Moisture Absorption Characteristics and Subsequent Mechanical Property Loss of Enset–PLA Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Fiber Density and Moisture Content Estimation
2.2.2. Compounding and Actual Fiber Ratio Substantiation
2.2.3. Specimen Production and Testing
3. Results
3.1. Moisture Absorption and Release Characteristics
3.2. Effect of Plasticizer Ratio on Moisture Absorption
3.3. Effects of Moisture on Mechanical Properties
3.4. Statistical Analysis and Result Summary
- As for the main effect of individual factors, the fiber ratio and plasticizer ratio are found to significantly affect the moisture absorption and release characteristics of enset–PLA composites, though their effects are inversely related. From the above discussion, it is evident that the increase in the plasticizer ratio enhances the moisture resistance while the increase in fiber increases the hydrophilicity of the composite. Hence, the optimum combination of plasticizer and fiber in the PLA also has a subsequent loss of properties. In this study, attractive and comparable results were achieved with the 4% and 6% plasticizers. Based on our preliminary test results mentioned in the methods section, the age of the plant from which the fiber is extracted and the fiber length are less significant.
- Degradation due to moisture decreases the tensile and flexural strength significantly. The gain in properties due to the increase in fiber ratio is lost due to exposure to moisture for both strength values. The tensile strength becomes slightly greater when compared with the flexural strength gain due to the fiber ratio when exposure to moisture. However, the effect of moisture on the tensile modulus is less.
- The combined effect of the plasticizer ratio, fiber ratio, and residual moisture on the tensile and bending strength is significant. This can also be seen in Figure 4a and Figure 5 above. One of the reasons that the tensile strength and flexural strength show insignificant increases with increasing fiber ratios is related to the effect of the aforementioned factors. Increasing the fiber ratio significantly increases both the tensile and flexural strength before submerging the test specimen into water and allowing it to absorb moisture.
- Therefore, the following summary can be made from the above experimental and statistical results. Plasticizer utilization in PLA is required due to its brittle nature. Increasing the plasticizer ratio up to 6% is optimal; good moisture resistance is achieved and the subsequent loss of properties is also relatively minimal. Decreasing the plasticizer below 4% decreases the moisture resistance while relatively increased strength values are noted. On the other hand, increasing the plasticizer above 6% significantly decreases the strength, though increasing the moisture resistance. Still, as we noticed during the compounding, exceeding 6% makes the compounding difficult for enset–PLA composites due to the sticking of the pellets. This was also a challenge during the drying before the injection molding process to produce the specimens, during which the pellets stuck to each other. Again, the flexural and tensile strength with the stiffness of a material increased with increasing fiber concentrations. According to the results of this study, a 25% fiber ratio results in the greatest strength both in dry and moist conditions. The amount of strength gained as a result of increasing fiber ratio in moist conditions is less than that of dry condition.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdela, A.; Versteyhe, M.; Taddese, F. Characterization of Single Enset Fiber Tensile Properties Using Optimal Experimental Design and Digital Image Correlation Technique. Int. J. Mech. Eng. Appl. 2020, 8, 8. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Menezes, P.L.; Linul, E. Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers 2019, 11, 1667. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.A.; Sudhanan, S.M.; Kumar, K.M.; Kumar, G.R. A study on properties of natural fibres—A Review. Int. Res. J. Eng. Technol. 2017, 10, 1343–1350. Available online: https://www.irjet.net/archives/V4/i10/IRJET-V4I10244.pdf (accessed on 24 April 2021).
- Fabien, B.E.; Boris, N.; Ateba, A. A literature review on natural fibers, its properties and influence of water absorption on mechanical properties of composites. Int. J. Recent Adv. Multidiscip. Res. 2019, 6, 4790–4797. Available online: www.ijramr.com (accessed on 1 May 2021).
