Effect of Mechanically Exfoliated Graphite Flakes on Morphological, Mechanical, and Thermal Properties of Epoxy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
3. Results
3.1. Morphological and Structural Characterization
3.2. Thermal Conductivity Characterization
3.3. Characterization of Mechanical Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Albert, A.A.; Parthasarathy, V.; Kumar, P.S. Review on Recent Progress in Epoxy-Based Composite Materials for Electromagnetic Interference(EMI) Shielding Applications. Polym. Compos. 2024, 45, 1956–1984. [Google Scholar] [CrossRef]
- Panta, J.; Zhang, Y.X.; Rider, A.N.; Wang, J. Ozone Functionalized Graphene Nanoplatelets and Triblock Copolymer Hybrids as Nanoscale Modifiers to Enhance the Mechanical Performance of Epoxy Adhesives. Int. J. Adhes. Adhes. 2022, 116, 103135. [Google Scholar] [CrossRef]
- Khalid, M.Y.; Kamal, A.; Otabil, A.; Mamoun, O.; Liao, K. Graphene/Epoxy Nanocomposites for Improved Fracture Toughness: A Focused Review on Toughening Mechanism. Chem. Eng. J. Adv. 2023, 16, 100537. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, H.; Wang, Z.; Sui, W.; Gong, Y.; Cui, J.; Ao, Y.; Shang, L. Functional Boron Nitride/Graphene Oxide Three-Dimensional Skeleton Co-Heat Transfer Epoxy Resin Composite. J. Alloys Compd. 2024, 985, 173935. [Google Scholar] [CrossRef]
- Sun, Z.; Li, J.; Yu, M.; Kathaperumal, M.; Wong, C.P. A Review of the Thermal Conductivity of Silver-Epoxy Nanocomposites as Encapsulation Material for Packaging Applications. Chem. Eng. J. 2022, 446, 137319. [Google Scholar] [CrossRef]
- Chen, Y.; Shi, C.; Guo, X.; Qing, C.; Zou, D. A Metal-Based Microencapsulated Phase Change Material (MEPCM) with High Thermal Conductivity, Electrical Insulation and Flame Retardancy and Its Application in Epoxy Resin. Compos. Part A Appl. Sci. Manuf. 2024, 180, 108081. [Google Scholar] [CrossRef]
- Kim, C.S.; Jang, J.; Im, H.G.; Yoon, S.; Kang, D.J. Preparation and Performance of Alumina/Epoxy-Siloxane Composites: A Comparative Study on Thermal- and Photo-Curing Process. Heliyon 2024, 10, e27580. [Google Scholar] [CrossRef]
- Zhou, Z.; Huang, R.; Liu, H.; Zhao, Y.; Miao, Z.; Wu, Z.; Zhao, W.; Huang, C.; Li, L. Dielectric AlN/Epoxy and SiC/Epoxy Composites with Enhanced Thermal and Dynamic Mechanical Properties at Low Temperatures. Prog. Nat. Sci. Mater. Int. 2022, 32, 304–313. [Google Scholar] [CrossRef]
- Adeli, R.; Shirmardi, S.P.; Ahmadi, S.J. Neutron Irradiation Tests on B4C/Epoxy Composite for Neutron Shielding Application and the Parameters Assay. Radiat. Phys. Chem. 2016, 127, 140–146. [Google Scholar] [CrossRef]
- Watpade, A.D.; Thakor, S.; Jain, P.; Mohapatra, P.P.; Vaja, C.R.; Joshi, A.; Shah, D.V.; Tariqul Islam, M. Comparative Analysis of Machine Learning Models for Predicting Dielectric Properties in MoS2 Nanofiller-Reinforced Epoxy Composites. Ain Shams Eng. J. 2024, 15, 102754. [Google Scholar] [CrossRef]
- Li, G.; Chen, L.; An, Y.; Gao, M.; Zhou, H.; Chen, J. Investigating the Effect of Polytetrafluoroethylene on the Tribological Properties and Corrosion Resistance of Epoxy/Hydroxylated Hexagonal Boron Nitride Composite Coatings. Corros. Sci. 2023, 210, 110820. [Google Scholar] [CrossRef]
