Review on Molecular Dynamics Simulations of Effects of Carbon Nanotubes (CNTs) on Electrical and Thermal Conductivities of CNT-Modified Polymeric Composites
Abstract
:1. Introduction
2. Fundamental Concepts
2.1. Dispersion of Carbon Nanotubes
2.2. Thermal Conductivity
2.3. Electrical Conductivity
2.4. Chirality of CNTs
2.5. Some of the MD Techniques Used in the Literatures of This Review
2.6. Effectivity of Hydrogen Bonding for CNT Alignment
3. Results and Discussion
3.1. Effects of CNT Chirality and Length
3.2. Effect of CNT Overlap Length by Hydrogen Bonds
Base Coating | Resistivity (Ω cm) | Electrical Conductivity (S/cm) |
---|---|---|
Polyurethane | 850 | 1.2 × 10−3 |
75% Polyurethane/25% H2O | 4.1 | 0.24 |
Polycrylic | 690 | 1.45 × 10−3 |
75% Polycrylic/25% H2O | 80 | 0.0125 |
3.3. Other Factors’ Effects on Thermal and Electrical Properties of CNTs
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mutnuri, B. Thermal Conductivity Characterization of Composite Materials. Ph.D. Thesis, West Virginia University, Morgantown, VA, USA, 2006. [Google Scholar]
- Kozak, J.; Rajurkar, K.P.; Chandarana, N. Machining of low electrical conductive materials by wire electrical discharge machining. J. Mater. Process. Technol. 2004, 149, 266–271. [Google Scholar] [CrossRef]
- Woo Lee, S.; Kim, B.S.; Chen, S.; Shao-Horn, Y.; Hammond, P.T. Layer-by-Layer Assembly of All Carbon Nanotube Ul-trathin Films for Electrochemical Applications. J. Am. Chem. Soc. 2009, 131, 671–679. [Google Scholar] [CrossRef]
- Alsharef, J.M.A.; Taha, M.R.; Ahmed Khan, T. Physical dispersion of nanocarbons in composites. J. Teknol. 2017, 79. [Google Scholar] [CrossRef] [Green Version]
- Savas, B.; Young-Kyun, K.; David, T. Unusually High Thermal Conductivity of Carbon Nanotubes. Phys. Rev. Lett. 2000, 84, 4613–4616. [Google Scholar]
- Faraji, S.; Kelly, S.L.; Ozkan, Y.; Ang, L.; Yuntian, Z.; Philip, B.D. Ultralight anisotropic foams from layered aligned car-bon nanotube sheets. Nanoscale 2015, 7, 17038–17047. [Google Scholar] [CrossRef]
- Lee, E.; Salgado, R.A.; Lee, B.; Sumant, A.V.; Rajh, T.; Johnson, C.; Balandin, A.A.; Shevchenko, E.V. Design of lithium cobalt oxide electrodes with high ther-mal conductivity and electrochemical performance using carbon nanotubes and diamond particles. Carbon 2018, 129, 702–710. [Google Scholar] [CrossRef]
- Charoenpakdee, J.; Suntijitrungruang, O.; Boonchui, S. Chirality effects on an electron transport in single-walled carbon nanotube. Sci. Rep. 2020, 10, 18949. [Google Scholar] [CrossRef]
- Feng, Y.; Jie, Z.; Tang, D.W. Influence of chirality on the thermal conductivity of single-walled carbon nanotubes. Chin. Phys. B 2014, 23, 083101. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Saitô, N. Electrical Conductivity of Hydrogen-Bonded Polymers. J. Phys. Soc. Jpn. 1968, 24, 1007–1019. [Google Scholar] [CrossRef]
- Dan, J. Mechanical and Thermal Properties of Two-Dimensional Materia. Ph.D. Thesis, The University of North Carolina, Char-lotte, NC, USA, 2015. [Google Scholar]
- Jinlong, H. Molecular Mechanisms and Design of Hydrogen-Bonded Materials for Thermal Applications. Ph.D. Thesis, Utah State University, Logan, UT, USA, 2020. [Google Scholar]