- Mofokeng, J.P.; Luyt, A.S.; Tábi, T.; Kovács, J. Comparison of injection moulded, natural fibre-reinforced composites with PP and PLA as matrices. J. Thermoplast. Compos. Mater. 2011, 25, 927–948. [Google Scholar] [CrossRef]
- Yemataw, Z.; Borrell, J.S.; Biswas, M.K.; White, O.; Mengesha, W.; Muzemil, S.; Darbar, J.N.; Ondo, I.; Harrison, P.J.H.; Blomme, G.; et al. The Distribution of Enset Pests and Pathogens and a Genomic Survey of Enset Xanthomonas Wilt. bioRxiv 2020. [Google Scholar] [CrossRef]
- Borrell, J.S.; Goodwin, M.; Blomme, G.; Jacobsen, K.; Wendawek, A.M.; Gashu, D.; Lulekal, E.; Asfaw, Z.; Demissew, S.; Wilkin, P. Enset-based agricultural systems in Ethiopia: A systematic review of production trends, agronomy, processing and the wider food security applications of a neglected banana relative. Plants People Planet 2020, 2, 212–228. [Google Scholar] [CrossRef]
- Haag, K.; Müssig, J. Scatter in tensile properties of flax fibre bundles: Influence of determination and calculation of the cross-sectional area. J. Mater. Sci. 2016, 51, 7907–7917. [Google Scholar] [CrossRef]
- Bao, Y. Hydrothermal aging behaviors of CMR/PLA biocomposites. J. Thermoplast. Compos. Mater. 2018, 31, 1341–1351. [Google Scholar] [CrossRef]
- Mistretta, M.C.; La Mantia, F.P.; Titone, V.; Botta, L.; Pedeferri, M.; Morreale, M. Effect of ultraviolet and moisture action on biodegradable polymers and their blend. J. Appl. Biomater. Funct. Mater. 2020, 18, 2280800020926653. [Google Scholar] [CrossRef]
- Titone, V.; Correnti, A.; La Mantia, F.P. Effect of Moisture Content on the Processing and Mechanical Properties of a Biodegradable Polyester. Polymers 2021, 13, 1616. [Google Scholar] [CrossRef] [PubMed]
- Asyraf, M.; Ishak, M.; Syamsir, A.; Nurazzi, N.; Sabaruddin, F.; Shazleen, S.; Norrrahim, M.; Rafidah, M.; Ilyas, R.; Rashid, M.Z.A.; et al. Mechanical properties of oil palm fibre-reinforced polymer composites: A review. J. Mater. Res. Technol. 2021, 17, 33–65. [Google Scholar] [CrossRef]
- Gunti, R.; Prasad, A.R.; Gupta, A. Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polym. Compos. 2018, 39, 1125–1136. [Google Scholar] [CrossRef]
- Alkbir, M.F.M.; Sapuan, S.M.; Nuraini, A.A.; Ishak, M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016, 148, 59–73. [Google Scholar] [CrossRef]
- Adusumalli, R.B.; Venkateshan, K.C.; Kunchi, C.; Vadlamani, S.R. Tensile testing of single fibres. Procedia Struct. Integr. 2019, 14, 150–157. [Google Scholar] [CrossRef]
- Ilankeeran, P.K.; Mohite, P.M.; Kamle, S. Axial Tensile Testing of Single Fibres. Mod. Mech. Eng. 2012, 2, 151–156. [Google Scholar] [CrossRef]
- Cline, J.; Wu, V.; Moy, P. Assessment of the Tensile Properties for Single Fibers; US Army Research Laboratory Aberdeen Proving Ground: Aberdeen, MD, USA, 2018. [Google Scholar]
- Rong, M.Z.; Zhang, M.Q.; Liu, Y.; Zhang, Z.W.; Yang, G.C.; Zeng, H.M. Mechanical Properties of Sisal Reinforced Composites in Response to Water Absorption. Polym. Polym. Compos. 2002, 10, 407–426. [Google Scholar] [CrossRef]
- Salih, A.A.; Zulkifli, R.; Azhari, C.H. Tensile Properties and Microstructure of Alkali Treatment. Fibers 2020, 8, 26. [Google Scholar] [CrossRef]
- Yusefi, M.; Khalid, M. Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with sugarcane bagasse nanofibre: Optimization using Two-Level Factorial Design Evaluation of water absorption of polyvinyl alcohol-starch biocomposite reinforced with su. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2018. [Google Scholar] [CrossRef]
- Zakikhani, P.; Zahari, R.; Sultan, M.T.B.H.H.; Majid, D.L.A.A. Morphological, Mechanical, and Physical Properties of Four Bamboo Species. BioResources 2017, 12, 2479–2495. [Google Scholar] [CrossRef]
- Mann, G.S.; Singh, L.P.; Kumar, P.; Singh, S. Green composites: A review of processing technologies and recent applications. J. Thermoplast. Compos. Mater. 2020, 33, 1145–1171. [Google Scholar] [CrossRef]
- Applications, M.; Information, P. Ingeo TM Biopolymer 4043D Technical Data Sheet 3D Printing Monofilament—General Purpose Grade. pp. 1–3. Available online: https://www.natureworksllc.com/~/media/Files/NatureWorks/Technical-Documents/Technical-Data-Sheets/TechnicalDataSheet_4043D_3D-monofilament_pdf.pdf (accessed on 25 July 2023).