- Kim, J.W.; Gardner, J.M.; Sauti, G.; Jensen, B.D.; Wise, K.E.; Wincheski, R.A.; Smith, J.G.; Zavada, S.R.; Siochi, E.J. Fabrication of Carbon Nanotube Epoxy Prepreg towards Lightweight Structural Composites. Compos. Part B Eng. 2024, 275, 111329. [Google Scholar] [CrossRef]
- Hao, Q.; Liu, S.; Wang, X.; Zhang, P.; Mao, Z.; Zhang, X. Progression from Graphene and Graphene Oxide to High-Performance Epoxy Resin-Based Composite. Polym. Degrad. Stab. 2024, 223, 110731. [Google Scholar] [CrossRef]
- Bao, D.; Gao, Y.; Cui, Y.; Xu, F.; Shen, X.; Geng, H.; Zhang, X.; Lin, D.; Zhu, Y.; Wang, H. A Novel Modified Expanded Graphite/Epoxy 3D Composite with Ultrahigh Thermal Conductivity. Chem. Eng. J. 2022, 433, 133519. [Google Scholar] [CrossRef]
- Chow, D.; Burns, N.; Boateng, E.; van der Zalm, J.; Kycia, S.; Chen, A. Mechanical Exfoliation of Expanded Graphite to Graphene-Based Materials and Modification with Palladium Nanoparticles for Hydrogen Storage. Nanomaterials 2023, 13, 2588. [Google Scholar] [CrossRef]
- Kamali, A.R.; Fray, D. Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J. Material. Sci. 2016, 51, 569–576. [Google Scholar] [CrossRef]
- Lee, C.-S.; Shim, S.J.; Kim, T.H. Scalable Preparation of Low-Defect Graphene by Urea-Assisted Liquid-Phase Shear Exfoliation of Graphite and Its Application in Doxorubicin Analysis. Nanomaterials 2020, 10, 267. [Google Scholar] [CrossRef]
- Kim, S.H.; Jiang, S.; Lee, S.-S. Direct CVD Growth of Transferable 3D Graphene for Sensitive and Flexible SERS Sensor. Nanomaterials 2023, 13, 1029. [Google Scholar] [CrossRef]
- Mousavi, S.R.; Estaji, S.; Kiaei, H.; Mansourian-Tabaei, M.; Nouranian, S.; Jafari, S.H.; Ruckdäschel, H.; Arjmand, M.; Khonakdar, H.A. A Review of Electrical and Thermal Conductivities of Epoxy Resin Systems Reinforced with Carbon Nanotubes and Graphene-Based Nanoparticles. Polym. Test. 2022, 112, 107645. [Google Scholar] [CrossRef]
- Luo, F.; Wu, K.; Wang, S.; Lu, M. Melamine Resin/Graphite Nanoflakes Hybrids and Its Vacuum-Assisted Prepared Epoxy Composites with Anisotropic Thermal Conductivity and Improved Flame Retardancy. Compos. Sci. Technol. 2017, 144, 100–106. [Google Scholar] [CrossRef]
- Owais, M.; Zhao, J.; Imani, A.; Wang, G.; Zhang, H.; Zhang, Z. Synergetic Effect of Hybrid Fillers of Boron Nitride, Graphene Nanoplatelets, and Short Carbon Fibers for Enhanced Thermal Conductivity and Electrical Resistivity of Epoxy Nanocomposites. Compos. Part A Appl. Sci. Manuf. 2019, 117, 11–22. [Google Scholar] [CrossRef]
- Mishra, S.; Pratap, V.; Chaurasia, A.K.; Soni, A.K.; Dubey, A.; Dixit, A.K. Combined Effect of Exfoliated Graphite/Ferrite Filled Epoxy Composites on Microwave Absorbing and Mechanical Properties. Phys. Open 2023, 14, 100138. [Google Scholar] [CrossRef]
- Suherman, H.; Dweiri, R.; Sulong, A.B.; Zakaria, M.Y.; Mahyoedin, Y. Improvement of the Electrical-Mechanical Performance of Epoxy/Graphite Composites Based on the Effects of Particle Size and Curing Conditions. Polymers 2022, 14, 502. [Google Scholar] [CrossRef]
- Baptista, R.; Mendão, A.; Rodrigues, F.; Figueiredo-Pina, C.G.; Guedes, M.; Marat-Mendes, R. Effect of High Graphite Filler Contents on the Mechanical and Tribological Failure Behavior of Epoxy Matrix Composites. Theor. Appl. Fract. Mech. 2016, 85, 113–124. [Google Scholar] [CrossRef]
