Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins
Abstract
:1. Introduction
1.1. Enhancing POM with Elastomers
1.2. Enhancing PP with Elastomers
1.3. Enhancing PMMA with Elastomers
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Blend Preparation
2.2.2. Water Contact Angle Measurement
2.2.3. Melt Flow Rate Measurement
2.2.4. Mechanical Properties Measurement
2.2.5. Differential Scanning Calorimetry
3. Results and Discussions
3.1. Rheology
3.2. Mechanical Analysis
3.3. Water Contact Angle
3.4. Differential Scanning Calorimetry (DSC)
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- You, B.; Zhou, D.; Zhang, S.; Yang, F.; Ren, X. Preparation of Core–Shell Nanoparticle-based Hindered Amine Stabilizer and Its Application in Polyoxymethylene. J. Appl. Polym. Sci. 2012, 126, 1291–1299. [Google Scholar] [CrossRef]
- Yang, J.; Fang, W.; Du, J.; Zhou, T. Investigation on the Mechanical, Thermal and Electrical Properties of Polyoxymethylene Composites Modified by Thermoplastic Polyurethane Elastomer and Carbon Fiber. J. Thermoplast. Compos. Mater. 2024, 37, 1135–1149. [Google Scholar] [CrossRef]
- Tan, L.; Yang, J.; Li, C.; Zhang, G.; Ding, Q.; Sun, D.; Zhang, Y. Effect of Polyoxymethylene Fiber on the Mechanical Properties and Abrasion Resistance of Ultra-High-Performance Concrete. Materials 2023, 16, 7014. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhuo, X.; Shi, H.; Yu, S.; Tian, H.; Chen, J.; Hao, Y.; Chen, L.; Liu, W.; Xie, Y. Effects of Glass Fiber Reinforcing and Thermal Post-treatment on the Mechanical Properties and Crystallization Behaviors of Polyoxymethylene. J. Appl. Polym. Sci. 2023, 140, 1–11. [Google Scholar] [CrossRef]
- Heinlein, G.S.; Timpe, S.J. Development of Elastic and Plastic Properties of Polyoxymethylene during Bending Fatigue. J. Appl. Polym. Sci. 2014, 131, 40762. [Google Scholar] [CrossRef]
- Tokarz, L.; Pawlowski, S.; Kedzierski, M. Polyoxymethylene Applications. In Polyoxymethylene Handbook; Wiley: Hoboken, NJ, USA, 2014; pp. 153–161. [Google Scholar]
- Mohsenzadeh, R.; Majidi, H.; Soltanzadeh, M.; Shelesh-Nezhad, K. Wear and Failure of Polyoxymethylene/Calcium Carbonate Nanocomposite Gears. Proc. Inst. Mech. Eng. Part J J. Eng. Tribol. 2020, 234, 811–820. [Google Scholar] [CrossRef]
- Galeja, M.; Wypiór, K.; Wachowicz, J.; Kędzierski, P.; Hejna, A.; Marć, M.; Klewicz, K.; Gabor, J.; Okła, H.; Swinarew, A.S. POM/EVA Blends with Future Utility in Fused Deposition Modeling. Materials 2020, 13, 2912. [Google Scholar] [CrossRef]
- Yang, W.; Wang, X.; Yan, X.; Guo, Z. Toughened Polyoxymethylene by Polyolefin Elastomer and Glycidyl Methacrylate Grafted High-density Polyethylene. Polym. Eng. Sci. 2017, 57, 1119–1126. [Google Scholar] [CrossRef]
- Mehrabzadeh, M.; Rezaie, D. Impact Modification of Polyacetal by Thermoplastic Elastomer Polyurethane. J. Appl. Polym. Sci. 2002, 84, 2573–2582. [Google Scholar] [CrossRef]
- Pielichowski, K.; Leszczynska, A. Structure-Property Relationships in Polyoxymethylene/Thermoplastic Polyurethane Elastomer Blends. J. Polym. Eng. 2005, 25, 359–373. [Google Scholar] [CrossRef]
