Thermal and Mechanical Properties of Recyclable Composites Prepared from Bio-Olefins and Industrial Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Precautions
2.2. Testing According to ASTM C140
2.3. Testing According to ASTM C1353
2.4. Testing According to ISO 8302
2.5. Testing According to Mohs Hardness Test
3. Results and Discussion
3.1. Rationale and Design
3.2. Synthesis and Fabrication
3.3. Water Absorption and Density (ASTM C140)
3.4. Thermal Conductivity (ISO 8302)
Materials | Water Absorption (% *) | Density (g/cm3) | Thermal Conductivity (W/m·K *) |
---|---|---|---|
SunBG90 | 0.83 | 1.70 | 0.126 |
OPC | 5.3–8.3 | 3.15 | 2.25 |
Clay Bricks | 8.22 | 2.5 | 0.9 |
Oak Wood | 12 | 0.82 | 0.197 |
Marble | 0.12 | 2.64 | 2.95 |
Limestone | 1 | 2.71 | 0.85 |
3.5. Abrasion Resistance (ASTM C1353) and Mohs Hardness Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2019, 11, 1675–1710. [Google Scholar] [CrossRef] [Green Version]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-efficient cements: Potential economically viable solutions for a low-CO2 cement-based materials industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Khongprom, P.; Suwanmanee, U. Environmental benefits of the integrated alternative technologies of the portland cement production: Case study in Thailand. Eng. J. 2017, 21, 15–27. [Google Scholar] [CrossRef]
- Chen, C.; Habert, G.; Bouzidi, Y.; Jullien, A. Environmental impact of cement production: Detail of the different processes and cement plant variability evaluation. J. Clean. Prod. 2010, 18, 478–485. [Google Scholar] [CrossRef]
- Jeong, J.; Choi, J. Adverse outcome pathways potentially related to hazard identification of microplastics based on toxicity mechanisms. Chemosphere 2019, 231, 249–255. [Google Scholar] [CrossRef] [PubMed]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef]
- Hidalgo-Ruz, V.; Gutow, L.; Thompson, R.C.; Thiel, M. Microplastics in marine environment review of methods for identification and quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. [Google Scholar] [CrossRef]
- Smith, A.D.; Smith, R.C.; Tennyson, A.G. Polymer cements by copolymerization of waste sulfur, oleic acid, and pozzolan cements. Sust. Chem. Pharm. 2020, 16, 100249. [Google Scholar] [CrossRef]
- Goodyear, C. Improvement in India-Rubber Fabrics. US 3633A, 15 June 1844. [Google Scholar]
- Chung, W.J.; Griebel, J.J.; Kim, E.T.; Yoon, H.; Simmonds, A.G.; Ji, H.J.; Dirlam, P.T.; Glass, R.S.; Wie, J.J.; Nguyen, N.A.; et al. The use of elemental sulfur as an alternative feedstock for polymeric materials. Nat. Chem. 2013, 5, 518–524. [Google Scholar] [CrossRef]
- Lee, T.; Dirlam, P.T.; Njardarson, J.T.; Glass, R.S.; Pyun, J. Polymerizations with Elemental Sulfur: From Petroleum Refining to Polymeric Materials. J. Am. Chem. Soc. 2022, 144, 5–22. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.-S.; Phan, A.; Olikagu, C.; Lee, T.; Loy, D.A.; Kwon, M.; Paik, H.-j.; Hong, S.J.; Bang, J.; Parker, W.O., Jr.; et al. Segmented Polyurethanes and Thermoplastic Elastomers from Elemental Sulfur with Enhanced Thermomechanical Properties and Flame Retardancy. Angew. Chem. Int. Ed. 2021, 60, 22900–22907. [Google Scholar] [CrossRef] [PubMed]
