Fatigue Failure of Adhesive Joints in Fiber-Reinforced Composite Material Under Step/Variable Amplitude Loading—A Critical Literature Review
Abstract
:1. Introduction
- Neglecting to factor in the load history;
- Inability to consider the loading sequence when determining fatigue failure;
- Disregarding the impact of load interaction effects.
- Substantial strain often leads to early development of initial microscopic cracks. These tiny fissures then expand under less intense cycles, causing accelerated deterioration compared with conditions with consistent stress levels.
- An increased number of load cycles on a specimen can lead to surface roughening during repeated plastic deformation. This roughening process generates additional locations where cracks could be initiated under lower load cycles.
- It should be emphasized that the accumulation of damage is not a linear process.
2. Fatigue Damage Accumulation Models
- Linear damage rules (LDRs);
- Nonlinear damage curve and two-stage linearization models;
- Fatigue damage accumulation theories are based on life curve modification methods;
- Fatigue damage accumulation approaches are based on crack growth concepts;
- Fatigue damage accumulation theories are based on continuum damage mechanics;
- Material degradation-based model;
- Fatigue damage accumulation theory based on energy.
2.1. Linear Damage Rule (LDR) Models
2.2. Non-Linear Damage Curve and Two-Stage Linearization Models
2.3. Non-Linear Damage Accumulation Models Based on Wöhler (S-N) Curve
2.4. Life Curve or Iso-Damage Line Modification Models
- Models based on the Corten–Dolan and Freudenthal–Heller models;
- Models based on the iso-damage line.
2.4.1. Models Based on the Corten–Dolan and Freudenthal–Heller Models
2.4.2. Life Modification Models Based on Iso-Damage Lines
2.5. Crack-Growth-Based Fatigue Damage Accumulation Models
- Crack initiation;
- Stable crack growth;
- Unstable crack growth.
2.6. Continuum Damage Mechanics-Based Models
2.7. Material Degradation Based Models
2.8. Energy-Based Damage Rule
3. Fatigue Life Prediction of Adhesive Joint in FRP Composite Under Step/Variable Fatigue Loading
3.1. Numerical Model
3.2. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Miner, M.A. Cumulative Damage in Fatigue. J. Appl. Mech. 1945, 12, A159–A164. [Google Scholar] [CrossRef]
- Sarfaraz Khabbaz, R. Fatigue Life Prediction of Adhesively-Bonded Fiber-Reinforced Polymer Structural Joints Under Spectrum Loading Patterns; EPFL: Lausanne, Switzerland, 2012; Volume 5573, p. 219. [Google Scholar]
- Vassilopoulos, A.P.; Shahverdi, M.; Keller, T. Mode I fatigue and fracture behavior of adhesively-bonded pultruded glass fiber-reinforced polymer (GFRP) composite joints. In Fatigue and Fracture of Adhesively-Bonded Composite Joints; Woodhead Publishing: Sawston, UK, 2015; pp. 149–186. [Google Scholar] [CrossRef]
- Vassilopoulos, A.P. Fatigue and Fracture of Adhesively-Bonded Composite Joints; Elsevier: Amsterdam, The Netherlands, 2014; Volume 52. [Google Scholar]
- Vassilopoulos, A.P.; Nijssen, R.P. Fatigue life prediction under realistic loading conditions. In Fatigue Life Prediction of Composites and Composite Structures; Woodhead Publishing: Sawston, UK, 2020; pp. 387–423. [Google Scholar] [CrossRef]
- Fatemi, A.; Yang, L. Cumulative fatigue damage and life prediction theories. Int. J. Fatigue 1998, 20, 9–34. [Google Scholar] [CrossRef]
- Lv, Z.; Huang, H.Z.; Zhu, S.P.; Gao, H.; Zuo, F. A modified nonlinear fatigue damage accumulation model. Int. J. Damage Mech. 2014, 24, 168–181. [Google Scholar] [CrossRef]
- Hectors, K.; De Waele, W. Cumulative damage and life prediction models for high-cycle fatigue of metals: A review. Metals 2021, 11, 204. [Google Scholar] [CrossRef]
- Marco, S.M.; Starkey, W.L. A Concept of Fatigue Damage. J. Fluids Eng. 1954, 76, 627–632. [Google Scholar] [CrossRef]
- Langer, B.F. Fatigue failure from stress cycles of varying amplitude. Asme J. Appl. Mech. 1937, 59, A160–A162. [Google Scholar] [CrossRef]
- Manson, S.S.; Halford, G.R. Practical implementation of the double linear damage rule and damage curve approach for treating cumulative fatigue damage. Int. J. Fract. 1981, 17, 169–192. [Google Scholar] [CrossRef]
- Miller, K.J. Metal Fatigue—A New Perspective. In Topics in Fracture and Fatigue; Springer: New York, NY, USA, 1992; pp. 309–330. [Google Scholar] [CrossRef]
- Corten, H.T.; Dolan, T. Cumulative fatigue damage. In Proceedings of the International Conference on Fatigue of Metals, London, UK, 10–14 September 1956; Institution of Mechanical Engineering and American Society of Mechanical Engineers: London, UK, 1956; Volume 1, pp. 235–242. [Google Scholar]
- Kwofie, S.; Rahbar, N. A fatigue driving stress approach to damage and life prediction under variable amplitude loading. Int. J. Damage Mech. 2013, 22, 393–404. [Google Scholar] [CrossRef]
