Comparison of Stress between Three Different Functionally Graded Hip Stem Implants Made of Different Titanium Alloys and Composite Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Geometry
2.2. Material Properties
2.3. Loading and Boundary Conditions
2.4. Finite Element Model
3. Results
3.1. Stress Analysis on Implants
3.2. Stiffness of the Stems
3.3. Stress-Shielding Evaluation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knight, S.R.; Aujla, R.; Biswas, S.P. Total Hip Arthroplasty—Over 100 years of operative history. Orthop. Rev. 2011, 3, 16. [Google Scholar]
- Sershon, R.; Balkissoon, R.; Valle, C.J. Current indications for hip resurfacing arthroplasty in 2016. Curr. Rev. Musculoskelet. Med. 2016, 9, 84–92. [Google Scholar] [CrossRef] [PubMed]
- Gomez, P.F.; Morcuende, J.A. Early attempts at hip arthroplasty—1700s to 1950s. Iowa Orthop. J. 2005, 25, 25–29. [Google Scholar] [PubMed]
- Dai, K.; Li, H.; Yan, M. Twenty-year Accelerated Development of Artificial Joints in China. Chin. J. Jt. Surg. 2015, 9, 4. [Google Scholar] [CrossRef]
- Ulrich, S.D.; Seyler, T.M.; Bennett, D.; Delanois, R.E.; Saleh, K.J.; Thongtrangan, I.; Kuskowski, M.; Cheng, E.Y.; Sharkey, P.F.; Parvizi, J.; et al. Total Hip Arthroplasties: What Are the Reasons for Revision? Int. Orthop. 2008, 32, 597–604. [Google Scholar] [CrossRef]
- Kärrholm, J.; Lindahl, H.; Malchau, H.; Mohaddes, M.; Nemes, S.; Rogmark, C.; Rolfson, O. Swedish Hip Arthroplasty Register Annual Report; Swedish Hip Arthroplasty Register: Gothenburg, Sweden, 2016. [Google Scholar]
- National Joint Replacement Registry, Australian Orthopaedic Association. Hip, Knee & Shoulder Arthroplasty: Annual Report; Australian Orthopaedic Association: Adelaide, Australia, 2017. [Google Scholar]
- Ollivier, M.; Parratte, S.; Galland, A.; Lunebourg, A.; Flecher, X.; Argenson, J.N. Titanium-titanium mo ular neck for primary THA. Result of a prospective series of 170 cemented THA with a minimum follow-up of 5 years. Orthop. Traumatol. Surg. Res. 2015, 101, 137–142. [Google Scholar] [CrossRef]
- Dharme, M.R.; Kuthe, A.M.; Dahake, S.W. Comparison of fatigue analysis of hip joint implant for stai less steel, cobalt chrome alloys and titanium alloys. Trends Biomater. Artif. Organs 2013, 27, 58–61. [Google Scholar]
- Savin, L.; Pinteala, T.; Mihai, D.N.; Mihailescu, D.; Miu, S.S.; Sirbu, M.T.; Veliceasa, B.; Popescu, D.C.; Sirbu, P.D.; Forna, N. Updates on bi materials used in total hip arthroplasty (THA). Polymers 2023, 15, 3278. [Google Scholar] [CrossRef]
- Rizzo, M.; Balato, G.; Cerbasi, S.; Costa, G.; Guarino, A.; Mariconda, M. Long-term survival and results at a mean follow-up period of 24 years of a tapered straight, collarless, grit-blasted, titanium alloy stem. J. Arthroplast. 2020, 35, 3644–3649. [Google Scholar] [CrossRef]
- Schmidt, I.; Papastavrou, A.; Steinmann, P. Concurrent consideration of cortical and cancellous bone within continuum bone remodelling. Comput. Methods Biomech. Biomed. Eng. 2021, 24, 1274–1285. [Google Scholar] [CrossRef]
- Pałka, K.; Pokrowiecki, R. Porous Titanium Implants: A Review. Adv. Eng. Mater. 2018, 20, 1700648. [Google Scholar] [CrossRef]
- Khanuja, H.S.; Banerjee, S.; Jain, D.; Pivec, R.; Mont, M.A. Short Bone- Conserving Stems in Cementless Hip Arthroplasty. J. Bone Jt. Surg. 2014, 96, 1742–1752. [Google Scholar] [CrossRef]
- Raffa, M.L.; Nguyen, V.H.; Hernigou, P.; Flouzat-Lachaniette, C.H.; Haiat, G. Stress shielding at the bone-implant interface: Influence of surface roughness and of the bone-implant contact ratio. J. Orthop. Res. 2021, 39, 1174–1183. [Google Scholar] [CrossRef]
