Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Filler Production
2.2.2. Composite Production
2.2.3. Filler Precursors and Filler Characterization
2.2.4. Composite Characterization
3. Results and Discussion
3.1. Filler Characterization
3.2. Composite Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohanty, A.K.; Vivekanandhan, S.; Pin, J.-M.; Misra, M. Composites from renewable and sustainable resources: Challenges and innovations. Science 2018, 362, 536–542. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Franco, P.; Valadez-Gonzalez, A. A study of the mechanical properties of short natural-fiber reinforced composites. Compos. Part B Eng. 2005, 36, 597–608. [Google Scholar] [CrossRef]
- Piatti, E.; Torsello, D.; Gavello, G.; Ghigo, G.; Gerbaldo, R.; Bartoli, M.; Duraccio, D. Tailoring the Magnetic and Electrical Properties of Epoxy Composites Containing Olive-Derived Biochar through Iron Modification. Nanomaterials 2023, 13, 2326. [Google Scholar] [CrossRef] [PubMed]
- Ahmetli, G.; Kocaman, S.; Ozaytekin, I.; Bozkurt, P. Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources. Polym. Compos. 2013, 34, 500–509. [Google Scholar] [CrossRef]
- Peças, P.; Carvalho, H.; Salman, H.; Leite, M. Natural fibre composites and their applications: A review. J. Compos. Sci. 2018, 2, 66. [Google Scholar] [CrossRef]
- Bartoli, M.; Duraccio, D.; Faga, M.G.; Piatti, E.; Torsello, D.; Ghigo, G.; Malucelli, G. Mechanical, electrical, thermal and tribological behavior of epoxy resin composites reinforced with waste hemp-derived carbon fibers. J. Mater. Sci. 2022, 57, 14861–14876. [Google Scholar] [CrossRef]
- Manaia, J.P.; Manaia, A.T.; Rodriges, L. Industrial hemp fibers: An overview. Fibers 2019, 7, 106. [Google Scholar] [CrossRef]
- Ruano, G.; Bellomo, F.; Lopez, G.; Bertuzzi, A.; Nallim, L.; Oller, S. Mechanical behaviour of cementitious composites reinforced with bagasse and hemp fibers. Constr. Build. Mater. 2020, 240, 117856. [Google Scholar] [CrossRef]
- Ahmed, A.F.; Islam, M.Z.; Mahmud, M.S.; Sarker, M.E.; Islam, M.R. Hemp as a potential raw material toward a sustainable world: A review. Heliyon 2022, 8, e08753. [Google Scholar] [CrossRef]
- Marrot, L.; Lefeuvre, A.; Pontoire, B.; Bourmaud, A.; Baley, C. Analysis of the hemp fiber mechanical properties and their scattering (Fedora 17). Ind. Crops Prod. 2013, 51, 317–327. [Google Scholar] [CrossRef]
- Shahzad, A. Hemp fiber and its composites–a review. J. Compos. Mater. 2012, 46, 973–986. [Google Scholar] [CrossRef]
- Stevulova, N.; Cigasova, J.; Purcz, P.; Schwarzova, I.; Kacik, F.; Geffert, A. Water absorption behavior of hemp hurds composites. Materials 2015, 8, 2243–2257. [Google Scholar] [CrossRef]
- Chang, B.P.; Rodriguez-Uribe, A.; Mohanty, A.K.; Misra, M. A comprehensive review of renewable and sustainable biosourced carbon through pyrolysis in biocomposites uses: Current development and future opportunity. Renew. Sustain. Energy Rev. 2021, 152, 111666. [Google Scholar] [CrossRef]