- Kleine, T.S.; Lee, T.; Carothers, K.J.; Hamilton, M.O.; Anderson, L.E.; Ruiz Diaz, L.; Lyons, N.P.; Coasey, K.R.; Parker, W.O., Jr.; Borghi, L.; et al. Infrared Fingerprint Engineering: A Molecular-Design Approach to Long-Wave Infrared Transparency with Polymeric Materials. Angew. Chem. Int. Ed. 2019, 58, 17656–17660. [Google Scholar] [CrossRef]
- Simmonds, A.G.; Griebel, J.J.; Park, J.; Kim, K.R.; Chung, W.J.; Oleshko, V.P.; Kim, J.; Kim, E.T.; Glass, R.S.; Soles, C.L.; et al. Inverse Vulcanization of Elemental Sulfur to Prepare Polymeric Electrode Materials for Li-S Batteries. ACS Macro Lett. 2014, 3, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Karunarathna, M.S.; Lauer, M.K.; Tennyson, A.G.; Smith, R.C. Copolymerization of an aryl halide and elemental sulfur as a route to high sulfur content materials. Polym. Chem. 2020, 11, 1621–1628. [Google Scholar] [CrossRef]
- Wu, X.; Smith, J.A.; Petcher, S.; Zhang, B.; Parker, D.J.; Griffin, J.M.; Hasell, T. Catalytic inverse vulcanization. Nat. Commun. 2019, 10, 10035–10044. [Google Scholar] [CrossRef]
- Westerman Clayton, R.; Walker Princess, M.; Jenkins Courtney, L. Synthesis of Terpolymers at Mild Temperatures Using Dynamic Sulfur Bonds in Poly(S-Divinylbenzene). J. Vis. Exp. JoVE 2019, 147, e59620. [Google Scholar]
- Yan, P.; Zhao, W.; McBride, F.; Cai, D.; Dale, J.; Hanna, V.; Hasell, T. Mechanochemical synthesis of inverse vulcanized polymers. Nat. Commun. 2022, 13, 4824. [Google Scholar] [CrossRef] [PubMed]
- Westerman, C.R.; Jenkins, C.L. Dynamic Sulfur Bonds Initiate Polymerization of Vinyl and Allyl Ethers at Mild Temperatures. Macromolecules 2018, 51, 7233–7238. [Google Scholar] [CrossRef]
- Tonkin, S.J.; Gibson, C.T.; Campbell, J.A.; Lewis, D.A.; Karton, A.; Hasell, T.; Chalker, J.M. Chemically induced repair, adhesion, and recycling of polymers made by inverse vulcanization. Chem. Sci. 2020, 11, 5537–5546. [Google Scholar] [CrossRef]
- Lundquist, N.A.; Tikoalu, A.D.; Worthington, M.J.H.; Shapter, R.; Tonkin, S.J.; Stojcevski, F.; Mann, M.; Gibson, C.T.; Gascooke, J.R.; Karton, A.; et al. Reactive Compression Molding Post-Inverse Vulcanization: A Method to Assemble, Recycle, and Repurpose Sulfur Polymers and Composites. Chem.—Eur. J. 2020, 26, 10035–10044. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.A.; Green, S.J.; Petcher, S.; Parker, D.J.; Zhang, B.; Worthington, M.J.H.; Wu, X.; Kelly, C.A.; Baker, T.; Gibson, C.T.; et al. Crosslinker Copolymerization for Property Control in Inverse Vulcanization. Chem.—Eur. J. 2019, 25, 10433–10440. [Google Scholar] [CrossRef] [PubMed]
- Dodd, L.J.; Omar, O.; Wu, X.; Hasell, T. Investigating the Role and Scope of Catalysts in Inverse Vulcanization. ACS Catal. 2021, 11, 4441–4455. [Google Scholar] [CrossRef]
- Gutarowska, B.; Piotrowska, M.; Kozirog, A.; Berlowska, J.; Dziugan, P.; Kotynia, R.; Bielinski, D.; Anyszka, R.; Wreczycki, J. New Sulfur Organic Polymer-Concrete Composites Containing Waste Materials: Mechanical Characteristics and Resistance to Biocorrosion. Materials 2019, 12, 2602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, B. Elemental sulfur. Inorg. Sulphur Chem. 1968, 76, 241–258. [Google Scholar] [CrossRef]
- Meyer, B. Solid allotropes of sulfur. Chem. Rev. 1964, 64, 429–451. [Google Scholar] [CrossRef]