- Grant, A.; Regez, B.; Kocak, S.; Huber, J.D.; Mooers, A. Anisotropic properties of 3-D printed Poly Lactic Acid (PLA) and Acrylonitrile Butadiene Styrene (ABS) plastics. Results Mater. 2021, 12, 100227. [Google Scholar] [CrossRef]
- Chaitanya, S.; Singh, I. Processing of PLA/sisal fiber biocomposites using direct- and extrusion-injection molding. Mater. Manuf. Process. 2016, 32, 468–474. [Google Scholar] [CrossRef]
- Chen, R.; Misra, M.; Mohanty, A.K. Injection-moulded biocomposites from polylactic acid (PLA) and recycled carbon fibre: Evaluation of mechanical and thermal properties. J. Thermoplast. Compos. Mater. 2013, 27, 1286–1300. [Google Scholar] [CrossRef]
- Mohapatra, A.K.; Mohanty, S.; Nayak, S.K. Properties and characterization of biodegradable poly(lactic acid) (PLA)/poly(ethylene glycol) (PEG) and PLA/PEG/organoclay: A study of crystallization kinetics, rheology, and compostability. J. Thermoplast. Compos. Mater. 2014, 29, 443–463. [Google Scholar] [CrossRef]
- Alves Fidelis, M.E.; Pereira, T.V.C.; Gomes, O.d.F.M.; de Andrade Silva, F.; Toledo Filho, R.D. The effect of fiber morphology on the tensile strength of natural fibers. J. Mater. Res. Technol. 2013, 2, 149–157. [Google Scholar] [CrossRef]
- Queiroz, H.; Banea, M.D.; Cavalcanti, D.; Neto, J. The effect of multiscale hybridization on the mechanical properties of natural fiber-reinforced composites. J. Appl. Polym. Sci. 2021, 138, 51213. [Google Scholar] [CrossRef]
- Rajesh, G.; Prasad, A.R.; Gupta, A. Mechanical and degradation properties of successive alkali treated completely biodegradable sisal fiber reinforced poly lactic acid composites. J. Reinf. Plast. Compos. 2015, 34, 951–961. [Google Scholar] [CrossRef]
- Cheng, K.-C.; Lin, Y.-H.; Guo, W.; Chuang, T.-H.; Chang, S.-C.; Wang, S.-F.; Don, T.-M. Flammability and tensile properties of polylactide nanocomposites with short carbon fibers. J. Mater. Sci. 2014, 50, 1605–1612. [Google Scholar] [CrossRef]
- Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Gloria, A.; Ronca, D.; Russo, T.; D’amora, U.; Chierchia, M.; De Santis, R.; Nicolais, L.; Ambrosio, L. Technical features and criteria in designing fiber-reinforced composite materials: From the aerospace and aeronautical field to biomedical applications. J. Appl. Biomater. Funct. Mater. 2011, 9, 151–163. [Google Scholar] [CrossRef]
- Paul, U.C.; Fragouli, D.; Bayer, I.S.; Zych, A.; Athanassiou, A. Effect of Green Plasticizer on the Performance of Microcrystalline Cellulose/Polylactic Acid Biocomposites. ACS Appl. Polym. Mater. 2021, 3, 3071–3081. [Google Scholar] [CrossRef]
- Kormin, S.; Kormin, F.; Beg, M.D.H. Study on the biodegradability and water adsorption of ldpe/sago starch blend. J. Physics: Conf. Ser. 2019, 1150, 012033. [Google Scholar] [CrossRef]
- Seyoum, G.; Lemma, T.; Yigardu, M. Indigenous knowledge on highland bamboo (Yushania alpina) management and utilization practices in Kokosa Woreda, South East Ethiopia. Sci. Res. Essays 2018, 13, 111–122. [Google Scholar] [CrossRef]
- Bajpai, P.K.; Singh, I.; Madaan, J. Development and characterization of PLA-based green composites. J. Thermoplast. Compos. Mater. 2014, 27, 52–81. [Google Scholar] [CrossRef]