- Ni, Y.; Pu, Y.; Zhang, J.; Cui, W.; Gao, M.; You, D. Charged Functional Groups Modified Porous Spherical Hollow Carbon Material as CDI Electrode for Salty Water Desalination. J. Environ. Sci. 2025, 149, 254–267. [Google Scholar] [CrossRef]
- Feng, W.; Liang, B.; Chen, J.; Gao, X.; Yao, D.; Lu, C.; Pang, X. Tribological performance of epoxy composites reinforced by 3D expanded graphite skeleton containing oil microcapsules. Tribol. Int. 2024, 197, 109814. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Yerramalli, C.S.; Singh, A. Static and fatigue performance of graphene nanoplatelets coated bi-directional carbon fiber-epoxy composites under bending loads. J. Appl. Polym. 2024, 141, e55830. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, S.; Hu, X.; Leng, Y.; Li, X.; Tao, B.; Xu, M. Constructing piperazine pyrophosphate@LDH@rGO with hierarchical core-shell structure for improving thermal conductivity, flame retardancy and smoke suppression of epoxy resin thermosets. Compos. B 2024, 287, 111870. [Google Scholar] [CrossRef]
- Huang, X.; Zhi, C.; Lin, Y.; Bao, H.; Wu, G.; Jiang, P.; Mai, Y.W. Thermal Conductivity of Graphene-Based Polymer Nanocomposites. Mater. Sci. Eng. R Reports 2020, 142, 100577. [Google Scholar] [CrossRef]
- Guo, X.; Cheng, S.; Cai, W.; Zhang, Y.; Zhang, X.-A. A Review of Carbon-Based Thermal Interface Materials: Mechanism, Thermal Measurements and Thermal Properties. Mater. Des. 2021, 209, 109936. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, B.; Wu, K.; Lu, M.; Jiao, E.; Shi, J.; Lu, M. Ultrahigh Thermal Conductivity of Epoxy Composites Based on Curling Bioinspired Functionalized Graphite Films for Thermal Management Application. Compos. Part A Appl. Sci. Manuf. 2021, 146, 106413. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, R.; Wang, J.; Qi, S. Thermal Conductivity Improvement of Epoxy Composite Filled with Expanded Graphite. Ceram. Int. 2015, 41, 13541–13546. [Google Scholar] [CrossRef]
- Aradhana, R.; Mohanty, S.; Nayak, S.K. Novel Electrically Conductive Epoxy/Reduced Graphite Oxide/Silica Hollow Microspheres Adhesives with Enhanced Lap Shear Strength and Thermal Conductivity. Compos. Sci. Technol. 2019, 169, 86–94. [Google Scholar] [CrossRef]
- Guo, X.; Zheng, K.; Shi, H.; Chen, L.; Shen, Y.; Chen, J.; Tao, X.; Yu, M. Thermal Regulation of Photovoltaic Panels Using Shape-Stabilized Phase Change Materials Supported by Exfoliated Graphite/Graphene Nanofillers. J. Clean. Prod. 2024, 446, 141435. [Google Scholar] [CrossRef]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of Various Fillers in Adhesives Applications: A Review; Springer: Berlin/Heidelberg, Germany, 2022; Volume 79, ISBN 0028902104022. [Google Scholar]
- Depaifve, S.; Hermans, S.; Ruch, D.; Laachachi, A. Combination of Micro-Computed X-Ray Tomography and Electronic Microscopy to Understand the Influence of Graphene Nanoplatelets on the Thermal Conductivity of Epoxy Composites. Thermochim. Acta 2020, 691, 178712. [Google Scholar] [CrossRef]
- Lian, G.; Tuan, C.C.; Li, L.; Jiao, S.; Wang, Q.; Moon, K.S.; Cui, D.; Wong, C.P. Vertically Aligned and Interconnected Graphene Networks for High Thermal Conductivity of Epoxy Composites with Ultralow Loading. Chem. Mater. 2016, 28, 6096–6104. [Google Scholar] [CrossRef]
