Thermomechanical and Viscoelastic Characterization of Continuous GF/PETG Tape for Extreme Environment Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Operational Conditions
2.3. Differential Scanning Calorimetry (DSC)
2.4. Thermomechanical Analysis (TMA)
2.5. Dynamic Mechanical Analysis (DMA)
2.5.1. Strain Sweep Test
2.5.2. Temperature Ramp Test
2.5.3. Frequency Sweep Test
2.5.4. Creep and Stress Relaxation Test
2.6. Characterization Summary
2.7. Manufacturing of Samples
2.8. Conditioning of Samples
3. Modeling of Viscoelastic Behavior
3.1. Time–Temperature Superposition (TTS)
3.2. Boltzmann Superposition Principle
3.3. Stress Relaxation and Creep Test
3.4. Stress Relaxation Modeling
3.5. Creep Modeling
4. Results and Discussion
4.1. TMA Results
4.2. DMA Results
4.2.1. Strain Sweep Test Results
4.2.2. Temperature Ramp Test Results
4.2.3. Frequency Sweep Test Results
4.2.4. Strain–Temperature–Frequency Dependency
4.2.5. Stress Relaxation Test Results
4.2.6. Creep Test Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Prony Series Parameters for Stress Relaxation Test
Parameters | Strain | ||
---|---|---|---|
0.005% | 0.01% | 0.1 | |
0.03801 | 0.099106 | 1.788746 | |
0.100856 | 0.202297 | 2.774809 | |
0.103025 | 0.167182 | 2.167271 | |
5290.396 | 1.43 × 10−6 | 0.010216 | |
0.003839 | 0.003383 | 37.8912 | |
108.835 | 1226.914 | 960.9927 |
Parameters | Strain | ||
---|---|---|---|
0.005% | 0.01% | 0.1 | |
0.101886 | 0.125352 | 0.694744 | |
0.060999 | 0.085857 | 1.864071 | |
0.037347 | 0.166124 | 2.815188 | |
0.077876 | 0.084475 | 1.505348 | |
114.3204 | 0.001308 | 7.59 × 10−5 | |
0.022057 | 0.037773 | 1178.226 | |
5269.863 | 1242.212 | 70.45295 | |
0.000467 | 1.22 × 10−6 | 0.033225 |
Parameters | Strain | ||
---|---|---|---|
0.005% | 0.01% | 0.1% | |
0.033491 | 0.138026 | 0.675695 | |
0.077004 | 0.066438 | 1.409995 | |
0.079044 | 0.170439 | 2.051698 | |
0.029857 | 2.93 × 10−10 | 1.403527 | |
0.058365 | 0.06572 | 1.33106 | |
30.99619 | 0.001569 | 7.59 × 10−5 | |
0.00046 | 0.154432 | 1734.579 | |
212.8447 | 1205.104 | 165.4361 | |
7061.858 | 0.459256 | 0.028764 | |
0.019483 | 1.70 × 10−6 | 16.63023 |
References
- Yano, O.; Yamaoka, H. Cryogenic properties of polymers. Prog. Polym. Sci. 1995, 20, 585–613. [Google Scholar] [CrossRef]
- Sapi, Z.; Butler, R. Properties of cryogenic and low temperature composite materials—A review. Cryogenics 2020, 111, 103190. [Google Scholar] [CrossRef]
- Carter, J.B. Vibration and Aeroelastic Prediction of Multi-Material Structures Based on 3D-Printed Viscoelastic Polymers. Master’s Thesis, Miami University, Miami, FL, USA, 2021. [Google Scholar]
- Bonning, B.; Blackburn, C.J.; Stretz, H.A.; Wilson, C.D.; Johnson, W.R. Superposition-based predictions of creep for polymer films at cryogenic temperatures. Cryogenics 2019, 104, 102979. [Google Scholar] [CrossRef]
- Kalia, S.; Fu, S.-Y. Polymers at Cryogenic Temperatures; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Slifka, A.J.; Smith, D.R. Thermal expansion of an E-glass/vinyl ester composite from 4 to 293 K. Int. J. Thermophys 1997, 18, 1249–1256. [Google Scholar] [CrossRef]
- Pan, Z.; Sun, B.; Gu, B. Thermo-mechanical numerical modeling on impact com- pressive damage of 3-D braided composite materials under room and low temperatures. Aerosp. Sci. Technol. 2016, 54, 23–40. [Google Scholar] [CrossRef]