- Dehestani, M.; Teimortashlu, E.; Molaei, M.; Ghomian, M.; Firoozi, S.; Aghili, S. Experimental data on compressive strength and durability of sulfur concrete modified by styrene and bitumen. Data Brief 2017, 13, 137–144. [Google Scholar] [CrossRef] [PubMed]
- Weil, E.D. Recent industrial organosulfur chemistry. Phosphorus Sulfur Silicon Relat. Elem. 1991, 59, 325–340. [Google Scholar] [CrossRef]
- Duecker, W.W. Admixtures improve properties of sulfur cements. Chem. Metall. Eng. 1934, 41, 583–586. [Google Scholar]
- Liu, P.; Feng, C.; Wang, F.; Gao, Y.; Yang, J.; Zhang, W.; Yang, L. Hydrophobic and water-resisting behavior of Portland cement incorporated by oleic acid modified fly ash. Mater. Struct. 2018, 51, 38. [Google Scholar] [CrossRef]
- Ksiazek, M.M.K. Evaluation of acid corrosion resistance of Portland cement composites impregnated with polymer sulfur composite. Anti-Corros. Methods Mater. 2017, 64, 1–15. [Google Scholar] [CrossRef]
- Gay, H.; Meynet, T.; Colombani, J. Local study of the corrosion kinetics of hardened Portland cement under acid attack. Cem. Concr. Res. 2016, 90, 36–42. [Google Scholar] [CrossRef]
- Izzat, A.M.; Al Bakri, A.M.M.; Kamarudin, H.; Sandu, A.V.; Ruzaidi, G.C.M.; Faheem, M.T.M.; Moga, L.M. Sulfuric acid attack on ordinary Portland cement and geopolymer material. Rev. Chim. 2013, 64, 1011–1014. [Google Scholar]
- Scrivener, K.L.; Fullmann, T.; Gallucci, E.; Walenta, G.; Bermejo, E. Quantitative study of Portland cement hydration by X-ray diffraction/Rietveld analysis and independent methods. Cem. Concr. Res. 2004, 34, 1541–1547. [Google Scholar] [CrossRef]
- Fattuhi, N.I.; Hughes, B.P. Ordinary portland cement mixes with selected admixtures subjected to sulfuric acid attack. ACI Mater. J. 1988, 85, 512–518. [Google Scholar] [CrossRef]
- Lauer, M.K.; Tennyson, A.G.; Smith, R.C. Green Synthesis of Thermoplastic Composites from a Terpenoid-Cellulose Ester. ACS Appl. Polym. Mater. 2020, 2, 3761–3765. [Google Scholar] [CrossRef]
- Lauer, M.K.; Tennyson, A.G.; Smith, R.C. Inverse vulcanization of octenyl succinate-modified corn starch as a route to biopolymer-sulfur composites. Mater. Adv. 2021, 2, 2391–2397. [Google Scholar] [CrossRef]
- Lauer, M.K.; Karunarathna, M.S.; Tennyson, A.G.; Smith, R.C. Robust, remeltable and remarkably simple to prepare biomass-sulfur composites. Mater. Adv. 2020, 1, 2271–2278. [Google Scholar] [CrossRef]
- Yan, P.; Zhao, W.; Tonkin, S.J.; Chalker, J.M.; Schiller, T.L.; Hasell, T. Stretchable and Durable Inverse Vulcanized Polymers with Chemical and Thermal Recycling. Chem. Mater. 2022, 34, 1167–1178. [Google Scholar] [CrossRef]
- Gupta, A.; Worthington, M.J.H.; Patel, H.D.; Johnston, M.R.; Puri, M.; Chalker, J.M. Reaction of sulfur and sustainable algae oil for polymer synthesis and enrichment of saturated triglycerides. ACS Sust. Chem. Eng. 2022, 10, 9022–9028. [Google Scholar] [CrossRef]
- Eder, M.L.; Call, C.B.; Jenkins, C.L. Utilizing Reclaimed Petroleum Waste to Synthesize Water-Soluble Polysulfides for Selective Heavy Metal Binding and Detection. ACS Appl. Polym. Mater. 2022, 4, 1110–1116. [Google Scholar] [CrossRef]
- Orme, K.; Fistrovich, A.H.; Jenkins, C.L. Tailoring Polysulfide Properties through Variations of Inverse Vulcanization. Macromolecules 2020, 53, 9353–9361. [Google Scholar] [CrossRef]