- Uthaman, N.; Majeed, A. Impact Modification of Polyoxymethylene (POM). e-Polymers 2006, 6. [Google Scholar] [CrossRef]
- Ren, X.; Chen, L.; Zhao, H.; Dan, Y.; Cai, X. Acrylate Elastomer Toughened and UV Stabilized Polyoxymethylene. J. Macromol. Sci. Part B 2007, 46, 411–421. [Google Scholar] [CrossRef]
- Zhou, D.; You, B.; Wu, G.; Ren, X. Mechanical Properties and Surface Morphology of Photodegraded Polyoxymethylene Modified by a Core–Shell Acrylate Elastomer with UV Stabilization. Polym. Int. 2012, 61, 971–981. [Google Scholar] [CrossRef]
- Liang, J.-Z.; He, L. Melt Flow Properties and Melt Density of POM/EVA/HDPE Nanocomposites. Polym. Plast. Technol. Eng. 2011, 50, 1338–1343. [Google Scholar] [CrossRef]
- Liang, J.-Z.; Wang, F. Tensile Properties of Polyformaldehyde Blends and Nanocomposites. J. Polym. Eng. 2015, 35, 417–422. [Google Scholar] [CrossRef]
- Liang, J.-Z. Melt Extrudate Swell Behavior of POM/EVA/HDPE/Nano-CaCO3 Composites. J. Polym. Eng. 2013, 33, 19–26. [Google Scholar] [CrossRef]
- Andrzejewski, J.; Skórczewska, K.; Kloziński, A. Improving the Toughness and Thermal Resistance of Polyoxymethylene/Poly(Lactic Acid) Blends: Evaluation of Structure–Properties Correlation for Reactive Processing. Polymers 2020, 12, 307. [Google Scholar] [CrossRef]
- Kanai, H.; Sullivan, V.; Auerbach, A. Impact Modification of Engineering Thermoplastics. J. Appl. Polym. Sci. 1994, 53, 527–541. [Google Scholar] [CrossRef]
- Mehta, I.K.; Kumar, S.; Chauhan, G.S.; Misra, B.N. Grafting onto Isotactic Polypropylene. III. Gamma Rays Induced Graft Copolymerization of Water Soluble Vinyl Monomers. J. Appl. Polym. Sci. 1990, 41, 1171–1180. [Google Scholar] [CrossRef]
- Jang, G.; Cho, W.; Ha, C. Crystallization Behavior of Polypropylene with or without Sodium Benzoate as a Nucleating Agent. J. Polym. Sci. B Polym. Phys. 2001, 39, 1001–1016. [Google Scholar] [CrossRef]
- Jiang, X.; Zhao, S.; Meng, X.; Xin, Z. Effect of the Metal Phenylphosphonates on the Nonisothermal Crystallization and Performance of Isotactic Polypropylene. J. Polym. Sci. B Polym. Phys. 2019, 57, 161–173. [Google Scholar] [CrossRef]
- Meng, X.; Gong, W.; Chen, W.; Shi, Y.; Sheng, Y.; Zhu, S.; Xin, Z. Isothermal and Non-Isothermal Crystallization of Isotactic Polypropylene in the Presence of an α Nucleating Agent and Zeolite 13X. Thermochim. Acta 2018, 667, 9–18. [Google Scholar] [CrossRef]
- Ningrum, D.; Soehardjono, A.; Suseno, H.; Wibowo, A. Analysis of the Effect of Using Covid-19 Medical Mask Waste with Polypropylene on the Compressive Strength and Split Tensile Strength of High-Performance Concrete. East. Eur. J. Enterp. Technol. 2023, 1, 40–46. [Google Scholar] [CrossRef]
- Mubarak, Y.A.; Abu-Halimeh, R.; Schubert, D. Thermal and Morphological Properties of Polypropylene/Styrene-Butadiene-Styrene Nanocomposites. Polym. Plast. Technol. Eng. 2018, 57, 1542–1553. [Google Scholar] [CrossRef]
- Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. Crystalline High Polymers of α-Olefins. J. Am. Chem. Soc. 1955, 77, 1708–1710. [Google Scholar] [CrossRef]