- Shao, Y.; Xu, F.; Liu, W.; Zhou, M.; Li, W.; Hiu, D.; Qiu, Y. Influence of cryogenic treatment on mechanical and interfacial properties of carbon nanotube fiber/bisphenol-F epoxy composite. Compos. Part B Eng. 2017, 125, 195–202. [Google Scholar] [CrossRef]
- Nielsen, L.E.; Landel, R.F. Mechanical Properties of Polymers and Composites; Marcel Dekker: New York, NY, USA, 1975. [Google Scholar]
- Kim, Y.; Kim, M.S.; Jeon, H.J.; Kim, J.H.; Chun, K.W. Mechanical Performance of Polymer Materials for Low-Temperature Applications. Appl. Sci. 2022, 12, 12251. [Google Scholar] [CrossRef]
- He, Y.; Yang, S.; Liu, H.; Shao, Q.; Chen, Q.; Lu, C.; Jiang, Y.; Liu, C.; Guo, Z. Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: Magnetic field assisted alignment and cryogenic temperature mechanical properties. J. Colloid Interf. Sci. 2018, 517, 40–51. [Google Scholar] [CrossRef]
- Sun, W.; Vassilopoulos, A.P.; Keller, T. Effect of thermal lag on glass transition temperature of polymers measured by DMA. Int. J. Adhes. Adhes. 2014, 52, 31–39. [Google Scholar] [CrossRef]
- Subbarao, C.V.; Reddy, Y.S.; Inturi, V.; Reddy, M.I. Dynamic Mechanical Analysis of 3D Printed PETG Material. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1057, 012031. [Google Scholar] [CrossRef]
- Quintana, J.L.C.; Redmann, A.; Capote, G.A.M.; Perez-Irizarry, A.; Bechara, A.; Osswald, T.A.; Lakes, R. Viscoelastic properties of fused filament fabrication parts. Addit. Manuf. 2019, 28, 704–710. [Google Scholar] [CrossRef]
- Raghavan, J.; Meshii, M. Creep of Polymer Composites. Compos. Sci. Technol. 1997, 57, 1673–1688. [Google Scholar] [CrossRef]
- Wang, X.; Gong, L.X.; Tang, L.C.; Peng, K.; Pei, Y.B.; Zhao, L.; Wu, L.B. Temperature dependence of creep and recovery behaviors of polymer composites filled with chemically reduced graphene oxide. Compos. Part A 2015, 69, 288–298. [Google Scholar] [CrossRef]
- Kouadri-Boudjelthia, A.; Imad, A.; Bouabdallah, A.; Elmeguenni, M. Analysis of the effect of temperature on the creep parameters of composite material. Mater. Des. 2009, 30, 1569–1574. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, H.; Ma, X.; Shang, F.; Ma, Y.; Shao, Z.; Hou, D. Flexural creep tests and long-term mechanical behavior of fiber-reinforced polymeric composite tubes. Compos. Struct. 2018, 193, 154–164. [Google Scholar] [CrossRef]
- McConville, J.C.; Miller, K.S. Research, Development, Test and Evaluation of Material for Worldwide Use; Department of the Army: Washington, DC, USA, 2020. [Google Scholar]
- Mohan, V.B.; Krebs, B.J.; Bhattacharyya, D.B. Development of novel highly conductive 3D printable hybrid polymer-graphene composites. Mater. Today Commun. 2018, 17, 554–561. [Google Scholar] [CrossRef]
- ASTM Committee E37. E793−24; Standard Test Method for Enthalpies of Fusion and Crystallization by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM Committee D20. D3418-21; Standard Test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM Committee E37. E1269-24; Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry. ASTM International: West Conshohocken, PA, USA, 2021.
- “A Beginner’s Guide to Differential Scanning Calorimetry DSC. PerkinElmer”. 2010. Available online: https://www.s4science.at/wordpress/wp-content/uploads/2018/10/DSC-Beginners-Guide.pdf (accessed on 9 September 2024).