- Jia, J.; Liu, J.; Wang, Z.-Q.; Liu, T.; Yan, P.; Gong, X.-Q.; Zhao, C.; Chen, L.; Miao, C.; Zhao, W.; et al. Photoinduced inverse vulcanization. Nat. Chem. 2022, 14, 1249–1257. [Google Scholar] [CrossRef]
- Yan, P.; Zhao, W.; Zhang, B.; Jiang, L.; Petcher, S.; Smith, J.A.; Parker, D.J.; Cooper, A.I.; Lei, J.; Hasell, T. Inverse vulcanized polymers with shape memory, enhanced mechanical properties, and vitrimer behavior. Angew. Chem. Int. Ed. 2020, 59, 13371–13378. [Google Scholar] [CrossRef]
- Smith, A.D.; Smith, R.C.; Tennyson, A.G. Sulfur-Containing Polymers Prepared from Fatty Acid-Derived Monomers: Application of Atom-Economical Thiol-ene/Thiol-yne Click Reactions and Inverse Vulcanization Strategies. Sus. Chem. 2020, 1, 209–237. [Google Scholar] [CrossRef]
- Smith, A.D.; McMillin, C.D.; Smith, R.C.; Tennyson, A.G. Copolymers by Inverse Vulcanization of Sulfur with Pure or Technical Grade Unsaturated Fatty Acids. J. Poly. Sci. 2020, 58, 438–445. [Google Scholar] [CrossRef]
- Gerrens, H. Radical reactions in polymerization processes. Ber. Bunsen-Ges. 1963, 67, 741–753. [Google Scholar] [CrossRef]
- Griebel, J.J.; Li, G.; Glass, R.S.; Char, K.; Pyun, J. Kilogram scale inverse vulcanization of elemental sulfur to prepare high capacity polymer electrodes for Li-S batteries. J. Poly. Sci. Part A Polym. Chem. 2015, 53, 173–177. [Google Scholar] [CrossRef] [Green Version]
- Lopez, C.V.; Smith, A.D.; Smith, R.C. High strength composites from low-value animal coproducts and industrial waste sulfur. RSC Adv. 2022, 12, 1535–1542. [Google Scholar] [CrossRef]
- Maladeniya, C.P.; Karunarathna, M.S.; Lauer, M.K.; Lopez, C.V.; Thiounn, T.; Smith, R.C. A Role for Terpenoid Cyclization in the Atom Economical Polymerization of Terpenoids with Sulfur to Yield Durable Composites. Mater. Adv. 2020, 1, 1665–1674. [Google Scholar] [CrossRef]
- Maladeniya, C.P.; Smith, R.C. Influence of Component Ratio on Thermal and Mechanical Properties of Terpenoid-Sulfur Composites. J. Compos. Sci. 2021, 5, 257. [Google Scholar] [CrossRef]
- Lopez, C.V.; Karunarathna, M.S.; Lauer, M.K.; Maladeniya, C.P.; Thiounn, T.; Ackley, E.D.; Smith, R.C. High Strength, Acid-Resistant Composites from Canola, Sunflower, or Linseed Oils: Influence of Triglyceride Unsaturation on Material Properties. J. Poly. Sci. 2020, 58, 2259–2266. [Google Scholar] [CrossRef]
- Zhang, Y.; Glass, R.S.; Char, K.; Pyun, J. Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs). Polym. Chem. 2019, 10, 4078–4105. [Google Scholar] [CrossRef]
- Kleine, T.S.; Glass, R.S.; Lichtenberger, D.L.; MacKay, M.E.; Char, K.; Norwood, R.A.; Pyun, J. 100th Anniversary of Macromolecular Science Viewpoint: High Refractive Index Polymers from Elemental Sulfur for Infrared Thermal Imaging and Optics. ACS Macro Lett. 2020, 9, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Worthington, M.J.H.; Kucera, R.L.; Chalker, J.M. Green chemistry and polymers made from sulfur. Green Chem. 2017, 19, 2748–2761. [Google Scholar] [CrossRef] [Green Version]
- Chalker, J.M.; Worthington, M.J.H.; Lundquist, N.A.; Esdaile, L.J. Synthesis and Applications of Polymers Made by Inverse Vulcanization. Top. Curr. Chem. 2019, 377, 1–27. [Google Scholar] [CrossRef]
- Maladeniya, C.P.; Tennyson, A.G.; Smith, R.C. Single-stage chemical recycling of plastic waste to yield durable composites via a tandem transesterification-thiocracking process. J. Polym. Sci. 2023, 61, 787–793. [Google Scholar] [CrossRef]