- Horikoshi, R.; Kobayashi, Y.; Kageyama, H. Illustrating Catalysis with Interlocking Building Blocks: Correlation between Structure of a Metallocene Catalyst and the Stereoregularity of Polypropylene. J. Chem. Educ. 2013, 90, 620–622. [Google Scholar] [CrossRef]
- Harmon, R.E.; SriBala, G.; Broadbelt, L.J.; Burnham, A.K. Insight into Polyethylene and Polypropylene Pyrolysis: Global and Mechanistic Models. Energy Fuels 2021, 35, 6765–6775. [Google Scholar] [CrossRef]
- Zhang, Y.; Xin, Z. Isothermal Crystallization Behaviors of Isotactic Polypropylene Nucleated with α/β Compounding Nucleating Agents. J. Polym. Sci. B Polym. Phys. 2007, 45, 590–596. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, X.; Dong, B.; Zheng, G.; Chen, J.; Shen, C.; Park, C.B. Synergetic Effect of Crystal Nucleating Agent and Melt Self-Enhancement of Isotactic Polypropylene on Its Rheological and Microcellular Foaming Properties. J. Cell. Plast. 2021, 57, 101–121. [Google Scholar] [CrossRef]
- Malpass, D.B. Introduction to Industrial Polyethylene; Wiley: Hoboken, NJ, USA, 2010; ISBN 9780470625989. [Google Scholar]
- Poulakis, J.G.; Varelidis, P.C.; Papaspyrides, C.D. Recycling of Polypropylene-Based Composites. Adv. Polym. Technol. 1997, 16, 313–322. [Google Scholar] [CrossRef]
- Handayani, S.U.; Fahrudin, M.; Mangestiyono, W.; Hadi Muhamad, A.F. Mechanical Properties of Commercial Recycled Polypropylene from Plastic Waste. J. Vocat. Stud. Appl. Res. 2021, 3, 1–4. [Google Scholar] [CrossRef]
- Azevedo, R.; Silveira, E.; Vieira, L.; Panzera, T.H.; Luis Christoforo, A.; Donizeti Varanda, L.; Antonio Rocco Lahr, F. Evaluation of the Temperature in the Painting Process on the Mechanical Properties of Polypropylene Used in Automotive Bumpers. Int. J. Mater. Eng. 2014, 4, 79–82. [Google Scholar] [CrossRef]
- Cimmino, S.; Silvestre, C.; Duraccio, D.; Pezzuto, M. Effect of Hydrocarbon Resin on the Morphology and Mechanical Properties of Isotactic Polypropylene/Clay Composites. J. Appl. Polym. Sci. 2011, 119, 1135–1143. [Google Scholar] [CrossRef]
- Kuznetsova, I.S.; Ryabchenkova, V.G.; Kornyushina, M.P.; Savrasov, I.P.; Vostrov, M.S. Polypropylene Fiber Is an Effective Way to Struggle with the Explosion-Like Destruction of Concrete in Case of Fire. Stroit. Mater. 2018, 765, 15–20. [Google Scholar] [CrossRef]
- Darweesh, M.H.; El-Taweel, S.H.; Stoll, B. Miscibility and Rigid Amorphous Phase in Blends of Polypropylene with Poly(Propylene-co-ethylene). J. Appl. Polym. Sci. 2022, 139, e52711. [Google Scholar] [CrossRef]
- Pradeep, S.A.; Iyer, R.K.; Kazan, H.; Pilla, S. Automotive Applications of Plastics: Past, Present, and Future. In Applied Plastics Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2017; pp. 651–673. [Google Scholar]
- Maddah, H.A. Polypropylene as a Promising Plastic: A Review. Am. J. Polym. Sci. 2016, 6, 1–11. [Google Scholar] [CrossRef]
- Yazdani, H.; Morshedian, J.; Khonakdar, H.A. Effect of Maleated Polypropylene and Impact Modifiers on the Morphology and Mechanical Properties of PP/Mica Composites. Polym. Compos. 2006, 27, 614–620. [Google Scholar] [CrossRef]