- Zuo, F.J.; Huang, H.Z.; Zhu, S.P.; Lv, Z.; Gao, H. Fatigue life prediction under variable amplitude loading using a non-linear damage accumulation model. Int. J. Damage Mech. 2015, 24, 767–784. [Google Scholar] [CrossRef]
- Aeran, A.; Siriwardane, S.; Mikkelsen, O.; Langen, I. A new nonlinear fatigue damage model based only on S-N curve parameters. Int. J. Fatigue 2017, 103, 327–341. [Google Scholar] [CrossRef]
- Si-Jian, L.; Wei, L.; Da-Qing, T.; Jun-Bi, L. A new fatigue damage accumulation model considering loading history and loading sequence based on damage equivalence. Int. J. Damage Mech. 2017, 27, 707–728. [Google Scholar] [CrossRef]
- Subramanyan, S. A Cumulative Damage Rule Based on the Knee Point of the S-N Curve. J. Eng. Mater. Technol. 1976, 98, 316–321. [Google Scholar] [CrossRef]
- Epaarachchi, J.A.; Clausen, P.D. A new cumulative fatigue damage model for glass fibre reinforced plastic composites under step/discrete loading. Compos. Part Appl. Sci. Manuf. 2005, 36, 1236–1245. [Google Scholar] [CrossRef]
- Wheeler, O.E. Spectrum Loading and Crack Growth. J. Basic Eng. 1972, 94, 181–186. [Google Scholar] [CrossRef]
- Willenborg, J.D.; Engle, R.M.; Wood, H.A. A Crack Growth Retardation Model Using an Effective Stress Concept; Air Force Flight Dynamics Laboratory: Greenbrier, OH, USA, 1971. [Google Scholar] [CrossRef]
- Wolf, E. Fatigue crack closure under cyclic tension. Eng. Fract. Mech. 1970, 2, 37–45. [Google Scholar] [CrossRef]
- Elber, W. The Significance of Fatigue Crack Closure. In Damage Tolerance in Aircraft Structures; ASTM International: West Conshohocken, PA, USA, 1971; Volume 486, pp. 230–242. [Google Scholar] [CrossRef]
- Miller, K. The behavior of short fatigue cracks and their initiation. Mech. Behav. -Mater.- Proc. Fifth Int. Conf. 1987, 1, 1357–1381. [Google Scholar]
- Bao-Tong, M.; Laird, C. Overview of fatigue behavior in copper single crystals—II. Population, size distribution and growth kinetics of Stage I cracks for tests at constant strain amplitude. Acta Metall. 1989, 37, 337–348. [Google Scholar] [CrossRef]
- Mikheevskiy, S.; Glinka, G. The UniGrow Fatigue Crack Growth Model for Spectrum Loading. Theor. Appl. Fract. Mech. 2015, 79, 25–33. [Google Scholar] [CrossRef]
- Noroozi, A. Development of a Two-Parameter Model (Kmax, ΔK) for Fatigue Crack Growth Analysis. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2007. [Google Scholar]
- Chaboche, J.L. Continuum Damage Mechanics: Part II—Damage Growth, Crack Initiation, and Crack Growth. J. Appl. Mech. 1988, 55, 65–72. [Google Scholar] [CrossRef]
- Chaboche, J.L. Continuum Damage Mechanics: Part I—General Concepts. J. Appl. Mech. 1988, 55, 59–64. [Google Scholar] [CrossRef]
- Xiao, Y.C.; Li, S.; Gao, Z. A continuum damage mechanics model for high cycle fatigue. Int. J. Fatigue 1998, 20, 503–508. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Ellingwood, B. A new CDM-based approach to structural deterioration. Int. J. Solids Struct. 1999, 36, 1757–1779. [Google Scholar] [CrossRef]
- Oller, S.; Salomón, O.; Oñate, E. A continuum mechanics model for mechanical fatigue analysis. Comput. Mater. Sci. 2005, 32, 175–195. [Google Scholar] [CrossRef]
- Dattoma, V.; Giancane, S.; Nobile, R.; Panella, F. Fatigue life prediction under variable loading based on a new non-linear continuum damage mechanics model. Int. J. Fatigue 2006, 28, 89–95. [Google Scholar] [CrossRef]
- Mesmacque, G.; Garcia, S.; Amrouche, A.; Rubiogonzalez, C. Sequential law in multiaxial fatigue, a new damage indicator. Int. J. Fatigue 2005, 27, 461–467. [Google Scholar] [CrossRef]
- Duyi, Y.; Zhenlin, W. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of cyclic plastic strain energy during fatigue. Int. J. Fatigue 2001, 23, 679–687. [Google Scholar] [CrossRef]
- Böhm, E.; Kurek, M.; Junak, G.; Cieśla, M.; Łagoda, T. Accumulation of Fatigue Damage Using Memory of the Material. Procedia Mater. Sci. 2014, 3, 2–7. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, H.Z.; Zhou, J.; Li, Y.F. A New Cumulative Fatigue Damage Rule Based on Dynamic Residual S-N Curve and Material Memory Concept. Metals 2018, 8, 456. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, H.Z.; Barnhart, M.V.; Huang, G.; Li, Y.F. A novel non-linear cumulative fatigue damage model based on the degradation of material memory. Int. J. Damage Mech. 2019, 29, 610–625. [Google Scholar] [CrossRef]
- Feltner Jo Dean, C.E.M. Microplastic Strain Hysteresis Energy as a Criterion for Fatigue Fracture. J. Basic Eng. 1961, 83, 15–22. [Google Scholar] [CrossRef]
- Noroozi, A.; Glinka, G.; Lambert, S. Prediction of fatigue crack growth under constant amplitude loading and a single overload based on elasto-plastic crack tip stresses and strains. Eng. Fract. Mech. 2008, 75, 188–206. [Google Scholar] [CrossRef]