- Silva, H.; Carlos, A. Molecular Dynamic Simulation of Thermo-Mechanical Properties of Ultra-Thin Poly (Methyl Meth-acrylate) Films. Ph.D. Thesis, Texas A&M University, Brazos County, TX, USA, 2010. [Google Scholar]
- Tallury, S.S.; Pasquinelli, M.A. Molecular Dynamics Simulations of Polymers with Stiff Backbones Interacting with Sin-gle-Walled Carbon Nanotubes. J. Phys. Chem. B 2010, 114, 9349–9355. [Google Scholar] [CrossRef] [PubMed]
- Eslami, H.; Mohammadzadeh, L.; Mehdipour, N. Reverse nonequilibrium molecular dynamics simulation of thermal conductivity in nanoconfined polyamide-6,6. J. Chem. Phys. 2011, 135, 064703. [Google Scholar] [CrossRef] [PubMed]
- Yaeji, K. CNT-Reinforced Polymer Nanocomposite by Molecular Dynamics Simulations. Ph.D. Thesis, Purdue University, West Lafayette, IN, USA, 2014. [Google Scholar]
- Upinder, K.; Sumit, S.; Rajeev, R.; Sachin, K.; Deepak, U. Molecular Dynamics Simulation of Nylon/CNT Composites. Mater. Today Proc. 2018, 5, 27710–27717. [Google Scholar]
- Gaikwad, P.S.; Kowalik, M.; Jensen, B.D.; van Duin, A.; Odegard, G.M. Molecular Dynamics Modeling of Interfacial Interactions between Flat-tened Carbon Nanotubes and Amorphous Carbon: Implications for Ultra-Lightweight Composites. ACS Appl. Nano Mater 2022, 5, 5915–5924. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Yan, L.; Song, W.; Xu, D. Interfacial characteristics of carbon nanotube-polymer composites: A review. Compo-Sites Part A Appl. Sci. Manuf. 2018, 114, 149–169. [Google Scholar] [CrossRef]
- Eitan, A.; Jiang, K.; Dukes, D.; Andrews, R.; Schadler, L.S. Surface modification of multiwalled carbon nanotubes: Toward the tailoring of the interface in polymer composites. Chem. Mater. Eng. 2003, 15, 3198–3201. [Google Scholar] [CrossRef]
- Amram, E. Nanotube-Polymer Composites: Tailoring the Interface for Improved Mechanical Properties. Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, USA, 2003. [Google Scholar]
- Mugadza, K.; Mombeshora, E.T.; Stark, A.; Ndungu, P.G.; Nyamori, V.O. Surface modifications of carbon nanotubes towards tailored elec-trochemical characteristics. J. Mater. Sci. Mater. Electron. 2021, 32, 27923–27936. [Google Scholar] [CrossRef]
- Huang, Y.Y.; Terentjev, E.M. Dispersion of Carbon Nanotubes: Mixing, Sonication, Stabilization, and Composite Properties. Polymers 2012, 4, 275–295. [Google Scholar] [CrossRef] [Green Version]
- Hamaker, H. The London van der Waals attraction between spherical particles. Physica 1937, 4, 1058–1072. [Google Scholar] [CrossRef]
- Tai, N.; Yeh, M.; Liu, H. Enhancement of the mechanical properties of carbon nano tube/phenolic composites using a car-bon nanotube network as the reinforcement. Carbon 2004, 42, 2774–2777. [Google Scholar] [CrossRef]
- Wang, H.; Erik, H.K. Amphiphobic carbon nanotubes as macroemulsion surfactants. Langmuir 2003, 19, 3091–3093. [Google Scholar] [CrossRef]
- Strano, M.; Moore, V.; Miller, M.; Allen, M.; Haroz, E.; Kittrell, C. The role of surfactant adsorption during ultrasoni-cation in the dispersion of single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 2003, 3, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Sa, V.; Kornev, K.G. Analysis of stability of nanotube dispersions using surface tension isotherms. Langmuir 2001, 27, 13451–13460. [Google Scholar] [CrossRef] [PubMed]