- Takubo, E.; Hiejima, Y.; Nishioka, K.; Nitta, K. Effects of Poly(Propylene Carbonate) Additive Prepared from Carbon Dioxide on the Tensile Properties of Polypropylene. J. Appl. Polym. Sci. 2017, 134, 45266. [Google Scholar] [CrossRef]
- Karger-Kocsis, J.; Kalló, A.; Kuleznev, V.N. Phase Structure of Impact-Modified Polypropylene Blends. Polymers 1984, 25, 279–286. [Google Scholar] [CrossRef]
- Murillo, E.A.; López, B.L. Study of the Impact Resistance of Physically and Dynamically Vulcanized Mixtures of PP/EPDM. Macromol. Symp. 2006, 242, 131–139. [Google Scholar] [CrossRef]
- Guo, M.; Zhou, X.; Dai, G.; Hu, F. Polypropylene/Ethylene-Octene Copolymer/Organic-Montmorillonite Nanocomposites. Polym. Polym. Compos. 2005, 13, 173–180. [Google Scholar] [CrossRef]
- Maciel, A.; Salas, V.; Manero, O. PP/EVA Blends: Mechanical Properties and Morphology. Effect of Compatibilizers on the Impact Behavior. Adv. Polym. Technol. 2005, 24, 241–252. [Google Scholar] [CrossRef]
- Ma, Y.; Xin, C.; Huang, G.; Wang, Y.; He, Y. Fundamental Influences of Propylene-based Elastomer on the Foaming Properties of High Melt Strength Polypropylene Based on Extrusion Foaming. Polym. Eng. Sci. 2022, 62, 3973–3984. [Google Scholar] [CrossRef]
- Yang, J.; Li, F.; Guan, C.; Xu, X.; Zhong, L.; Gao, Y.; Han, Y.; Yan, N.; Zhao, G.; Jiang, W. Brittle-Ductile Transition of Impact PP Blends: Effect of Modulus Ratio of PP Matrix to Impact Modifier. Polym. Bull. 2023, 80, 4459–4471. [Google Scholar] [CrossRef]
- Shen, Y.; Tian, H.; Pan, W.; Feng, J.; Wang, D.; Ning, N.; Tian, M.; Zhang, L. Unexpected Improvement of Both Mechanical Strength and Elasticity of EPDM/PP Thermoplastic Vulcanizates by Introducing β-Nucleating Agents. Macromolecules 2021, 54, 2835–2843. [Google Scholar] [CrossRef]
- Wang, X.; Han, X.; Xu, R. Versatile Propylene-Based Polyolefins with Tunable Molecular Structure through Tailor-Made Catalysts and Polymerization Process. In Polypropylene—Polymerization and Characterization of Mechanical and Thermal Properties; IntechOpen: London, UK, 2020. [Google Scholar]
- Švab, I.; Musil, V.; Pustak, A.; Šmit, I. Wollastonite-reinforced Polypropylene Composites Modified with Novel Metallocene EPR Copolymers. II. Mechanical Properties and Adhesion. Polym. Compos. 2009, 30, 1091–1097. [Google Scholar] [CrossRef]
- Delva, L.; De Tandt, E.; Ragaert, K. International Conference on Polymers and Moulds Innovations—PMI 2018. In Combining Polymeric Waste Streams to Improve Functional Properties of Post-Consumer Mixed Polyolefines; Institute of Polymers and Composites, University of Minho: Minho, Portugal, 2018. [Google Scholar]
- White Paper: Performance Comparison between Polypropylene-Vistamaxx Polymer Blends Made from Dry-Blend and from Melt-Blend, ExxonMobil Technology and Engineering, Product Solutions Technology. Available online: https://international.exxonmobilchemical.com/en/library/library-detail?assetid=104603 (accessed on 18 September 2024).