- Henderson, K.; Loreau, M. A model of Sustainable Development Goals: Challenges and opportunities in promoting human well-being and environmental sustainability. Ecol. Model. 2023, 475, 110164. [Google Scholar] [CrossRef]
- Dissanayake, P.D.; You, S.; Igalavithana, A.D.; Xia, Y.; Bhatnagar, A.; Gupta, S.; Kua, H.W.; Kim, S.; Kwon, J.-H.; Tsang, D.C. Biochar-based adsorbents for carbon dioxide capture: A critical review. Renew. Sustain. Energy Rev. 2020, 119, 109582. [Google Scholar] [CrossRef]
- Haleem, N.; Khattak, A.; Jamal, Y.; Sajid, M.; Shahzad, Z.; Raza, H. Development of poly vinyl alcohol (PVA) based biochar nanofibers for carbon dioxide (CO2) adsorption. Renew. Sustain. Energy Rev. 2022, 157, 112019. [Google Scholar] [CrossRef]
- Liu, W.-J.; Jiang, H.; Yu, H.-Q. Development of biochar-based functional materials: Toward a sustainable platform carbon material. Chem. Rev. 2015, 115, 12251–12285. [Google Scholar] [CrossRef]
- Zhang, C.; Khorshidi, H.; Najafi, E.; Ghasemi, M. Fresh, mechanical and microstructural properties of alkali-activated composites incorporating nanomaterials: A comprehensive review. J. Clean. Prod. 2023, 384, 135390. [Google Scholar] [CrossRef]
- Cordon, H.C.F.; Cagnoni, F.C.; Ferreira, F.F. Comparison of physical and mechanical properties of civil construction plaster and recycled waste gypsum from São Paulo, Brazil. J. Build. Eng. 2019, 22, 504–512. [Google Scholar] [CrossRef]
- Abbas, M.; Jeon, H.-Y. Generation, Development and Modifications of Natural Fibers; BoD–Books on Demand: Norderstedt, Germany, 2020. [Google Scholar]
- Patel, R.V.; Yadav, A.; Winczek, J. Physical, mechanical, and thermal properties of natural fiber-reinforced epoxy composites for construction and automotive applications. Appl. Sci. 2023, 13, 5126. [Google Scholar] [CrossRef]
- Ismail, S.O.; Akpan, E.; Dhakal, H.N. Review on natural plant fibres and their hybrid composites for structural applications: Recent trends and future perspectives. Compos. Part C Open Access 2022, 9, 100322. [Google Scholar] [CrossRef]
- Syduzzaman, M.; Al Faruque, M.A.; Bilisik, K.; Naebe, M. Plant-based natural fibre reinforced composites: A review on fabrication, properties and applications. Coatings 2020, 10, 973. [Google Scholar] [CrossRef]
- Pickering, K. Properties and Performance of Natural-Fibre Composites; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Sun, Z.; Xu, L.; Chen, Z.; Wang, Y.; Tusiime, R.; Cheng, C.; Zhou, S.; Liu, Y.; Yu, M.; Zhang, H. Enhancing the mechanical and thermal properties of epoxy resin via blending with thermoplastic polysulfone. Polymers 2019, 11, 461. [Google Scholar] [CrossRef] [PubMed]
- Kerni, L.; Singh, S.; Patnaik, A.; Kumar, N. A review on natural fiber reinforced composites. Mater. Today Proc. 2020, 28, 1616–1621. [Google Scholar] [CrossRef]
- Haramina, T.; Hadžić, N.; Keran, Z. Epoxy Resin Biocomposites Reinforced with flax and hemp fibers for marine applications. J. Mar. Sci. Eng. 2023, 11, 382. [Google Scholar] [CrossRef]