- Zuchowski, R. Specific strain work as both failure criterion and material damage measure. Res. Mech. 1989, 27, 309–322. [Google Scholar]
- Lefebvre, D.; Neale, K.W.; Ellyin, F. A Criterion for Low-Cycle Fatigue Failure Under Biaxial States of Stress. J. Eng. Mater. Technol. 1981, 103, 1–6. [Google Scholar] [CrossRef]
- Leis, B.N. A Nonlinear History-Dependent Damage Model for Low Cycle Fatigue. Low Cycle Fatigue 1988, 143–159. [Google Scholar] [CrossRef]
- Radhakrishnan, V.M. An analysis of low cycle fatigue based on hysteresis energy. Fatigue Fract. Eng. Mater. Struct. 1980, 3, 75–84. [Google Scholar] [CrossRef]
- French, H. Fatigue and hardening of Steels. Trans. Am. Soc. Steel Treat. 1933, 21, 899. [Google Scholar]
- Kommers, J. The effect of overstressing and understressing in fatigue. Am. Soc. Test. Mater. 1938, 38, 249–268. [Google Scholar]
- Gaßner, E. Festigkeitsversuche mit wiederholter Beanspruchung im Flugzeugbau. Luftwissen 1939, 6, 61–64. [Google Scholar]
- Machlin, E.S. Dislocation Theory of the Fatigue of Metals; NASA Technical Reports: Washington, DC, USA, 1949. [Google Scholar]
- Coffin, L.F. Design Aspects of High-Temperature Fatigue with Particular Reference to Thermal Stresses. J. Fluids Eng. 1956, 78, 527–531. [Google Scholar] [CrossRef]
- Baldwin, E.E.; Sokol, G.J.; Coffin, L.F. Cyclic Strain Fatigue Studies on AISI Type 347 Stainless Steel; Knolls Atomic Power Lab.: Schenectady, NY, USA, 1957. [Google Scholar]
- Havard, D.G.; Topper, T.H. New equipment for cyclic biaxial testing—The behavior of the equipment and the modes of failure of the specimens are described and some test data are presented. Exp. Mech. 1969, 9, 550–557. [Google Scholar] [CrossRef]
- Gowda, C.V.; Topper, T.H. Performance of miniature resistance strain gages in low-cycle fatigue—Paper reports investigation of the performance characteristics of miniature resistance strain gages subjected to cyclic strains of high amplitude. Exp. Mech. 1970, 10, 27N–38N. [Google Scholar] [CrossRef]
- Gowda, C.V.; Topper, T.H. Cyclic-deformation behavior of notched mild-steel plates in plane stress—Stress and strain responses of thin mild-steel plates with a central circular hole due to cyclic loading into the plastic-deformation range. Exp. Mech. 1972, 12, 359–367. [Google Scholar] [CrossRef]
- Watson, P.; Topper, T.H. Fatigue-damage evaluation for mild steel incorporating mean stress and overload effects—The effects of mean stress and overstrain on the fatigue life of mild steel are demonstrated. These effects are then incorporated in a fatigue-damage evaluation technique. Exp. Mech. 1972, 12, 11–17. [Google Scholar] [CrossRef]
- Abdel-Raouf, H.; Plumtree, A.; Topper, T.H. Temperature and strain rate dependence of cyclic deformation response and damage accumulation in ofhc copper and 304 stainless steel. Metall. Trans. 1974, 5, 267–277. [Google Scholar] [CrossRef]
- Miller, K. An experimental linear cumulative-damage law. J. Strain Anal. 1970, 5, 177–184. [Google Scholar] [CrossRef]
- Jeans, L.; Grimes, G.; Kan, H. Fatigue sensitivity of composite structure for fighter aircraft. J. Aircr. 1983, 20, 102–110. [Google Scholar] [CrossRef]
- Yang, J.; Du, S. An exploratory study into the fatigue of composites under spectrum loading. J. Compos. Mater. 1983, 17, 511–526. [Google Scholar] [CrossRef]
- Jones, T.; Williams, N. Influence of section design and loading regime on the fatigue properties of spot welded/adhesive bonded box sections. In Proceedings of the IAVD Congress on Vehicle Design and Components, Geneva, Switzerland, 3–6 March 1986; pp. 262–273. [Google Scholar]
- Erpolat, S.; Ashcroft, I.A.; Crocombe, A.D.; Abdel-Wahab, M.M. A study of adhesively bonded joints subjected to constant and variable amplitude fatigue. Int. J. Fatigue 2004, 26, 1189–1196. [Google Scholar] [CrossRef]
- Richart, F.; Newmark, N. An hypothesis for the determination of cumulative damage in fatigue. In Selected Papers By Nathan M. Newmark: Civil Engineering Classics; ASCE: Reston, VA, USA, 1948; pp. 279–312. [Google Scholar]
- Grover, H.J. An Observation Concerning the Cycle Ratio in Cumulative Damage. In Symposium on Fatigue of Aircraft Structures; ASTM International: Reston, VA, USA, 1960. [Google Scholar] [CrossRef]
- Manson, S.S. Interfaces Between Fatigue, Creep, and Fracture. Int. J. Fract. Mech. 1966, 2, 327–363. [Google Scholar] [CrossRef]
- Manson, S.S.; Freche, J.C.; Ensign, C.R. Application of a double linear damage rule to cumulative fatigue. In Fatigue Crack Propagation; National Aeronautics and Space Administration: Washington, DC, USA, 1967; pp. 329–384. [Google Scholar] [CrossRef]
- Manson, S.; Halford, G. Complexities of High Temperature Metal Fatigue: Some Steps Toward Understanding; NASA Technical Memorandum, National Aeronautics and Space Administration: Washington, DC, USA, 1983. Available online: https://ntrs.nasa.gov/citations/19840006473 (accessed on 17 September 2024).