- Vuluga, Z.; Corobea, M.; Elizetxea, C.; Ordonez, M.; Ghiurea, M.; Raditoiu, V.; Nicolae, C.; Florea, D.; Iorga, M.; Somoghi, R.; et al. Morphological and Tribological Properties of PMMA/Halloysite Nanocomposites. Polymers 2018, 10, 816. [Google Scholar] [CrossRef]
- Ali, U.; Karim, K.J.B.A.; Buang, N.A. A Review of the Properties and Applications of Poly (Methyl Methacrylate) (PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- An, J.; Kang, B.-H.; Choi, B.-H.; Kim, H.-J. Observation and Evaluation of Scratch Characteristics of Injection-Molded Poly(Methyl Methacrylate) Toughened by Acrylic Rubbers. Tribol. Int. 2014, 77, 32–42. [Google Scholar] [CrossRef]
- Pawar, E. A Review Article on Acrylic PMMA. IOSR J. Mech. Civ. Eng. 2016, 13, 1–4. [Google Scholar]
- Godiya, C.B.; Gabrielli, S.; Materazzi, S.; Pianesi, M.S.; Stefanini, N.; Marcantoni, E. Depolymerization of Waste Poly(Methyl Methacrylate) Scraps and Purification of Depolymerized Products. J. Environ. Manag. 2019, 231, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Nampoothiri, P.K.; Gandhi, M.N.; Kulkarni, A.R. Elucidating the Stabilizing Effect of Oleic Acid Coated LaF3: Nd3+ Nanoparticle Surface in the Thermal Degradation of PMMA Nanocomposites. Mater. Chem. Phys. 2017, 190, 45–52. [Google Scholar] [CrossRef]
- Tomić, N.Z.; Marinković, A.D.; Veljović, Đ.; Trifković, K.; Lević, S.; Radojević, V.; Jančić Heinemann, R. A New Approach to Compatibilization Study of EVA/PMMA Polymer Blend Used as an Optical Fibers Adhesive: Mechanical, Morphological and Thermal Properties. Int. J. Adhes. Adhes. 2018, 81, 11–20. [Google Scholar] [CrossRef]
- Poomalai, P. Siddaramaiah Studies on Poly(Methyl Methacrylate) (PMMA) and Thermoplastic Polyurethane (TPU) Blends. J. Macromol. Sci. Part A 2005, 42, 1399–1407. [Google Scholar] [CrossRef]
- Mina, M.F.; Ania, F.; Baltá Calleja, F.J.; Asano, T. Microhardness Studies of PMMA/Natural Rubber Blends. J. Appl. Polym. Sci. 2004, 91, 205–210. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, W.; Yuan, D.; Xu, C.; Cao, L.; Liang, X. Bio-Based PLA/NR-PMMA/NR Ternary Thermoplastic Vulcanizates with Balanced Stiffness and Toughness: “Soft–Hard” Core–Shell Continuous Rubber Phase, In Situ Compatibilization, and Properties. ACS Sustain. Chem. Eng. 2018, 6, 6488–6496. [Google Scholar] [CrossRef]
- Rahman, S.S.; Mahmud, M.B.; Monfared, A.R.; Lee, P.C.; Park, C.B. Achieving Outstanding Toughness of PMMA While Retaining Its Strength, Stiffness, and Transparency Using in Situ Developed TPEE Nanofibrils. Compos. Sci. Technol. 2023, 236, 109994. [Google Scholar] [CrossRef]
- KURARITYTM Acrylic Block Copolymer Technical Information. Available online: https://www.elastomer.kuraray.com/wp-content/uploads/2021/04/Kuraray-Elastomer-Product-Brochures-Kurarity-Technical-Information.pdf (accessed on 8 May 2024).