- Dahal, R.K.; Acharya, B.; Dutta, A. The Interaction Effect of the Design Parameters on the Water Absorption of the Hemp-Reinforced Biocarbon-Filled Bio-Epoxy Composites. Int. J. Mol. Sci. 2023, 24, 6093. [Google Scholar] [CrossRef]
- Soni, P.; Sinha, S. Fiber and future: Unleashing the power of industrial hemp waste through epoxy composites. Polym. Compos. 2024, 45, 413–423. [Google Scholar] [CrossRef]
- Bollino, F.; Giannella, V.; Armentani, E.; Sepe, R. Mechanical behavior of chemically-treated hemp fibers reinforced composites subjected to moisture absorption. J. Mater. Res. Technol. 2023, 22, 762–775. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.A.; Le, T.M. A review of recent developments in natural fibre composites and their mechanical performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Balčiūnas, G.; Vėjelis, S.; Vaitkus, S.; Kairytė, A. Physical properties and structure of composite made by using hemp hurds and different binding materials. Procedia Eng. 2013, 57, 159–166. [Google Scholar] [CrossRef]
- Cigasova, J.; Stevulova, N.; Junak, J. Properties monitoring of fibrous composites based on hemp hurds with different mean particle size. Pollack Period. 2013, 8, 41–46. [Google Scholar] [CrossRef]
- Caprino, G.; Carrino, L.; Durante, M.; Langella, A.; Lopresto, V. Low impact behaviour of hemp fibre reinforced epoxy composites. Compos. Struct. 2015, 133, 892–901. [Google Scholar] [CrossRef]
- Katiyar, J.K.; Sinha, S.K.; Kumar, A. Effects of carbon fillers on the tribological and mechanical properties of an epoxy-based polymer (SU-8). Tribol.-Mater. Surf. Interfaces 2016, 10, 33–44. [Google Scholar] [CrossRef]
- Miriţoiu, C.M.; Stănescu, M.M.; Burada, C.O.; Bolcu, D.; Pădeanu, A.; Bolcu, A. Comparisons between some composite materials reinforced with hemp fibers. Mater. Today Proc. 2019, 12, 499–507. [Google Scholar] [CrossRef]
- Bartoli, M.; Giorcelli, M.; Rosso, C.; Rovere, M.; Jagdale, P.; Tagliaferro, A. Influence of commercial biochar fillers on brittleness/ductility of epoxy resin composites. Appl. Sci. 2019, 9, 3109. [Google Scholar] [CrossRef]
- ISO 527-2:2012; Plastics–Determination of Tensile Properties–Part 2: Test Conditions for Moulding and Extrusion Plastics. Korean Standard Association: Seoul, Republic of Korea, 2013.
- UNI EN ISO 178:2019; Materie Plastiche—Determinazione Delle Proprietà di Flessione. ISO: Geneva, Switzerland, 2019.
- Tagliaferro, A.; Rovere, M.; Padovano, E.; Bartoli, M.; Giorcelli, M. Introducing the novel mixed gaussian-lorentzian lineshape in the analysis of the raman signal of biochar. Nanomaterials 2020, 10, 1748. [Google Scholar] [CrossRef]
- Bartoli, M.; Nasir, M.A.; Jagdale, P.; Passaglia, E.; Spiniello, R.; Rosso, C.; Giorcelli, M.; Rovere, M.; Tagliaferro, A. Influence of pyrolytic thermal history on olive pruning biochar and related epoxy composites mechanical properties. J. Compos. Mater. 2020, 54, 1863–1873. [Google Scholar] [CrossRef]