- LOEB, A.L. Thermal Conductivity: VIII, A Theory of Thermal Conductivity of Porous Materials. J. Am. Ceram. Soc. 1954, 37, 96–99. [Google Scholar] [CrossRef]
- Tosun, I. Review of the First and Second Laws of Thermodynamics. In The Thermodynamics of Phase and Reaction Equilibria; Elsevier: Amsterdam, The Netherlands, 2013; pp. 1–12. [Google Scholar]
- Arfken, G.B.; Priest, F. HEAT TRANSFER; Academic Press: Cambridge, MA, USA, 1984. [Google Scholar]
- Lee, J.; Kim, J. Improvement of thermal conductivity and latent heat of cellulose film using surfactant and surface-treated CNT with stearic acid. Compos. Part A Appl. Sci. Manuf. 2022, 156, 106897. [Google Scholar] [CrossRef]
- Francis, M.N. The Electrical Conductivity of Transition Metals; Royal Society: London, UK, 1936. [Google Scholar]
- Qiu, B.; Wang, Y.; Zha, Q.; Ruan, X. The effects of diameter and chirality on the thermal transport in free-standing and supported carbon-nanotubes. Appl. Phys. Lett. 2012, 100, 233105. [Google Scholar] [CrossRef]
- Bogumiła, K.; Dawid, J. Thermal conductivity of carbon nanotube networks: A review. J. Mater. Sci. 2019, 54, 7397–7427. [Google Scholar]
- Moreland, J.F. The Disparate Thermal Conductivity of Carbon Nanotubes and Diamond Nan-Owires Studied by Atomistic Simulation. Microscale Thermophys. Eng. 2004, 8, 61–69. [Google Scholar] [CrossRef]
- Cao, J.; Yan, X.; Xiao, Y.; Ding, J. Thermal conductivity of zigzag single-walled carbon nanotubes: Role of the umklapp process. Phys. Rev. B 2004, 69, 073407. [Google Scholar] [CrossRef]
- Hua, C.; Lindsay, L.; Chen, X.; Minnich, A.J. Generalized Fourier’s law for nondiffusive thermal transport: Theory and experiment. Phys. Rev. B 2019, 100, 085203. [Google Scholar] [CrossRef] [Green Version]
- Smit, E.; Daivis, P. Measuring heat flux beyond Fourier’s law. J. Chem. Phys. 2019, 150, 064103. [Google Scholar] [CrossRef] [Green Version]
- Stuart, S.J.; Tutein, A.B.; Harrisonc, J.A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486. [Google Scholar] [CrossRef] [Green Version]
- Diao, C.; Dong, Y.; Lin, J. Reactive force field simulation on thermal conductivities of carbon nanotubes and graphene. Int. J. Heat Mass Transf. 2017, 112, 903–912. [Google Scholar] [CrossRef]
- Grujicic, M.; Cao, G.; Gersten, B. Atomic-scale computations of the lattice contribution to thermal conductivity of sin-gle-walled carbon nanotubes. Mater. Sci. Eng. B 2004, 107, 204–216. [Google Scholar] [CrossRef]
- Ni, B.; Lee, K.H.; Sinnott, S.B. A reactive empirical bond order (REBO) potential for hydrocarbon oxygen interactions. J. Phys. Condens. Matter 2004, 16, 7261–7275. [Google Scholar] [CrossRef]
- Brenner, D.; Shenderova, O.; Harrison, J.; Stuart, S.; Ni, B.; Sinnott, S.B. A second-generation reactive empirical bond or-der (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 2002, 14, 783. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.A.; Schall, D.; Maskey, S.; Mikulski, P.T. Review of force fields and intermolecular potentials used in atomis-tic. Appl. Phys. Rev. 2017, 5, 031104. [Google Scholar] [CrossRef]
- Shiomi, J.; Maruyama, S. Diameter and Length Effect on Diffusive-Ballistic Phonon Transport in a Carbon Nanotube. Eng. Heat Transf. Summer Conf. 2007, 2, 381–386. [Google Scholar]