- Maistrelli, G.L.; Fornasier, V.; Binnington, A.; McKenzie, K.; Sessa, V.; Harrington, I. Effect of stem modulus in a total hip arthroplasty model. J. Bone Jt. Surg. 1991, 73, 43–46. [Google Scholar] [CrossRef]
- Yang, C.-T.; Wei, H.-W.; Kao, H.-C.; Cheng, C.-K. Design and Test of Hip Stem for Medullary Revascularization. Med. Eng. Phys. 2009, 31, 994–1001. [Google Scholar] [CrossRef]
- Joshi, M.G.; Advani, S.G.; Miller, F.; Santare, M.H. Analysis of a femoral hip prosthesis designed to reduce stress-shielding. J. Biomech. 2000, 33, 1655–1662. [Google Scholar] [CrossRef]
- Wang, S.; Zhou, X.; Liu, L.; Shi, Z.; Hao, Y. On the design and properties of porous femoral stems with adjustable stiffness gradient. Med. Eng. Phys. 2020, 81, 30–38. [Google Scholar] [CrossRef]
- Ma, H.; Suonan, A.; Zhou, J.; Yuan, Q.; Liu, L.; Zhao, X.; Lou, X.; Yang, C.; Li, D.; Zhang, Y. PEEK (Polyether-ether-ketone) and its composite materials in orthopedic implantation. Arab. J. Chem. 2021, 14, 102977. [Google Scholar] [CrossRef]
- Bieger, R.; Ignatius, A.; Reichel, H.; Dürselen, L. Biomechanics of a short stem: In vitro primary stability and stress shielding of a conservative cementless hip stem. J. Orthop. Res. 2013, 31, 1180–1186. [Google Scholar] [CrossRef] [PubMed]
- Fetto, J.F. A Dynamic Model of Hip Joint Biomechanics: The Contribution of Soft Tissues. Adv. Orthop. 2019, 4, 5804642. [Google Scholar] [CrossRef] [PubMed]
- Morscher, E.; Mathys, R. Total isoelastic hip prosthesis implanted without cement. Initial results. Acta Orthop. Belg. 1974, 40, 639–647. [Google Scholar]
- Yamako, G.; Janssen, D.; Hanada, S.; Anijs, T.; Ochiai, K.; Totoribe, K.; Chosa, E.; Verdonschot, N. Improving stress-shielding following total hip arthroplasty by using a femoral stem made of β type Ti-33.6Nb-4Sn with a Young’s modulus gradation. J. Biomech. 2017, 63, 135–143. [Google Scholar] [CrossRef]
- Chiba, D.; Yamada, N.; Mori, Y.; Oyama, M.; Ohtsu, S.; Kuwahara, Y.; Baba, K.; Tanaka, H.; Aizawa, T.; Hanada, S.; et al. Mid-term results of a new femoral prosthesis using Ti-Nb-Sn alloy with low Young’s modulus. BMC Musculoskelet. Disord. 2021, 22, 987. [Google Scholar] [CrossRef]
- Lopes, E.S.; Contieri, R.J.; Button, S.T.; Caram, R. Femoral hip stem prosthesis made of graded elastic modulus metastable β Ti Alloy. Mater. Des. 2015, 69, 30–36. [Google Scholar] [CrossRef]
- Ceddia, M.; Trentadue, B.; De Giosa, G.; Solarino, G. Topology optimization of a femoral stem in titanium and carbon to reduce stress shielding with the FEM method. J. Compos. Sci. 2023, 7, 298. [Google Scholar] [CrossRef]
- Ceddia, M.; Solarino, G.; Giannini, G.; De Giosa, G.; Tucci, M.; Trentadue, B. A Finite Element Analysis Study of Influence of Femoral Stem Material in Stress Shielding in a Model of Uncemented Total Hip Arthroplasty: Ti-6Al-4V versus Carbon Fibre-Reinforced PEEK Composite. J. Compos. Sci. 2024, 8, 254. [Google Scholar] [CrossRef]
- Ceddia, M.; Trentadue, B. A review of carbon fiber-reinforced polymer composite used to solve stress shielding in total hip replacement. AIMS Mater. Sci. 2024, 11, 449–462. [Google Scholar] [CrossRef]
- Delikanli, Y.E.; Kayacan, M.C. Design, manufacture, and fatigue analysis of lightweight hip implants. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800019836830. [Google Scholar] [CrossRef]
- Liu, B.; Wang, H.; Zhang, N.; Zhang, M.; Cheng, C.K. Femoral Stems with Porous Lattice Structures: A Review. Front. Bioeng. Biotechnol. 2021, 9, 772539. [Google Scholar] [CrossRef]