- Pena-Rodriguez, G.; Dulce-Moreno, H.; Daza-Ramirez, J.; Orozco-Hernandez, S.; Vargas-Galvis, F. Mechanical and tribological behavior of red clay ceramic tiles coated with fly ash powders by thermal spraying technique. J. Phys. Conf. Ser. 2017, 792, 012026/012021–012026/012026. [Google Scholar] [CrossRef] [Green Version]
- Khatwa, M.A.; Salem, H.G.; Haggar, S.M. Building material from waste. Can. Metall. Q. 2005, 44, 339–350. [Google Scholar] [CrossRef]
- Namboonruang, W.; Rawangkul, R.; Yodsudjai, W. A perspective study on strength properties-low thermal conductivity and leachability of Pozzolanics soil bricks towards to environmentally friendly. Adv. Sci. Lett. 2013, 19, 2831–2841. [Google Scholar] [CrossRef]
- Namboonruang, W.; Rawangkul, R.; Yodsudjai, W. Strength properties of low thermal conductivity fly ash bricks: Compressive and flexural strength aspects. Appl. Mech. Mater. 2012, 117–119, 1352–1357. [Google Scholar] [CrossRef]
- Gerberich, W.W.; Ballarini, R.; Hintsala, E.D.; Mishra, M.; Molinari, J.-F.; Szlufarska, I. Toward Demystifying the Mohs Hardness Scale. J. Am. Ceram. Soc. 2015, 98, 2681–2688. [Google Scholar] [CrossRef]
- Goncalves, R.A.; Biasoli de Mello, J.D.; Aguiar, K.M.; Guimaraes da Rosa, F. Evaluation of the wear resistance of ceramic floor tiles by the resistance equivalent to that of Mohs hardness standard materials. Ceram. Ind. 2004, 9, 23–27. [Google Scholar]
- Troeger, E. Remarks on the criticism of the Mohs’ scale of hardness. Neues Jahrb. Fuer Mineral. Mon. 1954, 92, 233–243. [Google Scholar]
- Fehervari, A.; Gates, W.P.; Gallage, C.; Collins, F. A Porous Stone Technique to Measure the Initial Water Uptake by Supplementary Cementitious Materials. Minerals 2021, 11, 1185. [Google Scholar] [CrossRef]
- Sugiman, S.; Salman, S.; Maryudi, M. Effects of volume fraction on water uptake and tensile properties of epoxy filled with inorganic fillers having different reactivity to water. Mater. Today Commun. 2020, 24, 101360. [Google Scholar] [CrossRef]
- Rucker-Gramm, P.; Beddoe, R.E. Effect of moisture content of concrete on water uptake. Cem. Concr. Res. 2010, 40, 102–108. [Google Scholar] [CrossRef]
- Čáchová, M.; Koňáková, D.; Vejmelková, E.; Keppert, M.; Černý, R. Mechanical and thermal properties of the Czech marbles. In Proceedings of the AIP Conference Proceedings, Rhodes, Greece, 22–28 September 2015; p. 280010. [Google Scholar]
- Çavuş, V.; Şahin, S.; Esteves, B.; Ayata, U. Determination of thermal conductivity properties in some wood species obtained from Turkey. BioResources 2019, 14, 6709–6715. [Google Scholar] [CrossRef]
- Cho, W.J.; Kwon, S.; Choi, J.W. The thermal conductivity for granite with various water contents. Eng. Geol. 2009, 107, 167–171. [Google Scholar] [CrossRef]
- El Fgaier, F.; Lafhaj, Z.; Brachelet, F.; Antczak, E.; Chapiseau, C. Thermal performance of unfired clay bricks used in construction in the north of France: Case study. Case Stud. Constr. Mater. 2015, 3, 102–111. [Google Scholar] [CrossRef]
- Lertwattanaruk, P.; Choksiriwanna, J. The physical and thermal properties of adobe brick containing bagasse for earth construction. Int. J. Build. Urban Inter. Landsc. Technol. (BUILT) 2011, 1, 57–66. [Google Scholar] [CrossRef]