- Schönborn, S.; Kaufmann, H.; Sonsino, C.M.; Heim, R. Cumulative Damage of High-strength Cast Iron Alloys for Automotive Applications. Procedia Eng. 2015, 101, 440–449. [Google Scholar] [CrossRef]
- Theil, N. Fatigue life prediction method for the practical engineering use taking in account the effect of the overload blocks. Int. J. Fatigue 2016, 90, 23–35. [Google Scholar] [CrossRef]
- Inoma, J.E.; Pavlou, D.G.; Zec, J. Implementation of linear, double-linear, and nonlinear fatigue damage accumulation rules for fatigue life prediction of offshore drilling top-drive tie-rods. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2019; Volume 700, p. 012025. [Google Scholar] [CrossRef]
- Chen, X.; Jin, D.; Kim, K.S. Fatigue life prediction of type 304 stainless steel under sequential biaxial loading. Int. J. Fatigue 2006, 28, 289–299. [Google Scholar] [CrossRef]
- Itoh, T.; Chen, X.; Nakagawa, T.; Sakane, M. A Simple Model for Stable Cyclic Stress-Strain Relationship of Type 304 Stainless Steel Under Nonproportional Loading. J. Eng. Mater. Technol. 1999, 122, 1–9. [Google Scholar] [CrossRef]
- Xu, J.; Shang, D.G.; Sun, G.Q.; Chen, H.; Liu, E.T. Fatigue life prediction for GH4169 superalloy under multiaxial variable amplitude loading. Beijing Gongye Daxue Xuebao/Journal Beijing Univ. Technol. 2012, 38, 1462–1466. [Google Scholar]
- Freudenthal, A.M.; Heller, R.A. On Stress Interaction in Fatigue and a Cumulative Damage Rule. J. Aerosp. Sci. 1959, 26, 431–442. [Google Scholar] [CrossRef]
- Freudenthal, A.M. Physical and statistical aspects of cumulative damage. In Colloquium on Fatigue/Colloque de Fatigue/Kolloquium über Ermüdungsfestigkeit; Springer: Berlin/Heidelberg, Germany, 1956; pp. 53–62. [Google Scholar] [CrossRef]
- Gao, H.; Huang, H.Z.; Zhu, S.P.; Li, Y.F.; Yuan, R. A Modified Nonlinear Damage Accumulation Model for Fatigue Life Prediction Considering Load Interaction Effects. Sci. World J. 2014, 2014, 164378. [Google Scholar] [CrossRef]
- Yuan, R.; Li, H.; Huang, H.Z.; Zhu, S.P.; Gao, H. A nonlinear fatigue damage accumulation model considering strength degradation and its applications to fatigue reliability analysis. Int. J. Damage Mech. 2014, 24, 646–662. [Google Scholar] [CrossRef]
- Zhou, Y.; Mu, D.S.; Han, Y.B.; Huang, X.W.; Zhang, C.C. Application of the Nonlinear Fatigue Damage Cumulative on the Prediction for Rail Head Checks Initiation and Wear Growth. In Structural Integrity; Springer: Cham, Germany, 2019; pp. 239–244. [Google Scholar] [CrossRef]
- Kwofie, S.; Rahbar, N. An equivalent driving force model for crack growth prediction under different stress ratios. Int. J. Fatigue 2011, 33, 1199–1204. [Google Scholar] [CrossRef]
- Zhu, S.P.; Hao, Y.Z.; de Oliveira Correia, J.A.; Lesiuk, G.; De Jesus, A.M. Nonlinear fatigue damage accumulation and life prediction of metals: A comparative study. Fatigue Fract. Eng. Mater. Struct. 2018, 42, 1271–1282. [Google Scholar] [CrossRef]
- Aeran, A.; Siriwardane, S.C.; Mikkelsen, O.; Langen, I. An accurate fatigue damage model for welded joints subjected to variable amplitude loading. Iop Conf. Ser. Mater. Sci. Eng. 2017, 276, 012038. [Google Scholar] [CrossRef]
- Kaechele, L. Review and Analysis of Cumulative-Fatigue-Damage Theories; Rand Corporation: Santa Monica, CA, USA, 1963; Available online: https://www.rand.org/content/dam/rand/pubs/research_memoranda/2008/RM3650.pdf (accessed on 17 September 2024).
- Spitzer, R.; Corten, H.T. Effect of Loading Sequence on Cumulative Fatigue Damage of 7075-T6 Aluminum Alloy; Department of Theoretical and Applied Mechanics, University of Illinois: Champaign, IL, USA, 1961; Volume 193, Available online: https://books.google.com/books?id=kCgvkGMZawUC (accessed on 17 September 2024).
- Rao, J.S.; Pathak, A.; Chawla, A. Blade Life: A Comparison by Cumulative Damage Theories. J. Eng. Gas Turbines Power 1999, 123, 886–892. [Google Scholar] [CrossRef]
- Jiao, J.; Lei, H.; Chen, Y.F. Numerical simulation and experimental study on constant amplitude fatigue behavior of welded cross plate-hollow sphere joints. J. Southeast Univ. 2018, 34, 62–70. [Google Scholar] [CrossRef]
- Marsh, K.J.; Mackinnon, J.A. Random-Loading and Block-Loading Fatigue Tests on Sharply Notched Mild Steel Specimens. J. Mech. Eng. Sci. 1968, 10, 48–58. [Google Scholar] [CrossRef]
- Zhao, S. Study on the accuracy of fatigue life predictions by the generally used damage accumulation theory. J. Mech. Strength 2000, 22, 206–209. [Google Scholar]
- Peng, Z.; Huang, H.Z.; Zhu, S.P.; Gao, H.; Lv, Z. A fatigue driving energy approach to high-cycle fatigue life estimation under variable amplitude loading. Fatigue Fract. Eng. Mater. Struct. 2015, 39, 180–193. [Google Scholar] [CrossRef]
- Zhu, S.P.; Huang, H.Z.; Liu, Y.; He, L.P.; Liao, Q. A Practical Method for Determining the Corten-Dolan Exponent and Its Application to Fatigue Life Prediction. Int. J. Turbo Jet-Engines 2012, 29, 79–87. [Google Scholar] [CrossRef]
- Gao, H.; Huang, H.Z.; Lv, Z.; Zuo, F.J.; Wang, H.K. An improved Corten-Dolan’s model based on damage and stress state effects. J. Mech. Sci. Technol. 2015, 29, 3215–3223. [Google Scholar] [CrossRef]
- Xue, Q.; Du, X.; Wang, S. An Improved Fatigue Life Prediction Model Based on Loading Sequence. Zhongguo Tiedao Kexue/China Railw. Sci. 2019, 40, 88–93. [Google Scholar] [CrossRef]
- Leipholz, H.H.E. Lifetime Prediction for Metallic Specimens Subjected to Loading with Varying Intensity. Comput. Struct. 1985, 20, 239–246. [Google Scholar] [CrossRef]