- Azlin, M.; Sapuan, S.; Zuhri, M.; Zainudin, E. Effect of stacking sequence and fiber content on mechanical and morphological properties of woven kenaf/polyester fiber reinforced polylactic acid (PLA) hybrid laminated composites. J. Mater. Res. Technol. 2021, 16, 1190–1201. [Google Scholar] [CrossRef]
- Barczewski, M.; Hejna, A.; Aniśko, J.; Andrzejewski, J.; Piasecki, A.; Mysiukiewicz, O.; Bąk, M.; Gapiński, B.; Ortega, Z. Rotational molding of polylactide (PLA) composites filled with copper slag as a waste filler from metallurgical industry. Polym. Test. 2022, 106, 107449. [Google Scholar] [CrossRef]
- Shinyama, K.; Fujita, S. The Effects of Plasticizer on the Mechanical and Electrical Characteristics of PLA. In Proceedings of the 2008 International Symposium on Electrical Insulating Materials (ISEIM 2008), Yokkaichi, Japan, 7–11 September 2008; pp. 267–270. [Google Scholar]
- Sanborn, B.; Weerasooriya, T. Tensile Properties of Dyneema SK76 Single Fibers at Multiple Loading Rates Using a Direct Gripping Method. J. Dyn. Behav. Mater. 2015, 1, 4–14. [Google Scholar] [CrossRef]
- Chung, T.-J.; Park, J.-W.; Lee, H.-J.; Kwon, H.-J.; Kim, H.-J.; Lee, Y.-K.; Tai Yin Tze, W. The Improvement of Mechanical Properties, Thermal Stability, and Water Absorption Resistance of an Eco-Friendly PLA/Kenaf Biocomposite Using Acetylation. Appl. Sci. 2018, 8, 376. [Google Scholar] [CrossRef]
- Alakrach, A.M.; Noriman, N.Z.; Dahham, O.S.; Al-Rashdi, A.A.; Johari, I.; Razlan, Z.M.; Shahriman, A.B.; Zunaidi, I.; Khairunizam, W. Physical properties of plasticized PLA/HNTs bionanocomposites: Effects of plasticizer type and content. IOP Conf. Ser. Mater. Sci. Eng. 2019, 557, 012067. [Google Scholar] [CrossRef]
- Mandal, D.K.; Bhunia, H.; Bajpai, P.K. Thermal degradation kinetics of PP/PLA nanocomposite blends. J. Thermoplast. Compos. Mater. 2019, 32, 1714–1730. [Google Scholar] [CrossRef]
Machine Set Ratio (%) | Sample Weight (g) | Filter Paper (g) | Weight after Filtration (g) | Net Fiber Weight (g) | Net Actual (g) | Difference (%) |
---|---|---|---|---|---|---|
15 | 0.373 | 0.455 | 0.501 | 0.046 | 12 | 17.7 |
20 | 0.321 | 0.457 | 0.512 | 0.055 | 17 | 14.3 |
25 | 0.355 | 0.445 | 0.521 | 0.076 | 21 | 14.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdela, A.; Vandaele, M.; Haenen, S.; Buffel, B.; Sirahbizu, B.; Desplentere, F. Moisture Absorption Characteristics and Subsequent Mechanical Property Loss of Enset–PLA Composites. J. Compos. Sci. 2023, 7, 382. https://doi.org/10.3390/jcs7090382
Abdela A, Vandaele M, Haenen S, Buffel B, Sirahbizu B, Desplentere F. Moisture Absorption Characteristics and Subsequent Mechanical Property Loss of Enset–PLA Composites. Journal of Composites Science. 2023; 7(9):382. https://doi.org/10.3390/jcs7090382
Chicago/Turabian StyleAbdela, Abebayehu, Maxim Vandaele, Sam Haenen, Bart Buffel, Belete Sirahbizu, and Frederik Desplentere. 2023. "Moisture Absorption Characteristics and Subsequent Mechanical Property Loss of Enset–PLA Composites" Journal of Composites Science 7, no. 9: 382. https://doi.org/10.3390/jcs7090382
APA StyleAbdela, A., Vandaele, M., Haenen, S., Buffel, B., Sirahbizu, B., & Desplentere, F. (2023). Moisture Absorption Characteristics and Subsequent Mechanical Property Loss of Enset–PLA Composites. Journal of Composites Science, 7(9), 382. https://doi.org/10.3390/jcs7090382