- Lu, W.; Hong, K.; Mays, J. New Class of Thermoplastic Elastomers Based on Acrylic Block Copolymers. Adv. Thermoplast. Elastomers Chall. Oppor. 2024, 125–149. [Google Scholar] [CrossRef]
- Lu, W.; Goodwin, A.; Wang, Y.; Yin, P.; Wang, W.; Zhu, J.; Wu, T.; Lu, X.; Hu, B.; Hong, K.; et al. All-Acrylic Superelastomers: Facile Synthesis and Exceptional Mechanical Behavior. Polym. Chem. 2018, 9, 160–168. [Google Scholar] [CrossRef]
- Uchiumi, N.; Hamada, K.; Kato, M.; Ono, T.; Yaginuma, S.; Ishiura, K. Preparation Process of Acrylic Acid Ester Polymer. US6329480B1, 15 December 1999. [Google Scholar]
- Hamada, K.; Ishiura, K.; Kato, M.; Yaginuma, S. Anionic Polymerization Process, and Process for Producing a Polymer by the Anionic Polymerization Process. EP1078942A1, 23 August 2000. [Google Scholar]
- Hadjichristidis, N.; Hirao, A. (Eds.) Anionic Polymerization; Springer: Tokyo, Japan, 2015; ISBN 978-4-431-54185-1. [Google Scholar]
- ISO 20753:2019-01; Plastics—Test specimens. ISO: Geneva, Switzerland, 2019.
- ISO 19403-2:2017; Paints and varnishes—Wettability. ISO: Geneva, Switzerland, 2017.
- ISO 1133-1:2022; Plastics—Determination of the melt mass-flow rate (MFR) and melt volume-flow rate (MVR) of thermoplastics. ISO: Geneva, Switzerland, 2022.
- ISO 527-1:2019; Plastics—Determination of Tensile Properties. ISO: Geneva, Switzerland, 2019.
- ISO 179-1:2010; Plastics—Determination of Charpy Impact Properties. ISO: Geneva, Switzerland, 2010.
- ISO 11357-1:2023; Plastics—Differential scanning calorimetry (DSC). ISO: Geneva, Switzerland, 2023.
- Turner, B.N.; Strong, R.; Gold, S.A. A Review of Melt Extrusion Additive Manufacturing Processes: I. Process Design and Modeling. Rapid Prototyp. J. 2014, 20, 192–204. [Google Scholar] [CrossRef]
- Shenoy, A.V.; Saini, D.R. Melt Flow Index: More than Just a Quality Control Rheological Parameter. Part I. Adv. Polym. Technol. 1986, 6, 1–58. [Google Scholar] [CrossRef]
- Shenoy, A.V.; Saini, D.R.; Nadkarni, V.M. Melt Rheology of Polymer Blends from Melt Flow Index. Int. J. Polym. Mater. Polym. Biomater. 1984, 10, 213–235. [Google Scholar] [CrossRef]
- Hel, C.L.; Bounor-Legaré, V.; Catherin, M.; Lucas, A.; Thèvenon, A.; Cassagnau, P. TPV: A New Insight on the Rubber Morphology and Mechanic/Elastic Properties. Polymers 2020, 12, 2315. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.V.; Antunes, C.F.; van Duin, M.; Zatloukal, M. Phase Inversion of EPDM/PP Blends: Effect of Viscosity Ratio; American Institute of Physics: College Park, MD, USA, 2011; pp. 240–247. [Google Scholar]