- Jullien, R.; Jund, P.; Caprion, D. Molecular-dynamics calculation of the thermal conductivity of vitreous silica. Phys. Rev. B 1999, 59, 1–21. [Google Scholar]
- Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular Dynamics. J. Comput. Phys. 1995, 117, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Hinuma, Y.; Pizzi, G.; Kumagai, Y.; Tanaka, I.; Oba, F. Band structure diagram paths based on crystallography. Comput.-Tional Mater. Sci. 2017, 128, 140–184. [Google Scholar] [CrossRef] [Green Version]
- Orisakwe, E.; Johnston, C.; Jani, R.; Liu, X.; Stella, L.; Kohanoff, J.; Holmes, N.; Norton, B.; Qu, M.; Yin, H.; et al. Thermoelectric properties of cement composite analogues from first principles calculations. arXiv 2022, arXiv:2211.17128. [Google Scholar] [CrossRef]
- Lou, D.; Younes, H.; Yang, J.; Jasthi, B.K.; Hong, G.; Hong, H.; Tolle, C.; Bailey, C.; Widener, C.; Hrabe, R. Enhanced electrical conductivity of anticorrosive coatings by functionalized carbon nanotubes: Effect of hydrogen bonding. Nanotechnology 2022, 33, 155704. [Google Scholar] [CrossRef] [PubMed]
- Ma, P.C.; Siddiqui, N.; Marom, G.; Kim, J.K. Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 1345–1367. [Google Scholar] [CrossRef]
- Hoover, W. Nonequilibrium Molecular Dynamics. Ann. Rev. Phys. 1983, 34, 103–127. [Google Scholar] [CrossRef] [Green Version]
- Liao, D.; Chen, W.; Zhang, J.; Yue, Y. Tuning thermal conductance of CNT interface junction via stretching and atomic bonding. J. Phys. D Appl. Phys. 2017, 50, 475302. [Google Scholar] [CrossRef]
- Shi, J.; Dong, Y.; Fisher, T.; Ruan, X. Thermal transport across carbon nanotube-graphene covalent and van der Waals junctions. J. Appl. Phys. 2015, 118, 044302. [Google Scholar] [CrossRef] [Green Version]
- Evans, D.; Holian, B. The Nose–Hoover thermostat. J. Chem. Phys. 1985, 83, 4069–4074. [Google Scholar] [CrossRef]
- Evans, W.J.; Shen, M.; Keblinski, P. Inter-tube thermal conductance in carbon nanotubes arrays and bundles: Effects of contact area and pressure. Appl. Phys. Lett. 2012, 100, 261908. [Google Scholar] [CrossRef]
- Gspann, T.S.; Stefan, J.; Niven, J.; Johnson, M.; Elliott, J.; White, M.A.; Windle, A.H. High thermal conductivities of car-bon nanotube films and micro-fibres and their dependence on morphology. Carbon 2017, 114, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Jiang, Q.; Xu, W.; Cai, W.; Inoue, Y.; Zhua, Y. Effect of carbon nanotube length on thermal, electrical and me-chanical properties of CNT/bismaleimide composites. Carbon 2018, 53, 145–152. [Google Scholar] [CrossRef]
- Kubisiak, P.; Eilmes, A. Estimates of Electrical Conductivity from Molecular Dynamics Simulations: How to Invest the Computational Effort. J. Phys. Chem. B 2020, 124, 9680–9689. [Google Scholar] [CrossRef] [PubMed]
- Montanheiro, T.L.D.A.; Cristóvan, F.H.; Machado, J.P.B.; Tada, D.B.; Durán, N.; Lemes, A.P. Effect of MWCNT functionalization on thermal and electri-cal properties of PHBV/MWCNT nanocomposites. J. Mater. Res. 2015, 30, 55–65. [Google Scholar] [CrossRef]