- Leipholz, H.H.E. On the modified S-N curve for metal fatigue prediction and its experimental verification. Eng. Fract. Mech. 1986, 23, 495–505. [Google Scholar] [CrossRef]
- Leipholz, H.H.E.; Topper, T.; El Menoufy, M. Lifetime prediction for metallic components subjected to stochastic loading. Comput. Struct. 1983, 16, 499–507. [Google Scholar] [CrossRef]
- Dowdell, D.J.; Leipholz, H.H.E.; Topper, T.H. The modified life law applied to SAE-1045 steel. Int. J. Fract. 1986, 31, 29–36. [Google Scholar] [CrossRef]
- Hashin, A.Z.R. A cumulative damage theory of fatigue failure. Mater. Sci. Eng. 1978, 34, 147–160. [Google Scholar] [CrossRef]
- Hashin, Z.; Rotem, A. A Fatigue Failure Criterion for Fiber Reinforced Materials. J. Compos. Mater. 1973, 7, 448–464. [Google Scholar] [CrossRef]
- Pavlou, D.G. A phenomenological fatigue damage accumulation rule based on hardness increasing, for the 2024-T42 aluminum. Eng. Struct. 2002, 24, 1363–1368. [Google Scholar] [CrossRef]
- Pavlou, D.G. Fatigue design challenges: Recent linear and nonlinear models. Iop Conf. Ser. Mater. Sci. Eng. 2019, 700, 012028. [Google Scholar] [CrossRef]
- Bjørheim, F.; Pavlou, D.G.; Siriwardane, S.C. Nonlinear fatigue life prediction model based on the theory of the S-N fatigue damage envelope. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 1480–1493. [Google Scholar] [CrossRef]
- Lee, Y.L.; Pan, J.; Hathaway, R.B.; Barkey, M.E. Fatigue testing and analysis: Theory and practice. In Fatigue Testing and Analysis Theory and Practice; Elsevier: Amsterdam, The Netherlands, 2004; pp. 1–402. [Google Scholar] [CrossRef]
- Shen, C.; Talha, A.; Hamdi, A.; Benseddiq, N. A new cumulative fatigue damage model under biaxial loading. Proc. Inst. Mech. Eng. Part J. Mater. Des. Appl. 2020, 234, 962–973. [Google Scholar] [CrossRef]
- Hu, H.; Wei, Q.; Liu, B.; Liu, Y.; Hu, N.; Ma, Q.; Wang, C. Progressive Damage Behaviour Analysis and Comparison with 2D/3D Hashin Failure Models on Carbon Fibre–Reinforced Aluminium Laminates. Polymers 2022, 14, 2946. [Google Scholar] [CrossRef]
- Rege, K.; Pavlou, D.G. A one-parameter nonlinear fatigue damage accumulation model. Int. J. Fatigue 2017, 98, 234–246. [Google Scholar] [CrossRef]
- Zhu, S.P.; Liao, D.; Liu, Q.; Correia, J.A.; De Jesus, A.M. Nonlinear fatigue damage accumulation: Isodamage curve-based model and life prediction aspects. Int. J. Fatigue 2019, 128, 105185. [Google Scholar] [CrossRef]
- Pavlou, D.G. The theory of the S-N fatigue damage envelope: Generalization of linear, double-linear, and non-linear fatigue damage models. Int. J. Fatigue 2018, 110, 204–214. [Google Scholar] [CrossRef]
- El Aghoury, I.; Galal, K. A fatigue stress-life damage accumulation model for variable amplitude fatigue loading based on virtual target life. Eng. Struct. 2013, 52, 621–628. [Google Scholar] [CrossRef]
- Dan, H.C.; Wang, Z.; Cao, W.; Liu, J. Fatigue characterization of porous asphalt mixture complicated with moisture damage. Constr. Build. Mater. 2021, 303, 124525. [Google Scholar] [CrossRef]
- Liu, Y.; Ye, N.; Hu, X.; Zhao, G. An improved fatigue damage model based on the virtual load spectrum of golden section method. Fatigue Fract. Eng. Mater. Struct. 2021, 44, 2101–2118. [Google Scholar] [CrossRef]
- Batsoulas, N.D. Cumulative Fatigue Damage: CDM-Based Engineering Rule and Life Prediction Aspect. Steel Res. Int. 2016, 87, 1670–1677. [Google Scholar] [CrossRef]
- Batsoulas, N.D.; Giannopoulos, G.I. Cumulative Fatigue Damage of Composite Laminates: Engineering Rule and Life Prediction Aspect. Materials 2023, 16, 3271. [Google Scholar] [CrossRef]
- Xia, F.L.; Zhu, S.P.; Liao, D.; Dantas, R.; Correia, J.A.; De Jesus, A.M. Isodamage curve-based fatigue damage accumulation model considering the exhaustion of static toughness. Eng. Fail. Anal. 2020, 115, 104575. [Google Scholar] [CrossRef]
- Griffith, A.A. The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. London. Ser. Contain. Pap. Math. Phys. Character 1921, 221, 163–198. [Google Scholar] [CrossRef]
- Murray, W.M. (Ed.) Fatigue and Fracture of Metals; Cambridge, Mass., Technology Press of the Massachusetts Institute of Technology Wiley: New York, NY, USA, 1952; 313p. [Google Scholar] [CrossRef]
- Williams, M.L. On the Stress Distribution at the Base of a Stationary Crack. J. Appl. Mech. 1957, 24, 109–114. [Google Scholar] [CrossRef]
- Irwin, G.R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate. J. Appl. Mech. 1957, 24, 361–364. [Google Scholar] [CrossRef]
- Paris, P.; Erdogan, F. A Critical Analysis of Crack Propagation Laws. J. Basic Eng. 1963, 85, 528–533. [Google Scholar] [CrossRef]
- Erdogan, F.; Sih, G.C. On the Crack Extension in Plates Under Plane Loading and Transverse Shear. J. Basic Eng. 1963, 85, 519–525. [Google Scholar] [CrossRef]
- Rice, J.R. Mathematical analysis in the mechanics of fracture. Fract. Adv. Treatise 1968, 2, 191–311. [Google Scholar]
- Makkonen, M. Predicting the total fatigue life in metals. Int. J. Fatigue 2009, 31, 1163–1175. [Google Scholar] [CrossRef]
- Newman, J., Jr.; Wu, X.; Venneri, S.; Li, C. Small-crack effects in high-strength aluminum alloys. In NASA/CAE Cooperative Program, NASA RP-1309; NASA: Washington, DC, USA, 1994. Available online: https://ntrs.nasa.gov/api/citations/19940029793/downloads/19940029793.pdf (accessed on 17 September 2024).