- Quintana, J.L.C.; Slattery, L.; Pinkham, J.; Keaton, J.; Lopez-Anido, R.; Sharp, K. Effects of Fiber Orientation on the Coefficient of Thermal Expansion of Fiber-filled Polymer Systems in Large Format Polymer Extrusion-based Additive Manufacturing. Materials 2022, 15, 2764. [Google Scholar] [CrossRef] [PubMed]
- Latko-Duralex, P.; Dydex, K.; Boczkowska, A. Thermal, Rheological and Mechanical Properties of PETG/rPETG Blends. J. Polym. Environ. 2019, 27, 2600–2606. [Google Scholar] [CrossRef]
- Shi, Q.; Xiao, R.; Yang, H.; Lei, D. Effects of physical aging on thermomechanical behaviors of poly(ethylene terephthalate)-glycol (PETG). Polym. Plast. Technol. Mater. 2020, 59, 835–846. [Google Scholar] [CrossRef]
- Martin, K.; Riveros, G.A.; Thornel, T.; McClelland, Z.; Freeman, E.; Stinson, J. Thermomechanical Material Characterization of Polyethylene Terephthalate Glycol with 30% Carbon Fiber for Large-Format Additive Manufacturing of Polymer Structures. Polymer 2024, 16, 1913. [Google Scholar] [CrossRef]
- ASTM Committee E37. E831-24; Standard Test Method for Linear Thermal Expansion of Solid Materials by Thermomechanical Analysis. ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM Committee D20. D5023-23; Standard Test Method for Plastics: Dynamic Mechanical Properties: In Flexure (Three-Point Bending). ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM Committee D30. D7028-07(2024); Standard Test Method for Glass Transition Temperature (DMA Tg) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA). ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM Committee E37. E1640-23; Standard Test Method for Assignment of the Glass Transition Temperature By Dynamic Mechanical Analysis. ASTM International: West Conshohocken, PA, USA, 2023.
- ASTM Committee D20. D2990−17; Standard Test Methods for Tensile, Compressive, and Flexural Creep and Creep-Rupture of Plastics. ASTM International: West Conshohocken, PA, USA, 2017.
- Clough, R.W.; Penzien, J. Dynamics of Structures; McGraw-Hill: New York, NY, USA, 1993. [Google Scholar]
- Haviland, L. Mechanical Characterization of Automated Fiber Placement and Additive Manufacturing Hybrid Composites; University of Maine: Orono, ME, USA, 2023. [Google Scholar]
- ASTM Committee D20. D618-21; Standard Practice for Conditioning Plastics for Testing. ASTM International: West Conshohocken, PA, USA, 2021.
- Osswald, T.A.; Menges, G. Material Science of Polymers for Engineers; Hanser: Munich, Germany, 2012. [Google Scholar]
- Doan, H.G.M.; Mertiny, P. Creep Testing of Thermoplastic Fiber-Reinforced. Materials 2020, 13, 4637. [Google Scholar] [CrossRef] [PubMed]
- Lakes, R. Viscoelastic Composite Materials. In Viscoelastic Materials; Cambridge University Press: Cambridge, UK, 2009; pp. 341–376. [Google Scholar]
- Chen, T. Determining a Prony Series for a Viscoelastic Material from Time Varying Strain Data; NASA: Hampton, VA, USA, 2000. [Google Scholar]
- Rashid, A.A.; Koc, M. Creep and Recovery Behavior of Continuous Fiber-Reinforced 3DP Composites. Polymers 2021, 13, 1644. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Wu, Q.; Lei, Y.; Yao, F. Creep behavior of bagasse fiber reinforced polymer composites. Bioresour. Technol. 2010, 101, 3280–3286. [Google Scholar] [CrossRef] [PubMed]
- Chu, X.; Wu, Z.; Huang, R.; Zhou, Y.; Li, L. Mechanical and thermal expansion properties of glass fibers reinforced PEEK composites at cryogenic temperatures. Cryogenics 2010, 50, 84–88. [Google Scholar] [CrossRef]
- Kovacova, M.; Kozakovicova, J.; Prochazka, M.; Janigova, I.; Vysopal, M.; Cernickova, I.; Krajcovic, J.; Spitalsky, Z. Novel Hybrid PETG Composites for 3D Printing. Appl. Sci. 2020, 10, 3062. [Google Scholar] [CrossRef]