- Poomalai, P.; Ramaraj, B. Siddaramaiah Poly(Methyl Methacrylate) Toughened by Ethylene-vinyl Acetate Copolymer: Physico-mechanical, Thermal, and Chemical Properties. J. Appl. Polym. Sci. 2007, 104, 3145–3150. [Google Scholar] [CrossRef]
- Sang, X.M.; Zhang, L.; Wang, R.Z.; Chen, X.G.; An, M.; Shen, Y. Study on Preparation and Properties of Polystyrene/Styrene-Ethylene/Butylene-Styrene Composites. Adv. Mater. Res. 2011, 284–286, 1886–1889. [Google Scholar] [CrossRef]
- Kumbhani, K.J.; Kent, E.G. Improving Polyolefin Properties with Butyl; SAE Technical Paper 811348; SAE International: Warrendale, PA, USA, 1981. [Google Scholar]
- Ucar, I.O.; Doganci, M.D.; Cansoy, C.E.; Erbil, H.Y.; Avramova, I.; Suzer, S. Combined XPS and contact angle studies of ethylene vinyl acetate and polyvinyl acetate blends. Appl. Surf. Sci. 2011, 257, 9587–9594. [Google Scholar] [CrossRef]
- Sobczak, R.; Nitkiewicz, Z.; Koszkul, J. Struktura Nadcząsteczkowa i Własności Termiczne Kompozytów Na Osnowie Polipropylenu Wzmacnianych Włóknem Szklanym. Kompozyty 2003, 3, 343–348. [Google Scholar]
- Pielichowski, K.; Leszczyńska, A. Polyoxymethylene-Based Nanocomposites with Montmorillonite: An Introductory Study. Polimery 2022, 51, 143–149. [Google Scholar] [CrossRef]
Sample Name | Concentration (%) | Rm (MPa) | E (MPa) | ε (%) | KIC (kJ/m2) |
---|---|---|---|---|---|
POM/EVA | 0.0 | 59.00 ± 0.48 | 1819 ± 36 | 10.46 ± 0.15 | 314.13 ± 14.66 |
1.0 | 58.27 ± 0.17 | 1862 ± 43 | 9.91 ± 0.17 | 348.00 ± 15.07 | |
2.5 | 55.96 ± 0.79 | 1871 ± 27 | 9.67 ± 0.23 | 322.39 ± 7.50 | |
5.0 | 52.36 ± 1.19 | 1721 ± 59 | 9.67 ± 0.13 | 311.72 ± 11.25 | |
10.0 | 45.93 ± 1.03 | 1611 ± 46 | 9.84 ± 0.19 | 260.40 ± 15.31 | |
20.0 | 35.28 ± 0.34 | 1288 ± 17 | 10.25 ± 0.10 | 175.38 ± 12.39 | |
PMMA/EVA | 0.0 | 66.05 ± 1.46 | 2922 ± 38 | 3.55 ± 0.25 | 20.35 ± 0.71 |
1.0 | 65.78 ± 1.61 | 3172 ± 39 | 2.87 ± 0.14 | 18.40 ± 0.92 | |
2.5 | 60.92 ± 2.81 | 3031 ± 59 | 2.73 ± 0.23 | 18.50 ± 1.11 | |
5.0 | 61.22 ± 1.72 | 2843 ± 60 | 3.29 ± 0.35 | 19.38 ± 0.38 | |
10.0 | 54.26 ± 2.56 | 2492 ± 58 | 3.33 ± 0.51 | 22.16 ± 1.66 | |
20.0 | 43.79 ± 0.71 | 1897 ± 28 | 4.19 ± 0.23 | 26.64 ± 4.82 | |
PMMA/MMA-nBA-MMA | 1.0 | 63.74 ± 0.70 | 2909 ± 30 | 3.38 ± 0.10 | 21.31 ± 0.70 |
2.5 | 61.37 ± 4.16 | 2808 ± 28 | 3.43 ± 0.43 | 22.04 ± 0.96 | |
5.0 | 60.30 ± 1.46 | 2729 ± 50 | 3.30 ± 0.55 | 22.23 ± 1.11 | |
10.0 | 59.38 ± 1.83 | 2688 ± 60 | 3.68 ± 0.31 | 22.27 ± 1.53 | |
20.0 | 32.49 ± 5.70 | 1424 ± 272 | 5.77 ± 1.19 | 49.49 ± 7.64 | |
PP/IIR | 0.0 | 34.21 ± 0.60 | 1324 ± 14 | 8.63 ± 0.16 | 93.96 ± 4.23 |