- Kamali, A.R. Eco-Friendly Production of High Quality Low Cost Graphene and Its Application in Lithium Ion Batteries. Green Chem. 2016, 18, 1952–1964. [Google Scholar] [CrossRef]
- La, L.B.T.; Nguyen, H.; Tran, L.C.; Su, X.; Meng, Q.; Kuan, H.-C.; Ma, J. Exfoliation and Dispersion of Graphene Nanoplatelets for Epoxy Nanocomposites. Adv. Nanocomposites 2024, 1, 39–51. [Google Scholar] [CrossRef]
- Mohammad, H.; Stepashkin, A.A.; Tcherdyntsev, V.V. Effect of Graphite Filler Type on the Thermal Conductivity and Mechanical Behavior of Polysulfone-Based Composites. Polymers 2022, 14, 399. [Google Scholar] [CrossRef]
- Wu, S.; Li, T.; Tong, Z.; Chao, J.; Zhai, T.; Xu, J.; Yan, T.; Wu, M.; Xu, Z.; Bao, H.; et al. High-Performance Thermally Conductive Phase Change Composites by Large-Size Oriented Graphite Sheets for Scalable Thermal Energy Harvesting. Adv. Mater. 2019, 31, 1905099. [Google Scholar] [CrossRef]
- Wu, X.; Tang, B.; Chen, J.; Shan, L.; Gao, Y.; Yang, K.; Wang, Y.; Sun, K.; Fan, R.; Yu, J. Epoxy Composites with High Cross-Plane Thermal Conductivity by Constructing All-Carbon Multidimensional Carbon Fiber/Graphite Networks. Compos. Sci. Technol. 2021, 203, 108610. [Google Scholar] [CrossRef]
- Kim, S.H.; Park, S.J.; Lee, S.Y.; Park, S.J. Amine Functionalization on Thermal and Mechanical Behaviors of Graphite Nanofibers-Loaded Epoxy Composites. J. Mater. Sci. Technol. 2023, 151, 80–88. [Google Scholar] [CrossRef]
- Krzak, A.; Nowak, A.J.; Frolec, J.; Králík, T.; Kotyk, M.; Boroński, D.; Matula, G. Analysis of Mechanical Properties and Thermal Conductivity of Thin-Ply Laminates in Ambient and Cryogenic Conditions. Materials 2024, 17, 5419. [Google Scholar] [CrossRef]
- Zotti, A.; Zuppolini, S.; Borriello, A.; Zarrelli, M. Polymer Nanocomposites Based on Graphite Nanoplatelets and Amphiphilic Graphene Platelets. Compos. Part B Eng. 2022, 246, 110223. [Google Scholar] [CrossRef]
- Mohammadi, S.; Babaei, A. Poly (Vinyl Alcohol)/Chitosan/Polyethylene Glycol-Assembled Graphene Oxide Bio-Nanocomposites as a Prosperous Candidate for Biomedical Applications and Drug/Food Packaging Industry. Int. J. Biol. Macromol. 2022, 201, 528–538. [Google Scholar] [CrossRef]
- Kuo, W.; Wu, T.; Lu, H.; Lo, T. Microstructures and Mechanical Properties of Nano-Flake Graphite Composites. In Proceedings of the 16th International Conference on Composite Materia, Kyoto, Japan, 6–13 July 2007. [Google Scholar]
- Isarn, I.; Bonnaud, L.; Massagués, L.; Serra, À.; Ferrando, F. Enhancement of Thermal Conductivity in Epoxy Coatings through the Combined Addition of Expanded Graphite and Boron Nitride Fillers. Prog. Org. Coatings 2019, 133, 299–308. [Google Scholar] [CrossRef]
- Ganguli, S.; Roy, A.K.; Anderson, D.P. Improved Thermal Conductivity for Chemically Functionalized Exfoliated Graphite/Epoxy Composites. Carbon N. Y. 2008, 46, 806–817. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, M.; Wang, T.; Tian, Y.; Cheng, J. Epoxy Resin-Based Gel Phase Change Material for Strong Interface Bonding and Interface Thermal Management. Chem. Mater. 2024, 36, 9414–9423. [Google Scholar] [CrossRef]
- Zheng, K.; Li, Z.; Wang, J.; Nie, S.; Guo, S.; Zhang, X. Electrothermal Curable Epoxy Interface Adhesive Composite with Low Voltage: An Ideal Thermal Management and EMI Shielding Material. Ind. Eng. Chem. 2024, 63, 14165–14175. [Google Scholar] [CrossRef]