- Lukes, J.R.; Zhong, H. Thermal Conductivity of Individual Single-Wall Carbon Nanotubes. Heat Transf. 2007, 129, 705–716. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G. Thermal conductivity of nanotubes revisited: Effects of chirality, isotope impurity, tube length, and tempera-ture. J. Chem. Phys. 2005, 123, 114714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hemmat Esfe, M.; Saedodin, S.; Wongwises, S.; Toghraie, D. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J. Therm. Anal. Calorim. 2014, 119, 1817–1824. [Google Scholar] [CrossRef]
- Lian, F.; Llinas, J.P.; Li, Z.; Estrada, D.; Pop, E. Thermal conductivity of chirality-sorted carbon nanotube networks. Appl. Phys. Lett. 2016, 108, 103101. [Google Scholar] [CrossRef] [Green Version]
- Varshney, V.; Lee, J.; Brown, J.S.; Farmer, B.L.; Voevodin, A.A.; Roy, A.K. Effect of Length, Diameter, Chirality, Deformation, and Strain on Contact Ther-mal Conductance Between Single-Wall Carbon Nanotubes. Front. Mater. 2018, 5, 17. [Google Scholar] [CrossRef] [Green Version]
- Yarifard, M.; Davoodi, J.; Alizade, H. Diameter and Chirality Dependence of Thermal conductivity of Single-Walled Carbon Nanotubes. In Proceedings of the International Congress on Nanoscience & Nanotechnology—ICNN2012, Kashan, Iran, 8–10 September 2012. [Google Scholar]
- Xue, Q.Z. Model for the effective thermal conductivity of carbon nanotube composites. Nanotechnology 2006, 17, 1655–1660. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, Z. Chirality dependence of the thermal conductivity of carbon nanotubes. Nanotechnology 2004, 15, 936. [Google Scholar] [CrossRef] [Green Version]
- Mait, A.; Svizhenko, A. Electronic Transport through Carbon Nanotubes: Effects of Structural Deformation and Tube Chirality. Phys. Rev. Lett. 2002, 88, 126805. [Google Scholar] [CrossRef] [Green Version]
- Tang, D.-M.; Erohin, S.V.; Kvashnin, D.G.; Demin, V.A.; Cretu, O.; Jiang, S.; Zhang, L.; Hou, P.-X.; Chen, G.; Futaba, D.N.; et al. Semiconductor nanochannels in metallic carbon nanotubes by thermo-mechanical chirality alteration. Science 2021, 374, 1616–1620. [Google Scholar] [CrossRef] [PubMed]
- Khan, D.; Tan, Z.A.; Khan, I.; Panjwani, M.K. A review of the challenges and possibilities of using carbon nanotubes in organic solar cells. Sci. Adv. Mater. 2018, 10, 747–760. [Google Scholar] [CrossRef]
- Zhang, L.; Ruesch, M.; Zhang, X.; Baia, Z.; Liu, L. Tuning thermal conductivity of crystalline polymernanofibers by in-terchain hydrogen bonding. R. Soc. Chem. Adv. 2015, 5, 87981–87986. [Google Scholar]
- Christensen, G.; Yang, J.; Lou, D.; Hong, G. Carbon nanotubes grease with high electrical conductivity. Synth. Met. 2020, 268, 116496. [Google Scholar] [CrossRef]
- Younes, H.; Christensen, G.; Groven, L.; Hong, H.; Smith, P. Three dimensional (3D) percolation network structure: Key to form stable carbon nano grease. J. Appl. Res. Technol. 2016, 14, 375–382. [Google Scholar] [CrossRef]
- Lau, C.H.; Cervini, R.; Clarke, S.R.; Markovic, M.G.; Matisons, J.G.; Hawkins, S.C.; Huynh, C.P.; Simon, G.P. The effect of functionalization on structure and electrical conductivity of multi-walled carbon nanotubes. J. Nanoparticle Res. 2008, 10, 77–88. [Google Scholar] [CrossRef]
- Yasaroglu, I.; Aras, O.; Kaya, Y. Qualitative study on the effects of hydroxyl functionalized multiwall carbon nanotube and silica doped-epoxy composites. Polym. Compos. 2021, 43, 1462–1475. [Google Scholar] [CrossRef]