1.0 | 33.34 ± 0.72 | 1301 ± 37 | 8.09 ± 0.18 | 53.52 ± 2.85 | |
2.5 | 32.11 ± 0.94 | 1273 ± 51 | 7.68 ± 0.19 | 42.95 ± 7.03 | |
5.0 | 32.04 ± 0.80 | 1271 ± 56 | 8.15 ± 0.25 | 54.27 ± 8.16 | |
10.0 | 26.37 ± 0.57 | 1257 ± 35 | 6.84 ± 0.15 | 39.04 ± 2.10 | |
20.0 | 28.62 ± 4.36 | 1204 ± 97 | 7.13 ± 0.59 | 45.56 ± 6.14 | |
PP/VMX | 1.0 | 34.00 ± 0.28 | 1331 ± 26 | 8.70 ± 0.18 | 100.82 ± 15.71 |
2.5 | 33.87 ± 0.66 | 1280 ± 48 | 8.83 ± 0.26 | 119.53 ± 3.59 | |
5.0 | 32.84 ± 0.55 | 1206 ± 23 | 9.33 ± 0.25 | 15.62 ± 3.27 | |
10.0 | 30.08 ± 0.76 | 1068 ± 37 | 9.71 ± 0.32 | 17.72 ± 4.87 | |
20.0 | 27.23 ± 1.99 | 1099 ± 23 | 6.15 ± 0.73 | 38.28 ± 9.70 |
Water Contact Angle [°] | ||||||
---|---|---|---|---|---|---|
Sample Name/Concentration [%] | 0 | 1 | 2.5 | 5 | 10 | 20 |
POM/EVA | 79.0 ± 1.0 | 78.5 ± 1.0 | 76.1 ± 1.5 | 77.5 ± 3.0 | 68.4 ± 2.0 | 69.8 ± 3.5 |
PMMA/EVA | 78.3 ± 1.0 | 71.6 ± 3.0 | 72.6 ± 2.0 | 75.2 ± 1.5 | 73.6 ± 1.0 | 75.1 ± 2.0 |
PMMA/MMA-nBA-MMA | 78.3 ± 1.0 | 78.5 ± 2.0 | 79.3 ± 1.0 | 81.4 ± 3.0 | 80.0 ± 1.5 | 80.7 ± 2.0 |
PP/IIR | 88.3 ± 0.5 | 88.3 ± 1.0 | 87.9 ± 0.5 | 88.0 ± 1.0 | 81.4 ± 3.0 | 80.2 ± 2.0 |
PP/VMX | 88.3 ± 0.5 | 91.7 ± 1.0 | 90.2 ± 1.0 | 92.7 ± 2.0 | 92.1 ± 0.5 | 92.3 ± 1.5 |
Sample | Tg [°C] | Tc [°C] | Tm [°C] | Degree of Crystallinity [%] |
---|---|---|---|---|
PP | - | 123.1 | 164.0 | 35.8 |
PP/IIR | - | 122.9 | 163.7 | 38.5 |
PP/VMX | - | 122.2 | 163.8 | 35.9 |
POM | - | 144.9 | 168.2 | 42.3 |
POM/EVA | - | 144.8 | 167.0 | 33.4 |
PMMA | 100.6 | - | - | - |
PMMA/EVA | 100.2 | - | - | - |
PMMA/ MMA-nBA-MMA | 101.3 | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Czakaj, J.; Pakuła, D.; Głowacka, J.; Sztorch, B.; Przekop, R.E. Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins. J. Compos. Sci. 2024, 8, 384. https://doi.org/10.3390/jcs8100384
Czakaj J, Pakuła D, Głowacka J, Sztorch B, Przekop RE. Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins. Journal of Composites Science. 2024; 8(10):384. https://doi.org/10.3390/jcs8100384
Chicago/Turabian StyleCzakaj, Jakub, Daria Pakuła, Julia Głowacka, Bogna Sztorch, and Robert E. Przekop. 2024. "Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins" Journal of Composites Science 8, no. 10: 384. https://doi.org/10.3390/jcs8100384
APA StyleCzakaj, J., Pakuła, D., Głowacka, J., Sztorch, B., & Przekop, R. E. (2024). Mechanical and Thermal Properties of Polypropylene, Polyoxymethylene and Poly (Methyl Methacrylate) Modified with Adhesive Resins. Journal of Composites Science, 8(10), 384. https://doi.org/10.3390/jcs8100384