- Arizzi, A.; Cultrone, G.; Brümmer, M.; Viles, H. A chemical, morphological and mineralogical study on the interaction between hemp hurds and aerial and natural hydraulic lime particles: Implications for mortar manufacturing. Constr. Build. Mater. 2015, 75, 375–384. [Google Scholar] [CrossRef]
- Di Maro, M.; Faga, M.G.; Pedraza, R.; Malucelli, G.; Bartoli, M.; Gomez d’Ayala, G.; Duraccio, D. Effect of Hemp Hurd Biochar and Humic Acid on the Flame Retardant and Mechanical Properties of Ethylene Vinyl Acetate. Polymers 2023, 15, 1411. [Google Scholar] [CrossRef]
- Ferrari, A.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095. [Google Scholar] [CrossRef]
- Dayo, A.Q.; Wang, J.; Wang, A.-R.; Lv, D.; Zegaoui, A.; Derradji, M.; Liu, W.-B. Mechanical and thermal properties of a room temperature curing epoxy resin and related hemp fibers reinforced composites using a novel in-situ generated curing agent. Mater. Chem. Phys. 2018, 203, 293–301. [Google Scholar]
- Neves, A.C.C.; Rohen, L.A.; Mantovani, D.P.; Carvalho, J.P.; Vieira, C.M.F.; Lopes, F.P.; Simonassi, N.T.; da Luz, F.S.; Monteiro, S.N. Comparative mechanical properties between biocomposites of Epoxy and polyester matrices reinforced by hemp fiber. J. Mater. Res. Technol. 2020, 9, 1296–1304. [Google Scholar] [CrossRef]
Moisture (wt.%) | Hemicellulose (wt.%) | Cellulose (wt.%) | Lignin (wt.%) | Ash (wt.%) | |
---|---|---|---|---|---|
Hemp fibers | 5.3 | 5.4 | 55.5 | 32.3 | 1.5 |
Hemp hurds | 3.5 | 12.5 | 43.4 | 38.5 | 2.1 |
Elemental Composition (wt.%) | ||
---|---|---|
C | O | |
Hemp fibers | 67 | 33 |
Hemp hurds | 74 | 26 |
D Peak Raman Shift (cm−1) | G Peak Raman Shift (cm−1) | ID/IG | La (Å) | |
---|---|---|---|---|
Hemp fibers | 1366 | 1583 | 2.1 | 19 |
Hemp hurds | 1338 | 1587 | 1.8 | 18 |
Tensile Test | Elastic Modulus (GPa) | UTS (MPa) | Elongation at Break (%) | Toughness (MJ/m3) |
---|---|---|---|---|
Epoxy | 0.5 ± 0.1 | 10.2 ± 0.7 | 8.4 ± 2.6 | 0.73 ± 0.25 |
Hemp hurds 1 wt.% | 0.4 ± 0.1 | 8.4 ± 0.1 | 11.3 ± 0.1 | 0.79 ± 0.08 |
Hemp hurds 3 wt.% | 0.6 ± 0.1 | 10.5 ± 0.1 | 6.0 ± 1.6 | 0.53 ± 0.16 |
Hemp hurds 5 wt.% | 0.2 ± 0.1 | 10.4 ± 0.5 | 6.5 ± 0.3 | 0.58 ± 0.05 |
Hemp hurds 10 wt.% | 0.7 ± 0.1 | 10.3 ± 1.0 | 4.3 ± 0.7 | 0.35 ± 0.09 |
ρ | 0.909 | 0.303 | −0.865 | −0.865 |
Tensile Test | Elastic Modulus (GPa) | UTS (MPa) | Elongation at Break (%) | Toughness (MJ/m3) |
---|---|---|---|---|
Epoxy | 0.5 ± 0.1 | 10.2 ± 0.7 | 8.4 ± 2.6 | 0.73 ± 0.25 |
Hemp fibers 1 wt.% | 0.5 ± 0.1 | 11.9 ± 0.1 | 8.2 ± 0.5 | 0.82 ± 0.02 |
Hemp fibers 3 wt.% | 0.2 ± 0.1 | 8.9 ± 0.3 | 12.3 ± 2.0 | 0.83 ± 0.13 |
ρ | −0.632 | −0.632 | 0.743 | 0.287 |
Tensile Test | Elastic Modulus (GPa) | UTS (MPa) | Elongation at Break (%) | Toughness (MJ/m3) |
---|---|---|---|---|
Epoxy | 0.5 ± 0.1 | 10.2 ± 0.7 | 8.4 ± 2.6 | 0.73 ± 0.25 |
1 wt.% 1:1 | 1.0 ± 0.1 | 19.6 ± 1.2 | 5.9 ± 0.4 | 1.01 ± 0.08 |
3 wt.% 1:1 | 0.9 ± 0.1 | 19.7 ± 0.4 | 5.8 ± 1.1 | 0.95 ± 0.21 |