- Prabhakar, R.; Hossain, M.; Zheng, W.; Athikam, P.K.; Zhang, Y.; Hsieh, Y.; Skafidas, E.; Wu, Y.; Shanov, V.; Bahk, J.H. Tunneling-limited thermoelectric transport in carbon nanotube networks embedded in poly(dimethylsiloxane) elasto-mer. ACS Appl. Energy 2019, 2, 2419–2426. [Google Scholar] [CrossRef]
- Christensen, G.; Younes, H.; Hong, H.; Smith, P. Effects of solvent hydrogen bonding, viscosity, and polarity on the dis-persion and alignment of nanofluids containing Fe2O3 nanoparticles. J. Appl. Phys. 2015, 118, 214302. [Google Scholar] [CrossRef]
- Chen, J.; Han, J. Effect of hydroxylated carbon nanotubes on the thermal and electrical properties of derived epoxy composite materials. Results Phys. 2020, 18, 103246. [Google Scholar] [CrossRef]
- Al-Harthi, M.; Hussain, M. Effect of the Surface Functionalization of Graphene and MWCNT on the Thermodynamic, Mechanical and Electrical Properties of the Graphene/MWCNT-PVDF Nanocomposites. Polymers 2022, 14, 2976. [Google Scholar] [CrossRef] [PubMed]
- Talaei, Z.; Mahjou, A.; Rashidi, A.m.; Amrollahi, A.; Meibodi, M.E. The effect of functionalized group concentration on the stability and thermal conductivity of carbon nanotube fluid as heat transfer medi. Int. Commun. Heat Mass Transf. 2011, 38, 513–517. [Google Scholar] [CrossRef]
- Gulotty, R.; Castellino, M. Effects of Functionalization on Thermal Properties of Single-Wall and Multi-Wall Carbon Nanotube–Polymer Nanocomposites. Am. Chem. Soc. 2013, 7, 5114–5121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Che, J.; Cagin, T.; Goddar, W.A. Thermal conductivity of carbon nanotubes. Nanotechnology 2000, 11, 65. [Google Scholar] [CrossRef]
- Liu, J.; Alhashme, M.; Yang, R. Thermal transport across carbon nanotubes connected by molecular linkers. Carbon 2012, 50, 1063–1070. [Google Scholar] [CrossRef]
- Han, Z.; Fina, A. Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Salaway, R.; Zhigilei, L.V. Thermal conductance of carbon nanotube contacts: Molecular dynamics simulations and gen-eral description of the contact conductance. Phys. Rev. B 2016, 94, 014308. [Google Scholar] [CrossRef] [Green Version]
- Volkov, A.N.; Salaway, R.N.; Zhigilei, L.V. Atomistic simulations, mesoscopic modeling, and theoretical analysis of thermal conductivity of bundles composed of carbon nanotubes. J. Appl. Phys. 2013, 114, 104301. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Chen, D.; Han, Z.; Ma, X. Effects of welding on thermal conductivity of randomly oriented carbon nanotube networks. Int. J. Heat Mass Transf. 2014, 70, 803–810. [Google Scholar] [CrossRef]
- Padgett, C.W.; Brenner, D.W. Influence of Chemisorption on the Thermal Conductivity of Single-Wall Carbon Nano-tubes. Nano Lett. 2004, 4, 1051–1053. [Google Scholar] [CrossRef]
- Osman, M.A.; Srivastava, D. Temperature dependence of the thermal conductivity of single-wall carbon nanotubes. Nanotechnology 2001, 12, 21–24. [Google Scholar] [CrossRef]
- Zhang, K.; Chai, Y. Carbon nanotube thermal interface material for high-brightness light-emitting-diode cooling. Nanotechnology 2008, 19, 215706. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, J. Spark plasma sintering and thermal conductivity of carbon nanotube bulk materials. J. Appl. Phys. 2005, 97, 114310. [Google Scholar] [CrossRef]