- Newman, J.C. Fatigue-Life Prediction Methodology Using a Crack-Closure Model. J. Eng. Mater. -Technol.-Trans. Asme 1995, 117, 433–439. [Google Scholar] [CrossRef]
- Newman, J., Jr.; Phillips, E.P.; Everett, R.A., Jr. Fatigue life and crack growth prediction methodology. In AGARD Structures and Materials Panel Workshop on an Assessment of Fatigue Damage and Crack Growth Prediction Techniques; NASA: Washington, DC, USA, 1993; number NAS 1.15: 109044. Available online: https://ntrs.nasa.gov/citations/19940030077 (accessed on 17 September 2024).
- Newman, J. Advances in fatigue life prediction methodology for metallic materials. Int. J. Fatigue 1992, 16, 156. [Google Scholar] [CrossRef]
- Newman, J. The Merging of Fatigue and Fracture Mechanics Concepts: A Historical Perspective. Prog. Aerosp. Sci. 1998, 34, 347–390. [Google Scholar] [CrossRef]
- Newman, J.; Phillips, E.; Swain, M. Fatigue-life prediction methodology using small-crack theory. Int. J. Fatigue 1999, 21, 109–119. [Google Scholar] [CrossRef]
- Newman, J., Jr. Advances in fatigue and fracture mechanics analyses for metallic aircraft structures. Aeronaut. Fatigue 2000. Available online: https://ntrs.nasa.gov/api/citations/20000040431/downloads/20000040431.pdf (accessed on 17 September 2024).
- Newman, J.; Phillips, E.; Everett, R. Fatigue Analyses Under Constant- and Variable-Amplitude Loading Using Small-Crack Theory; NASA: Washington, DC, USA, 1999. Available online: https://ntrs.nasa.gov/citations/19990046065 (accessed on 17 September 2024).
- Newman, J. Prediction of Crack Growth Under Variable-Amplitude Loading in Thin-Sheet 2024-T3 Aluminum Alloys; NASA: Washington, DC, USA, 1997. Available online: https://ntrs.nasa.gov/citations/20040110410 (accessed on 17 September 2024).
- Suresh, S.; Ritchie, R.O. Some Considerations on Fatigue Crack Closure at Near-Threshold Stress Intensities Due to Fracture Surface Morphology. Metall. Trans. 1982, 13, 937–940. [Google Scholar] [CrossRef]
- Suresh, S.; Ritchie, R.O. Near-Threshold Fatigue Crack Propagation: A Perspective on the Role of Crack Closure; Lawrence Berkeley Laboratory University of California: Berkeley, CA, USA, 1983; Volume 84, p. 30202. Available online: https://www.osti.gov/biblio/6924455 (accessed on 17 September 2024).
- Dill, H.; Saff, C. Spectrum Crack Growth Prediction Method Based on Crack Surface Displacement and Contact Analyses. In Fatigue Crack Growth Under Spectrum Loads; ASTM International: West Conshohocken, PA, USA, 2009; pp. 306–319. [Google Scholar] [CrossRef]
- Dill, H.; Saff, C.; Potter, J. Effects of Fighter Attack Spectrum on Crack Growth. In Effect of Load Spectrum Variables on Fatigue Crack Initiation and Propagation; ASTM International: West Conshohocken, PA, USA, 2009; pp. 205–217. [Google Scholar] [CrossRef]
- Führing, H.; Seeger, T. Dugdale crack closure analysis of fatigue cracks under constant amplitude loading. Eng. Fract. Mech. 1979, 11, 99–122. [Google Scholar] [CrossRef]
- De Koning, A.U. A Simple Crack Closure Model for Prediction of Fatigue Crack Growth Rates Under Variable-Amplitude Loading. In Fracture Mechanics; ASTM International: West Conshohocken, PA, USA, 1981; pp. 63–85. [Google Scholar] [CrossRef]
- Miller, K.J.; Zachariah, K.P. Cumulative damage laws for fatigue crack initiation and stage i propagation. J. Strain Anal. Eng. Des. 1977, 12, 262–270. [Google Scholar] [CrossRef]
- Ibrahim, M.F.E.; Miller, K.J. Determination of Fatigue Crack Initiation Life. Fatigue Fract. Eng. Mater. Struct. 1979, 2, 351–360. [Google Scholar] [CrossRef]
- Miller, K.J.; Ibrahim, M.F.E. Damage Accumulation During Initiation and Short Crack Growth Regimes. Fatigue Fract. Eng. Mater. Struct. 1981, 4, 263–277. [Google Scholar] [CrossRef]
- Miller, K.J.; Mohamed, H.J.; De Los Rios, E.R. Fatigue damage accumulation above and below the fatigue limit. In The Behavior of Short Fatigue Cracks; Mechanical Engineering Publications: West Conshohocken, PA, USA, 1986; pp. 491–511. Available online: https://www.gruppofrattura.it/ocs/index.php/esis/EGF1/paper/viewFile/9666/6377 (accessed on 17 September 2024).
- Miller, K.; de los Rios, E. The Behaviour of Short Fatigue Cracks. In Fatigue & Fracture of Engineering Materials & Structures; Wiley: Hoboken, NJ, USA, 1987. [Google Scholar] [CrossRef]
- Miller, K. The Three Thresholds for Fatigue Crack Propagation. In Fatigue and Fracture Mechanics: 27th Volume; ASTM International: West Conshohocken, PA, USA, 1997; pp. 477–500. [Google Scholar] [CrossRef]
- Miller T, K.J.G. High-Temperature cumulative damage for stage I crack growth. J. Strain Anal. Eng. Des. 1977, 12, 253–261. [Google Scholar] [CrossRef]
- Miller, K.J. The behaviour of short fatigue cracks and their initiation part I—A review of two recent books. Fatigue Fract. Eng. Mater. Struct. 1987, 10, 75–91. [Google Scholar] [CrossRef]
- Miller, K.J. Short Fatigue Cracks. In Advances in Fatigue Science and Technology; Springer: Dordrecht, The Netherlands, 1989; pp. 3–22. [Google Scholar] [CrossRef]
- Hobson, P.D. The Growth of Short Fatigue Cracks in a Medium Carbon Steel. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 1985. Available online: https://core.ac.uk/download/pdf/42605957.pdf (accessed on 17 September 2024).