- Rambaldi, E.; Prete, F.; Timellini, G. Thermal and Acoutics Performances of Porcelain Stoneware Tiles. Qualicer 2014, 14, 1–4. [Google Scholar]
- Yun, T.S.; Jeong, Y.J.; Youm, K.-S. Effect of surrogate aggregates on the thermal conductivity of concrete at ambient and elevated temperatures. Sci. World J. 2014, 2014, 939632. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, R.; Liu, P.; Liu, C.; Sun, L.; Zhang, H. Effects of silica fume on the abrasion resistance of low-heat Portland cement concrete. Constr. Build. Mater. 2022, 329, 127165. [Google Scholar] [CrossRef]
- Cheyad, S.M.; Hilo, A.N.; Al-Gasham, T.S. Comparing the abrasion resistance of conventional concrete and geopolymer samples. Mater. Today: Proc. 2022, 56, 1832–1839. [Google Scholar] [CrossRef]
- Negahban, E.; Bagheri, A.; Sanjayan, J. Investigation of abrasion resistance of geopolymer concrete cured in ambient temperature for pavement applications. In Road Materials and Pavement Design; Taylor & Francis: London, UK, 2022. [Google Scholar] [CrossRef]
- Baigorri Garcia, P. Chemical and abrasion resistance of ceramic glazes for floors. Ceram. Inf. 1986, 21, 145–149. [Google Scholar]
- Skuthan, R. Abrasion resistant glazes for floor tiles. Interceram 1977, 26, 52–53. [Google Scholar]
- Thiel, G.A. Relative resistance to abrasion of mineral grains of sand size. J. Sediment. Petrol. 1940, 10, 103–124. [Google Scholar]
- Tabor, D. Mohs’s hardness scale-a physical interpretation. Proc. Phys. Society. Sect. B 1954, 67, 249. [Google Scholar] [CrossRef]
Materials | Compressive Strength (MPa *) | Flexural Strength (MPa *) |
---|---|---|
SunBG90 | 35.9 | 7.7 |
OPC | 17 | 3.7 |
Clay Bricks | 10 | 3.55 |
Oak Wood | 11 | 56.5 |
Marble | 12.5 | 3.4 |
Limestone | 10 | 2.8 |
SunS | 17.9 | ND |
CanBG90 | 32.0 | 6.5 |
Materials | Hmin | Hmax |
---|---|---|
SunBG90 | 2 | 2.5 |
Asphalt | 1 | 2 |
Sulfur | 1.5 | 2.5 |
Gold | 2.5 | 3 |
Silver | 2.5 | 3 |
Marble | 3 | 4 |
Limestone | 3 | 4 |
Materials | Abrasion Resistance (Iw, HA) |
---|---|
SunBG90 | 16 |
Granite | 25 |
Marble | 10 |
Limestone | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sauceda-Oloño, P.Y.; Borbon-Almada, A.C.; Gaxiola, M.; Smith, A.D.; Tennyson, A.G.; Smith, R.C. Thermal and Mechanical Properties of Recyclable Composites Prepared from Bio-Olefins and Industrial Waste. J. Compos. Sci. 2023, 7, 248. https://doi.org/10.3390/jcs7060248
Sauceda-Oloño PY, Borbon-Almada AC, Gaxiola M, Smith AD, Tennyson AG, Smith RC. Thermal and Mechanical Properties of Recyclable Composites Prepared from Bio-Olefins and Industrial Waste. Journal of Composites Science. 2023; 7(6):248. https://doi.org/10.3390/jcs7060248
Chicago/Turabian StyleSauceda-Oloño, Perla Y., Ana C. Borbon-Almada, Martin Gaxiola, Ashlyn D. Smith, Andrew G. Tennyson, and Rhett C. Smith. 2023. "Thermal and Mechanical Properties of Recyclable Composites Prepared from Bio-Olefins and Industrial Waste" Journal of Composites Science 7, no. 6: 248. https://doi.org/10.3390/jcs7060248
APA StyleSauceda-Oloño, P. Y., Borbon-Almada, A. C., Gaxiola, M., Smith, A. D., Tennyson, A. G., & Smith, R. C. (2023). Thermal and Mechanical Properties of Recyclable Composites Prepared from Bio-Olefins and Industrial Waste. Journal of Composites Science, 7(6), 248. https://doi.org/10.3390/jcs7060248