- Yao, Z.; Wang, J.S.; Li, B.; Liu, G.R. Thermal conduction of carbon nanotubes using molecular dynamics. Phys. Rev. B 2005, 71, 085417. [Google Scholar] [CrossRef] [Green Version]
Group A | Group B | Group C | |||
---|---|---|---|---|---|
Chiral Angle (°) | Thermal Conductivity (W/m·K) | Chiral Angle (°) | Thermal Conductivity (W/m·K) | Chiral Angle (°) | Thermal Conductivity (W/m·K) |
5.0 | 105.6 | 1.0 | 110.3 | 5.0 | 125.2 |
5.0 | 100.2 | ||||
12.5 | 112.5 | 7.5 | 118.1 | 13.0 | 130.2 |
12.5 | 130.4 | ||||
17.5 | 134.2 | 15.0 | 140.2 | 17.5 | 122.2 |
20.0 | 150.1 | ||||
22.5 | 130.3 | 22.5 | 125.1 | 23.0 | 132.1 |
25.0 | 140.3 | ||||
27.5 | 110.1 | 27.5 | 120.0 | 28.0 | 139.1 |
30.0 | 122.3 |
Length (mm) | Armchair Electrical Conductivity (m/s) | Zigzag Electrical Conductivity (m/s) |
---|---|---|
0.01 | 2 × 10−2 | 3 × 10−8 |
0.015 | 10−1 | 10−7 |
0.6 | 3.02 | 2 × 10−6 |
0.8 | 3.15 | 2.4 × 10−6 |
0.9 | 3.52 | 2.8 × 10−6 |
1.1 | 3.79 | 2.9 × 10−6 |
1.3 | 3.81 | 3 × 10−6 |
Volume Fraction | Armchair Electrical Conductivity (m/s) | Zigzag Electrical Conductivity (m/s) |
0.0005 | 10−1 | 10−7 |
0.00075 | 0.5 | 2 × 10−7 |
0.0010 | 1 | 10−6 |
0.0012 | 3 | 2 × 10−6 |
0.0015 | 5 | 2.5 × 10−6 |
0.0020 | 15 | 10−5 |
0.010 | 17 | 3 × 10−5 |
0.015 | 18 | 6 × 10−5 |
0.1 | 7.5 | 0.5 × 10−6 |
0.2 | 4.5 | 0.25 × 10−6 |
Chirality | L (nm) | D (nm) | Thermal Conductivity (W/mK) | Electrical Conductivity (S/cm) | Simulation Method | Ref. |
---|---|---|---|---|---|---|
(10, 10) | <10 | 1.36 | 880 | 350 | EMD | [89] |
(10, 10) | <1500 | 1.351 | 355 | 80 | NEMD | [90] |
(10, 10) (18, 0) (14, 6) | 2.477–39.632 2.145–34.320 3.813–30.504 | 1.351 1.404 1.387 | 859 790 765 | 110 95 80 | EMD | [91] |
(5, 5) (10, 10) (15, 5) | Aspect ratio of 10–20 (~22 nm) | 0.68 1.36 1.41 | 4500 1700 1640 | 500 300 250 | NEMD | [92] |
(5, 5) (6, 6) (8, 8) (10, 10) | 12.2 and 24.4 | 0.68 0.81 1.08 1.35 | 410 435 365 300 | 105 120 103 100 | NEMD | [93] |
(5, 5) (10, 10) (15, 15) | 6–100 | 0.68 1.36 2.03 | ~1024 ~1023 ~1022 | 400 380 365 | EMD | [94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Najmi, L.; Hu, Z. Review on Molecular Dynamics Simulations of Effects of Carbon Nanotubes (CNTs) on Electrical and Thermal Conductivities of CNT-Modified Polymeric Composites. J. Compos. Sci. 2023, 7, 165. https://doi.org/10.3390/jcs7040165
Najmi L, Hu Z. Review on Molecular Dynamics Simulations of Effects of Carbon Nanotubes (CNTs) on Electrical and Thermal Conductivities of CNT-Modified Polymeric Composites. Journal of Composites Science. 2023; 7(4):165. https://doi.org/10.3390/jcs7040165
Chicago/Turabian StyleNajmi, Lida, and Zhong Hu. 2023. "Review on Molecular Dynamics Simulations of Effects of Carbon Nanotubes (CNTs) on Electrical and Thermal Conductivities of CNT-Modified Polymeric Composites" Journal of Composites Science 7, no. 4: 165. https://doi.org/10.3390/jcs7040165
APA StyleNajmi, L., & Hu, Z. (2023). Review on Molecular Dynamics Simulations of Effects of Carbon Nanotubes (CNTs) on Electrical and Thermal Conductivities of CNT-Modified Polymeric Composites. Journal of Composites Science, 7(4), 165. https://doi.org/10.3390/jcs7040165