- Lu, C.; Qi, Z.; Ge, H.; Zheng, Y. Predicting the mechanical properties of E-glass fiber-reinforced polymer bars after exposure to elevated temperature. Constr. Build. Mater. 2023, 379, 131238. [Google Scholar] [CrossRef]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering: An Introduction, 8th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Weber, A.; Fliegener, S.; Wirth, I.; Schaefer, H. Temperature-dependent mechanical properties of glass fiber-reinforced thermoplastics. Compos. Part A Appl. Sci. Manuf. 2016, 84, 85–91. [Google Scholar]
- Deng, S.; Hou, M.; Ye, L. Temperature-dependent elastic moduli of epoxies measured by DMA and their correlations to mechanical testing data. Polym. Test. 2007, 26, 803–813. [Google Scholar] [CrossRef]
- Bhandari, S.; Lopez-Anido, R.A.; Gardner, D.J. Enhancing the interlayer tensile strength of 3D printed short carbon fiber reinforced PETG and PLA composites via annealing. Addit. Manuf. 2019, 30, 100922. [Google Scholar] [CrossRef]
- Vishal, G.; Vempati, S.R.; Srinivasulu, R. Estimation of Viscoelastic Properties by Additive Manufacturing for Poly Ethylene Terephthalate Glycol (PETG) Material. Int. Res. J. Eng. Technol. 2020, 7, 1272–1277. [Google Scholar]
- Dupaix, R.B.; Boyce, M.C. Finite strain behavior of poly(ethylene terephthalate) (PET) and poly(ethylene terephthalate)-glycol (PETG). Polymer 2005, 46, 4827–4838. [Google Scholar] [CrossRef]
- Yilmaz, S. Comparative Investigation of Mechanical, Tribological and Thermo- Mechanical Properties of Commonly Used 3D Printing Materials. Eur. J. Sci. Technol. 2021, 32, 827–831. [Google Scholar] [CrossRef]
- Mallick, P.K. Fiber-Reinforced Composites: Materials, Manufacturing, and Design, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Chawla, K.K. Composite Materials: Science and Engineering, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Hull, D.; Clyne, T.W. An Introduction to Composite Materials, 2nd ed.; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Techawinyutham, L.; Tengsuthiwat, J.; Srisuk, R.; Techawinyutham, W.; Rangappa, S.M.; Siengchin, S. Recycled LDPE/PETG blends and HDPE/PETG blends: Mechanical, thermal, and rheological properties. J. Mater. Res. Technol. 2021, 15, 2445–2458. [Google Scholar] [CrossRef]
- Kannan, S.; Ramamoorthy, M.; Sudhagar, E.; Gunji, B. Mechanical characterization and vibrational analysis of 3D printed PETG and PETG reinforced with short carbon fiber. AIP Conf. Proc. 2020, 2270, 030004. [Google Scholar]
- Mansour, M.; Tsongas, K.; Tzetzis, D.; Antoniadis, A. Mechanical and Dynamic Behavior of Fused Filament Fabrication 3D Printed Polyethylene Terephthalate Glycol Reinforced with Carbon Fibers. Polym. Plast. Technol. Eng. 2018, 57, 1715–1725. [Google Scholar] [CrossRef]
- Shukur, Z.M.; Neamah, R.A.; Abdulsamad, H.J.; Al-Ansari, L.S.; Wittayapiyanon, S. Calculating the Natural Frequency of Pre-twisted Beam. J. Eng. Sustain. Develoopment 2024, 28, 1–16. [Google Scholar] [CrossRef]
- Valvez, S.; Silva, A.P.; Reis, P.N.B. Compressive Behaviour of 3D-Printed PETG Composites. Aerospace 2022, 9, 124. [Google Scholar] [CrossRef]
- Guo, J.; Li, Z.; Long, J.; Xiao, R. Modeling the effect of physical aging on the stress response of amorphous polymers based on a two-temperature continuum theory. Mech. Mater. 2020, 143, 103335. [Google Scholar] [CrossRef]
- Romeijn, T.; Behrens, M.; Paul, G.; Wei, D. Instantaneous and long-term mechanical properties of Polyethylene Terephthalate Glycol (PETG) additively manufactured by pellet-based material extrusion. Addit. Manuf. 2022, 59, 103145. [Google Scholar] [CrossRef]