- Dugdale, D.S. Yielding of steel sheets containing slits. J. Mech. Phys. Solids 1960, 8, 100–104. [Google Scholar] [CrossRef]
- Barenblatt, G.I. The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 1962, 7, 55–129. [Google Scholar] [CrossRef]
- Turon, A.; Camanho, P.P.; Costa, J.; Dávila, C.G. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 2006, 38, 1072–1089. [Google Scholar] [CrossRef]
- Harper, P.W.; Hallett, S.R. Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech. 2008, 75, 4774–4792. [Google Scholar] [CrossRef]
- Zhang, W.; Tabiei, A. Fatigue life prediction of composite material’s adhesive joints in automotive applications. Int. J. Automot. Compos. 2017, 3, 61–79. [Google Scholar] [CrossRef]
- Tabiei, A.; Zhang, W. Composite laminate delamination simulation and experiment: A review of recent development. Appl. Mech. Rev. 2018, 70, 030801. [Google Scholar] [CrossRef]
- Bao-Tong Campbell, M.L. Overview of fatigue behavior in copper single crystals—V. Short crack growth behavior and a new approach to summing cumulative damage and predicting fatigue life under variable amplitudes. Acta Metall. 1989, 37, 369–379. [Google Scholar] [CrossRef]
- Polák, J.; Obrtlík, K.; Hájek, M. Cyclic Plasticity in Type 316L Austenitic Stainless Steel. Fatigue Fract. Eng. Mater. Struct. 1994, 17, 773–782. [Google Scholar] [CrossRef]
- Noroozi, A.; Glinka, G.; Lambert, S. A two parameter driving force for fatigue crack growth analysis. Int. J. Fatigue 2005, 27, 1277–1296. [Google Scholar] [CrossRef]
- Noroozi, A.; Glinka, G.; Lambert, S. A study of the stress ratio effects on fatigue crack growth using the unified two-parameter fatigue crack growth driving force. Int. J. Fatigue 2007, 29, 1616–1633. [Google Scholar] [CrossRef]
- Walker, K. The effect of stress ratio during crack propagation and fatigue for 2024-T3 and 7075-T6 aluminum. In Effects of Environment and Complex Load History on Fatigue Life: A Symposium; ASTM International: West Conshohocken, PA, USA, 1970; pp. 1–14. [Google Scholar] [CrossRef]
- Dinda, S.; Kujawski, D. Correlation and prediction of fatigue crack growth for different R-ratios using Kmax and ΔK+ parameters. Eng. Fract. Mech. 2004, 71, 1779–1790. [Google Scholar] [CrossRef]
- Mikheevskiy, S.; Glinka, G. Elastic-plastic fatigue crack growth analysis under variable amplitude loading spectra. Int. J. Fatigue 2009, 31, 1828–1836. [Google Scholar] [CrossRef]
- Abdullah, N.; Correia, J.; Jesus, A.; Hafezi, M.H.; Abdullah, S. Assessment of fatigue crack growth data available for materials from Portuguese bridges based on UniGrow model. Procedia Eng. 2011, 10, 971–976. [Google Scholar] [CrossRef]
- Abdullah, N.N.; Hafezi, M.H.; Abdullah, S. Analytical Concepts for Recent Development in Fatigue Crack Growth under Variable Amplitude Loading. Part I: Qualitative Interpretation. Key Eng. Mater. 2011, 462–463, 59–64. [Google Scholar] [CrossRef]
- Hafezi, M.H.; Abdullah, N.; Correia, J.; Jesus, A. An assessment of a strain-life approach for fatigue crack growth. Int. J. Struct. Integr. 2012, 3, 344–376. [Google Scholar] [CrossRef]
- Pedrosa, B.; Correia, J.; Lesiuk, G.; Rebelo, C.; Veljković, M. Fatigue crack growth modelling for S355 structural steel considering plasticity-induced crack-closure by means of UniGrow model. Int. J. Fatigue 2022, 164, 107120. [Google Scholar] [CrossRef]
- Bang, D.; Ince, A.; Tang, L. A modification of UniGrow 2-parameter driving force model for short fatigue crack growth. Fatigue Fract. Eng. Mater. Struct. 2018, 42, 45–60. [Google Scholar] [CrossRef]
- Bang, D.; Ince, A.; Noban, M. Modeling approach for a unified crack growth model in short and long fatigue crack regimes. Int. J. Fatigue 2019, 128, 105182. [Google Scholar] [CrossRef]
- Bang, D.; Ince, A. A short and long crack growth model based on 2-parameter driving force and crack growth thresholds. Int. J. Fatigue 2020, 141, 105870. [Google Scholar] [CrossRef]
- Manjunatha, C. Fatigue Crack Growth Prediction under Spectrum Load Sequence in an Aluminum Alloy by K*-RMS Approach. Int. J. Damage Mech. 2008, 17, 477–492. [Google Scholar] [CrossRef]
- Correia, J.; Jesus, A.; Fernández-Canteli, A. Local unified probabilistic model for fatigue crack initiation and propagation: Application to a notched geometry. Eng. Struct. 2013, 52, 394–407. [Google Scholar] [CrossRef]
- Correia, J.; Jesus, A.; Fernández-Canteli, A. Modelling probabilistic fatigue crack propagation rates for a mild structural steel. Fract. Struct. Integr. 2014, 9, 80–96. [Google Scholar] [CrossRef]
- Correia, J.; de Jesús, P.; Calçada, R.; Fernández-Canteli, A. Fatigue Crack Propagation Rates Prediction Using Probabilistic Strain-Based Models. In Fracture Mechanics; IntechOpen: London, UK, 2016. [Google Scholar] [CrossRef]
- Raposo, P.; Correia, J.; Jesus, A.; Calçada, R. Probabilistic fatigue S-N curves derivation for notched components. Frat. Integrita Strutt. 2017, 11, 2017. [Google Scholar] [CrossRef]
