernandez, G.; Alfonta, L. Highly Sensitive Urea Sensing with Ion-Irradiated Polymer Foils. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2012, 273, 164–170. [Google Scholar] [CrossRef]
- Ram, J.; Singh, R.G.; Singh, F.; Chauhan, V.; Gupta, D.; Kumar, V.; Kumar, U.; Yadav, B.C.; Kumar, R. Ion Beam Engineering in WO3-PEDOT: PSS Hybrid Nanocomposite Thin Films for Gas Sensing Measurement at Room Temperature. Inorg. Chem. Commun. 2020, 119, 108000. [Google Scholar] [CrossRef]
- Shakeel, A.; Rizwan, K.; Farooq, U.; Iqbal, S.; Altaf, A.A. Advanced Polymeric/Inorganic Nanohybrids: An Integrated Platform for Gas Sensing Applications. Chemosphere 2022, 294, 133772. [Google Scholar] [CrossRef] [PubMed]
- Bannov, A.G.; Popov, M.V.; Brester, A.E.; Kurmashov, P.B. Recent Advances in Ammonia Gas Sensors Based on Carbon Nanomaterials. Micromachines 2021, 12, 186. [Google Scholar] [CrossRef] [PubMed]
Elements | PVDF Precursor | Polyene-Polyene-Based Material | Material Irradiated by 3 × 1017 ion/cm2 | Material Irradiated by 6 × 1017 ion/cm2 | Material Irradiated by 1 × 1018 ion/cm2 |
---|---|---|---|---|---|
C, at. % | 48.6 ± 2.7 | 67.2 ± 1.0 | 62.8 ± 1.4 | 64.0 ± 0.6 | 59.9 ± 1.9 |
F, at. % | 50.8 ± 3.4 | 18.8 ± 1.7 | 19.77 ± 1.1 | 24.8 ± 1.3 | 25.1 ± 1.6 |
O, at. % | 0 | 14.0 ± 0.7 | 15.5 ± 0.2 | 11.1 ± 0.9 | 11.9 ± 0.4 |
Other, at. % | 0.6 ± 0.6 | <0.1 | 1.6 ± 0.5 | ~0.1 | 2.7 ± 0.1 |
Line | kmax, cm−1 | HWHM, cm−1 | Irel, % | Line | kmax, cm−1 | HWHM, cm−1 | Irel, % | ||
---|---|---|---|---|---|---|---|---|---|
Non-irradiated polyene-polyyne-based material | ν1 | 1134 | 18 | 13 | Material irradiated by 3 × 1017 ion/cm2 | ν1 | 1149 | 29 | 7 |
D-peak/cis-ν1 | 1361 | 150 | 31 | D-peak/cis-ν1 | 1323 | 130 | 29 | ||
ν2 | 1524 | 22 | 35 | ν2 | 1541 | 34 | 25 | ||
G-peak | 1555 | 58 | 20 | G- peak | 1556 | 82 | 39 | ||
Material irradiated by 6 × 1017 ion/cm2 | ν1 | 1156 | 26 | 4 | Material irradiated by 1 × 1018 ion/cm2 | ν1 | 1164 | 44 | 6 |
D-peak/cis-ν1 | 1382 | 160 | 32 | D-peak/cis-ν1 | 1284 | 91 | 14 | ||
ν2 | 1543 | 30 | 14 | ν2 | 1555 | 36 | 11 | ||
G-peak | 1559 | 64 | 50 | G-peak | 1540 | 124 | 70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zavidovskiy, I.A.; Streletskiy, O.A.; Nuriahmetov, I.F.; Nishchak, O.Y.; Savchenko, N.F.; Tatarintsev, A.A.; Pavlikov, A.V. Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation. J. Compos. Sci. 2023, 7, 156. https://doi.org/10.3390/jcs7040156
Zavidovskiy IA, Streletskiy OA, Nuriahmetov IF, Nishchak OY, Savchenko NF, Tatarintsev AA, Pavlikov AV. Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation. Journal of Composites Science. 2023; 7(4):156. https://doi.org/10.3390/jcs7040156
Chicago/Turabian StyleZavidovskiy, Ilya A., Oleg A. Streletskiy, Islam F. Nuriahmetov, Olesya Yu. Nishchak, Natalya F. Savchenko, Andrey A. Tatarintsev, and Alexander V. Pavlikov. 2023. "Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation" Journal of Composites Science 7, no. 4: 156. https://doi.org/10.3390/jcs7040156
APA StyleZavidovskiy, I. A., Streletskiy, O. A., Nuriahmetov, I. F., Nishchak, O. Y., Savchenko, N. F., Tatarintsev, A. A., & Pavlikov, A. V. (2023). Highly Selective Polyene-Polyyne Resistive Gas Sensors: Response Tuning by Low-Energy Ion Irradiation. Journal of Composites Science, 7(4), 156. https://doi.org/10.3390/jcs7040156