- Kamali, A.R. Clean Production and Utilisation of Hydrogen in Molten Salts. RSC Adv. 2020, 10, 36020–36030. [Google Scholar] [CrossRef]
- Kamali, A.R. Green Production of Carbon Nanomaterials in Molten Salts and Applications; Springer: Singapore, 2020; ISBN 9789811523731. [Google Scholar]
- He, Z.-K.; Sun, Q.; Xie, K.; Shi, Z.; Kamali, A.R. Reactive molten salt synthesis of natural graphite flakes decorated with SnO2 nanorods as high performance, low cost anode material for lithium ion batteries. J. Alloys Compd. 2019, 792, 1213–1222. [Google Scholar] [CrossRef]
- Jara, A.D.; Betemariam, A.; Woldetinsae, G.; Kim, J.Y. Purification, application and current market trend of natural graphite: A review. Int. J. Mining Sci. Technol. 2019, 29, 671–689. [Google Scholar] [CrossRef]
- Kamali, A.R.; Divitini, G.; Schwandt, C.; Fray, D.J. Correlation between microstructure and thermokinetic characteristics of electrolytic carbon nanomaterials. Corros. Sci. 2012, 64, 90–97. [Google Scholar] [CrossRef]
- Kamali, A.R.; Schwandt, C.; Fray, D.J. On the oxidation of electrolytic carbon nanomaterials. Corros. Sci. 2012, 54, 307–331. [Google Scholar] [CrossRef]
Epoxy | G1 | G5 | G10 | |
---|---|---|---|---|
Graphite Flake | 0.00 g | 0.25 g | 1.23 g | 2.47 g |
Jeffamine D-230 | 6.90 g | 6.90 g | 6.90 g | 6.90 g |
EPON 826 | 13.17 g | 13.17 g | 13.17 g | 13.17 g |
NGDE | 4.55 g | 4.55 g | 4.55 g | 4.55 g |
Sample | I. Test | II. Test | III. Test | Average | Standard Deviation |
---|---|---|---|---|---|
Compressive strength (MPa) | |||||
Epoxy | 73 | 60 | 66 | 66 | 5 |
G1 | 72 | 75 | 70 | 73 | 2 |
G5 | 68 | 77 | 71 | 72 | 4 |
G10 | 74 | 75 | 69 | 73 | 2 |
Tensile strength (MPa) | |||||
Epoxy | 51 | 25 | 40 | 39 | 13 |
G1 | 41 | 36 | 36 | 38 | 3 |
G5 | 20 | 20 | 24 | 22 | 2 |
G10 | 20 | 19 | 26 | 22 | 4 |
Young’s modulus (MPa) | |||||
Epoxy | 2951 | 1567 | 1996 | 2171 | 709 |
G1 | 3022.63 | 2933 | 2678 | 2878 | 179 |
G5 | 2143.8 | 2140 | 3159 | 2481 | 587 |
G10 | 3796.83 | 3779 | 3596 | 3724 | 111 |
Thermal conductivity (W/m·K) | |||||
Epoxy | 0.2220 | 0.2245 | 0.2223 | 0.2229 | 0.0011 |
G1 | 0.2786 | 0.2786 | 0.2778 | 0.2783 | 0.0004 |
G5 | 0.4951 | 0.4951 | 0.4657 | 0.4853 | 0.0139 |
G10 | 0.5807 | 0.5807 | 0.5339 | 0.5651 | 0.0221 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gül, A.; Kamali, A.R. Effect of Mechanically Exfoliated Graphite Flakes on Morphological, Mechanical, and Thermal Properties of Epoxy. J. Compos. Sci. 2024, 8, 466. https://doi.org/10.3390/jcs8110466
Gül A, Kamali AR. Effect of Mechanically Exfoliated Graphite Flakes on Morphological, Mechanical, and Thermal Properties of Epoxy. Journal of Composites Science. 2024; 8(11):466. https://doi.org/10.3390/jcs8110466
Chicago/Turabian StyleGül, Ayşenur, and Ali Reza Kamali. 2024. "Effect of Mechanically Exfoliated Graphite Flakes on Morphological, Mechanical, and Thermal Properties of Epoxy" Journal of Composites Science 8, no. 11: 466. https://doi.org/10.3390/jcs8110466
APA StyleGül, A., & Kamali, A. R. (2024). Effect of Mechanically Exfoliated Graphite Flakes on Morphological, Mechanical, and Thermal Properties of Epoxy. Journal of Composites Science, 8(11), 466. https://doi.org/10.3390/jcs8110466