5 wt.% 1:1 | 1.1 ± 0.1 | 21.0 ± 1.2 | 3.7 ± 0.3 | 0.61 ± 0.09 |
10 wt.% 1:1 | 0.7 ± 0.1 | 11.4 ± 0.9 | 3.3 ± 0.2 | 0.29 ± 0.02 |
ρ | −0.310 | −0.291 | −0.937 | −0.867 |
Tensile Test | Elastic Modulus (GPa) | UTS (MPa) | Elongation at Break (%) | Toughness (MJ/m3) |
---|---|---|---|---|
Epoxy | 0.5 ± 0.1 | 10.2 ± 0.7 | 8.4 ± 2.6 | 0.73 ± 0.25 |
1 wt.% 3:1 | 0.9 ± 0.1 | 17.5 ± 0.8 | 4.4 ± 1.2 | 0.70 ± 0.21 |
3 wt.% 3:1 | 0.8 ± 0.1 | 16.3 ± 1.6 | 4.3 ± 0.3 | 0.53 ± 0.08 |
5 wt.% 3:1 | 1.0 ± 0.1 | 18.5 ± 1.2 | 3.2 ± 0.3 | 0.43 ± 0.06 |
10 wt.% 3:1 | 1.3 ± 0.1 | 19.8 ± 0.4 | 2.2 ± 0.1 | 0.29 ± 0.01 |
ρ | 0.843 | 0.775 | −0.836 | −0.659 |
Flexural Test | Elastic Modulus (GPa) | Maximum Flexural Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
Epoxy | 0.3 ± 0.1 | 10.6 ± 0.3 | - |
Hemp hurds 1 wt.% | 0.1 ± 0.1 | 5.6 ± 0.1 | - |
Hemp hurds 3 wt.% | 0.3 ± 0.1 | 10.2 ± 0.7 | - |
Hemp hurds 5 wt.% | 0.4 ± 0.1 | 12.9 ± 1.2 | - |
Hemp hurds 10 wt.% | 0.4 ± 0.1 | 12.4 ± 0.1 | - |
ρ | 0.812 | 0.689 | - |
Flexural Test | Elastic Modulus (GPa) | Maximum Flexural Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
Epoxy | 0.3 ± 0.1 | 10.6 ± 0.3 | - |
Hemp fibers 1 wt.% | 0.3 ± 0.1 | 12.3 ± 0.8 | - |
Hemp fibers 3 wt.% | 0.1 ± 0.1 | 5.5 ± 1.3 | - |
ρ | −0.478 | −0.773 | - |
Flexural Test | Elastic Modulus (GPa) | Maximum Flexural Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
Epoxy | 0.3 ± 0.1 | 10.6 ± 0.3 | - |
1 wt.% 1:1 | 1.3 ± 0.1 | 34.4 ± 2.1 | 6.7 ± 0.9 |
3 wt.% 1:1 | 1.4 ± 0.1 | 36.1 ± 0.8 | 7.6 ± 0.8 |
5 wt.% 1:1 | 1.1 ± 0.1 | 30.4 ± 0.3 | 6.7 ± 0.1 |
10 wt.% 1:1 | 0.7 ± 0.1 | 19.6 ± 0.4 | 7.1 ± 0.1 |
ρ | −0.801 | −0.773 | - |
Flexural Test | Elastic Modulus (GPa) | Maximum Flexural Strength (MPa) | Elongation at Break (%) |
---|---|---|---|
Epoxy | 0.3 ± 0.1 | 10.6 ± 0.3 | - |
1 wt.% 3:1 | 1.6 ± 0.1 | 43.2 ± 1.0 | 8.4 ± 0.7 |
3 wt.% 3:1 | 1.3 ± 0.1 | 34.3 ± 2.1 | 8.1 ± 1.3 |
5 wt.% 3:1 | 1.2 ± 0.2 | 33.3 ± 5.7 | 7.4 ± 2.3 |
10 wt.% 3:1 | 1.5 ± 0.1 | 36.4 ± 1.1 | 4.8 ± 0.3 |
ρ | −0.801 | −0.773 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zecchi, S.; Cristoforo, G.; Bartoli, M.; Rosso, C.; Tagliaferro, A. Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening. J. Compos. Sci. 2024, 8, 473. https://doi.org/10.3390/jcs8110473
Zecchi S, Cristoforo G, Bartoli M, Rosso C, Tagliaferro A. Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening. Journal of Composites Science. 2024; 8(11):473. https://doi.org/10.3390/jcs8110473
Chicago/Turabian StyleZecchi, Silvia, Giovanni Cristoforo, Mattia Bartoli, Carlo Rosso, and Alberto Tagliaferro. 2024. "Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening" Journal of Composites Science 8, no. 11: 473. https://doi.org/10.3390/jcs8110473
APA StyleZecchi, S., Cristoforo, G., Bartoli, M., Rosso, C., & Tagliaferro, A. (2024). Hemp Waste Stream Valorization Through Pyrolytic Carbonization for Epoxy Composite Strengthening. Journal of Composites Science, 8(11), 473. https://doi.org/10.3390/jcs8110473