- Amza, C.G.; Zapciu, A.; Baciu, F.; Vasile, M.I.; Nicoara, A.I. Accelerated Aging Effect on Mechanical Properties of Common 3D-Printing Polymers. Polymers 2021, 13, 4132. [Google Scholar] [CrossRef]
- Dorodov, P.V.; Kasatkin, V.V.; Lekomcev, P.L.; Petrov, V.A.; Niyazov, A.M. Rigidity, creep and dynamic strength of plastics for threedimensional printing of machine parts. IOP Conf. Ser. Earth Environ. Sci. 2021, 677, 052045. [Google Scholar] [CrossRef]
Temperature Daily High (°C) | Design Type | Daily Cycle | Ambient Relative Humidity (%RH) |
---|---|---|---|
−57 | Extreme Cold | Extreme Cold (C4) | Tending toward saturation |
−37 | Cold | Cold (C2) | Tending toward saturation |
−6 | Basic | Mild Cold (C0) | Tending toward saturation |
24 | Basic | Constant High Humidity (B1) | 95–100 |
49 | Hot | Hot Dry (A1) | 3–8 |
Test | Temperature (°C) | Load (N) | Strain % | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Creep | −70 | −50 | −25 | 0 | 15 | 30 | 45 | 60 | 5, 10 | - |
Stress Relaxation | −70 | −50 | −25 | 0 | 15 | 30 | 45 | 60 | - | 0.005, 0.01, 0.1 |
Parameters | Value |
---|---|
Pressure, MPa (psi) | 0.69 (100) |
Processing temperature, °C (°F) | 168.3 (335) |
Heating rate, °C/min (°F/min) | 8 (14.4) |
Dwell time (min) | 10 |
Cooling rate, °C/min (°F/min) | 25.6 (46) |
Run time per part (min) | 50 |
Direction | Average CTE (με/°C) | Standard Deviation (με/°C) |
---|---|---|
1-dir | 7.7 | 0.3 |
2-dir | 47.8 | 5.2 |
3-dir | 46.5 | 5.8 |
Orientation | Frequency (Hz) Zone 1 | Frequency (Hz) Zone 2 | Frequency (Hz) Zone 3 |
---|---|---|---|
1-dir | 39–56 | 70–90 | 112 |
2-dir | 39–50 | 74–90 | 150 |
Strain % | Activation Energy, Ea (kJ/mol) | Reference Temperature, Tref (°C) | R2 |
---|---|---|---|
0.005 | 47.81 | 61.16 | 0.66 |
0.01 | 159.86 | 61.11 | 0.44 |
0.1 | 129.25 | 60.99 | 0.32 |
Prony Series Terms | Strain Percentages | ||
---|---|---|---|
0.005% | 0.01% | 0.1% | |
3 | 0.97 | 0.99 | 0.98 |
4 | 0.98 | 0.99 | 0.99 |
5 | 0.98 | 0.99 | 0.99 |
Load (N) | Activation Energy, Ea (kJ/mol) | Reference Temperature, Tref (°C) | R2 |
---|---|---|---|
5 | 162.23 | 30.73 | 0.50 |
10 | 75.76 | 30.44 | 0.41 |
Load (N) | ε1 | ε2 | λ1 | λ2 | R2 |
---|---|---|---|---|---|
5 | 0.05627 | 0.02038 | 1.659 × 108 | 0.1982 | 0.99 |
10 | 0.1221 | 0.07217 | 8.569 × 107 | 3.231× 105 | 0.97 |
Load (N) | a (Strain %) | b (-) | εo (Strain %) | R2 |
---|---|---|---|---|
5 | 4.77 × 10−4 | 0.2962 | 0.0614 | 0.98 |
10 | 4.668 × 10−5 | 0.4672 | 0.1249 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colón Quintana, J.L.; Tomlinson, S.; Lopez-Anido, R.A. Thermomechanical and Viscoelastic Characterization of Continuous GF/PETG Tape for Extreme Environment Applications. J. Compos. Sci. 2024, 8, 392. https://doi.org/10.3390/jcs8100392
Colón Quintana JL, Tomlinson S, Lopez-Anido RA. Thermomechanical and Viscoelastic Characterization of Continuous GF/PETG Tape for Extreme Environment Applications. Journal of Composites Science. 2024; 8(10):392. https://doi.org/10.3390/jcs8100392
Chicago/Turabian StyleColón Quintana, José Luis, Scott Tomlinson, and Roberto A. Lopez-Anido. 2024. "Thermomechanical and Viscoelastic Characterization of Continuous GF/PETG Tape for Extreme Environment Applications" Journal of Composites Science 8, no. 10: 392. https://doi.org/10.3390/jcs8100392
APA StyleColón Quintana, J. L., Tomlinson, S., & Lopez-Anido, R. A. (2024). Thermomechanical and Viscoelastic Characterization of Continuous GF/PETG Tape for Extreme Environment Applications. Journal of Composites Science, 8(10), 392. https://doi.org/10.3390/jcs8100392