- Viceconti, M.; Ansaloni, M.; Baleani, M.; Toni, A. The muscle standardized femur: A step forward in the replication of numerical studies in biomechanics. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2003, 217, 105–110. [Google Scholar] [CrossRef]
- Ceddia, M.; Trentadue, B. Evaluation of Rotational Stability and Stress Shielding of a Stem Optimized for Hip Replacements—A Finite Element Study. Prosthesis 2023, 5, 678–693. [Google Scholar] [CrossRef]
- Fouda, N.; Mostafa, R.; Saker, A. Numerical study of stress shielding reduction at fractured bone using metallic and composite bone-plate models. Ain Shams Eng. J. 2019, 10, 481–488. [Google Scholar] [CrossRef]
- Shahzamanian, M.M.; Banerjee, R.; Dahotre, N.B.; Srinivasa, A.R.; Reddy, J.N. Analysis of stress shielding reduction in bone fracture fixation implant using functionally graded materials. Compos. Struct. 2023, 321, 117262. [Google Scholar] [CrossRef]
- Chen, W.C.; Lai, Y.S.; Cheng, C.K.; Chang, T.K. A cementless, proximally fixed anatomic femoral stem induces high micromotion with nontraumatic femoral avascular necrosis: A finite element study. J. Orthop. Transl. 2014, 2, 149–156. [Google Scholar] [CrossRef]
- Ouldyerou, A.; Aminallah, L.; Merdji, A.; Mehboob, A.; Mehboob, H. Finite element analyses of porous dental implant designs based on 3D printing concept to evaluate biomechanical behaviors of healthy and osteoporotic bones. Mech. Adv. Mater. Struct. 2023, 30, 2328–2340. [Google Scholar] [CrossRef]
- Alcántara-Arreola, E.A.; Silva-Garcés, K.N.; Mendoza-Martínez, J.; Cardoso-Palomares, M.A.; Torres-SanMiguel, C.R. Experimental Analysis of Stress Shielding Effects in Screw Spacers Placed in Porcine Spinal Tissue. J. Funct. Biomater. 2024, 15, 238. [Google Scholar] [CrossRef] [PubMed]
- Müller, P.; Synek, A.; Stauß, T.; Steinnagel, C.; Ehlers, T.; Gembarski, P.C.; Pahr, D.; Lachmayer, R. Development of a density-based topology optimization of homogenized lattice structures for individualized hip endoprostheses and validation using micro-FE. Sci. Rep. 2024, 14, 5719. [Google Scholar] [CrossRef] [PubMed]
- Burkhart, T.A.; Andrews, D.M.; Dunning, C.E. Finite element modeling mesh quality, energy balance and validation methods: A review with recommendations associated with the modeling of bone tissue. J. Biomech. 2013, 46, 1477–1488. [Google Scholar] [CrossRef]
- Cavalli, L.; Brandi, M.L. Periprosthetic bone loss: Diagnostic and therapeutic approaches. F1000Research 2014, 2, 266. [Google Scholar] [CrossRef]
- Ceddia, M.; Solarino, G.; Cassano, G.D.; Trentadue, B. Finite Element Study on Stability in the Femoral Neck and Head Connection to Varying Geometric Parameters with the Relates Implications on the Effect of Wear. J. Compos. Sci. 2023, 7, 387. [Google Scholar] [CrossRef]
- Hanada, S.; Masahashi, N.; Jung, T.K.; Yamada, N.; Yamako, G.; Itoi, E. Fabrication of a high-performance hip prosthetic stem using β Ti-33.6Nb-4Sn. J. Mech. Behav. Biomed. Mater. 2014, 30, 140–149. [Google Scholar] [CrossRef] [PubMed]
- Chatzigeorgiou, C.; Piotrowski, B.; Chemisky, Y.; Laheurte, P.; Meraghni, F. Numerical investigation of the effective mechanical properties and local stress distributions of TPMS-based and strut-based lattices for biomedical applications. J. Mech. Behav. Biomed. Mater. 2022, 126, 105025. [Google Scholar] [CrossRef]
- Chua, C.Y.X.; Liu, H.C.; Di Trani, N.; Susnjar, A.; Ho, J.; Scorrano, G.; Rhudy, J.; Sizovs, A.; Lolli, G.; Hernandez, N.; et al. Carbon fiber reinforced polymers for implantable medical devices. Biomaterials 2021, 271, 120719. [Google Scholar] [CrossRef]
- Varghese, T.K.; Joji, L.A.; Sebastian, N.; Niranjan, V.V.; Sidheek, P.A.; Joseph, M. Carbon fiber reinforced medical implants. Mater. Today Proc. 2022, 56, 121–125. [Google Scholar] [CrossRef]
- Kang, K.T.; Chun, H.J.; Kim, H.J.; Yeom, J.S.; Park, K.M.; Hwang, I.H.; Lee, K.I. Finite element analysis of instrumented posterior lumbar interbody fusion cages for reducing stress shielding effects: Comparison of the CFRP cage and titanium cage. Compos. Res. 2012, 25, 98–104. [Google Scholar]
- Carpenter, R.D.; Klosterhoff, B.S.; Torstrick, F.B.; Foley, K.T.; Burkus, J.K.; Lee, C.S.D.; Gall, K.; Guldberg, R.E.; Safranski, D.L. Effect of porous orthopaedic implant material and structure on load sharing with simulated bone ingrowth: A finite element analysis comparing titanium and PEEK. J. Mech. Behav. Biomed. Mater. 2018, 80, 68–76. [Google Scholar] [CrossRef]
- Ceddia, M.; Solarino, G.; Tucci, M.; Lamberti, L.; Trentadue, B. Stress Analysis of Tibial Bone Using Three Different Materials for Bone Fixation Plates. J. Compos. Sci. 2024, 8, 334. [Google Scholar] [CrossRef]
- Arabnejad, S.; Johnston, B.; Tanzer, M.; Pasini, D. Fully porous 3D printed titanium femoral stem to reduce stress-shielding following total hip arthroplasty. J. Orthop. Res. 2017, 35, 1774–1783. [Google Scholar] [CrossRef]
- Petersen, R. Carbon Fiber Biocompatibility for Implants. Fibers 2016, 4, 1. [Google Scholar] [CrossRef]
Material | Modulus of Elasticity | Shear Modulus (Gpa) | Poisson’s Ratio | Compressive Strength (Mpa) | Yield Strength (Mpa) | Density g/cm3 |
---|---|---|---|---|---|---|
Cortical bone | Ex = 6979 (MPa) Ey = 18,132 (MPa) Ez = 6979 (MPa) | Gyz = 5.6 Gzx = 4.5 Gxy = 6.2 | νyz = 0.25 νzx = 0.4 νxy = 0.25 | 195 | 2.02 | |
Cancellous bone | Ex = 660 (MPa) Ey = 1740 (MPa) Ez = 660 (MPa) | Gyz = 0.211 Gzx = 0.165 Gxy = 0.260 | νyz = 0.25 νzx = 0.4 νxy = 0.25 | 16 | 1.37 | |
Ti-6Al-4V | Ex = Ey = Ez = 110 (GPa) | 0.3 | 970 | 930 | 4.42 | |
CFRP | Ex = 4 (GPa) Ey = 9.8 (GPa) Ez = 9.8 GPa) | Gyz = 3.5 Gzx = 3 Gxy = 3.5 | νyz = 0.3 νzx = 0.3 νxy = 0.3 | |||
Ti–30Nb–2Sn | Proximal zone 65 GPa Distal zone 110 GPa | 0.3 | Proximal zone 900 Distal zone 500 | 5.72 | ||
Cr–Co (femoral head) | Ex = Ey = Ez = 200 GPa | 0.33 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ceddia, M.; Solarino, G.; Dramisino, P.; De Giosa, G.; Rizzo, S.; Trentadue, B. Comparison of Stress between Three Different Functionally Graded Hip Stem Implants Made of Different Titanium Alloys and Composite Materials. J. Compos. Sci. 2024, 8, 449. https://doi.org/10.3390/jcs8110449
Ceddia M, Solarino G, Dramisino P, De Giosa G, Rizzo S, Trentadue B. Comparison of Stress between Three Different Functionally Graded Hip Stem Implants Made of Different Titanium Alloys and Composite Materials. Journal of Composites Science. 2024; 8(11):449. https://doi.org/10.3390/jcs8110449
Chicago/Turabian StyleCeddia, Mario, Giuseppe Solarino, Pasquale Dramisino, Giuseppe De Giosa, Stefano Rizzo, and Bartolomeo Trentadue. 2024. "Comparison of Stress between Three Different Functionally Graded Hip Stem Implants Made of Different Titanium Alloys and Composite Materials" Journal of Composites Science 8, no. 11: 449. https://doi.org/10.3390/jcs8110449
APA StyleCeddia, M., Solarino, G., Dramisino, P., De Giosa, G., Rizzo, S., & Trentadue, B. (2024). Comparison of Stress between Three Different Functionally Graded Hip Stem Implants Made of Different Titanium Alloys and Composite Materials. Journal of Composites Science, 8(11), 449. https://doi.org/10.3390/jcs8110449