- Lopes, B.; Arruda, M.R.T.; Almeida-Fernandes, L.; Castro, L.; Silvestre, N.; Correia, J.R. Assessment of mesh dependency in the numerical simulation of compact tension tests for orthotropic materials. Compos. Part Open Access 2020, 1, 100006. [Google Scholar] [CrossRef]
- Nagarajappa, N.; Malipatil, S.G.; Majila, A.N.; Fernando, D.; Manjuprasad, M.; Manjunatha, C. Fatigue Crack Growth Prediction in a Nickel-Base Superalloy Under Spectrum Loads Using FRANC3D. Trans. Indian Natl. Acad. Eng. 2021, 7, 533–540. [Google Scholar] [CrossRef]
- Malipatil, S.G.; Nagarajappa, N.; Majila, A.N.; Fernando, D.C.; Bojja, R.; Jagannathan, N.; Manjuprasad, M.; Manjunatha, C. A Study on the Fatigue Crack Growth Behaviour of GTM718 Nickel Based Super Alloy Under cold-TURBISTAN Spectrum Loads. Theor. Appl. Fract. Mech. 2022, 120, 103386. [Google Scholar] [CrossRef]
- Ince, A.; Glinka, G. Approximation modeling framework for elastic-plastic stress-strain fields near cracks with a small finite crack tip radius. Theor. Appl. Fract. Mech. 2022, 121, 103452. [Google Scholar] [CrossRef]
- Gates, N.R.; Fatemi, A. Experimental fatigue crack growth behavior and predictions under multiaxial variable amplitude service loading histories. Eng. Fract. Mech. 2017, 174, 80–103. [Google Scholar] [CrossRef]
- Ding, Z.; Wang, X.; Gao, Z.; Bao, S. An experimental investigation and prediction of fatigue crack growth under overload/underload in Q345R steel. Int. J. Fatigue 2017, 98, 155–166. [Google Scholar] [CrossRef]
- Kachanov, L.M. Rupture Time Under Creep Conditions. Int. J. Fract. 1999, 97, 11–18. [Google Scholar] [CrossRef]
- Kachanov, L. Introduction to Continuum Damage Mechanics; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar] [CrossRef]
- Rabotnov, Y.N.; Leckie, F.A.; Prager, W. Creep Problems in Structural Members. J. Appl. Mech. 1970, 37, 249. [Google Scholar] [CrossRef]
- Chaboche, J.L. Continuous damage mechanics—A tool to describe phenomena before crack initiation. Nucl. Eng. Des. 1981, 64, 233–247. [Google Scholar] [CrossRef]
- Chaboche, J.L. Continuum damage mechanics: Present state and future trends. Nucl. Eng. Des. 1987, 105, 19–33. [Google Scholar] [CrossRef]
- Halford, G.R.; Manson, S.S. Reexamination of Cumulative Fatigue Damage Laws. In Structure Integrity and Durability of Reusable Space Propulsion Systems; NASA: Washington, DC, USA, 1985. Available online: https://ntrs.nasa.gov/citations/19850019650 (accessed on 17 September 2024).
- Chaboche, J.L.; Lesne, P.A. A Non-Linear Continuous Fatigue Damage Model. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 1–17. [Google Scholar] [CrossRef]
- Sun, Y.; Lu, S.; Meng, Q.; Wang, X. Online damage model of steam turbine based on continuum damage mechanics. In Proceedings of the 2017 36th Chinese Control Conference (CCC), Dalian, China, 26–28 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 10392–10397. [Google Scholar] [CrossRef]
- Wang, W.Z.; Liu, Y.Z. Continuum Damage Mechanics Theory and Application-Continuum Damage Mechanics Theory and Applications; Springer: Berlin/Heidelberg, Germany, 1987. [Google Scholar] [CrossRef]
- Lemaitre, J.; Plumtree, A. Application of Damage Concepts to Predict Creep-Fatigue Failures. J. Eng. Mater. Technol. 1979, 101, 284–292. [Google Scholar] [CrossRef]
- June, W. A continuum damage mechanics model for low-cycle fatigue failure of metals. Eng. Fract. Mech. 1992, 41, 437–441. [Google Scholar] [CrossRef]
- Wang, T.; Lou, Z. A continuum damage model for weld heat affected zone under low cycle fatigue loading. Eng. Fract. Mech. 1990, 37, 825–829. [Google Scholar] [CrossRef]
- Socie, D.F.; Morrow, J. Review of Contemporary Approaches to Fatigue Damage Analysis. In Risk and Failure Analysis for Improved Performance and Reliability; Springer: Berlin/Heidelberg, Germany, 1980; pp. 141–194. [Google Scholar] [CrossRef]
- Weinacht, D.J.; Socie, D.F. Fatigue damage accumulation in grey cast iron. Int. J. Fatigue 1987, 9, 79–86. [Google Scholar] [CrossRef]
- Hua, C.T.; Socie, D.F. Fatigue Damage in 1045 Steel Under Constant Amplitude Biaxial Loading. Fatigue Fract. Eng. Mater. Struct. 1984, 7, 165–179. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Ellingwood, B. A CDM analysis of stochastic ductile damage growth and reliability. Probabilistic Eng. Mech. 1999, 14, 45–54. [Google Scholar] [CrossRef]
- Salomón, O.; Oller, S.; Oñate, E. Fatigue Analysis of Materials and Structures using a Continuum Damage Model. Int. J. Form. Process. 2002, 5, 493–503. [Google Scholar] [CrossRef]
- Martinez, X.; Oller, S.; Barbu, L.G.; Barbat, A.H.; De Jesus, A.M. Analysis of Ultra Low Cycle Fatigue problems with the Barcelona plastic damage model and a new isotropic hardening law. Int. J. Fatigue 2015, 73, 132–142. [Google Scholar] [CrossRef]
- Giancane, S.; Nobile, R.; Panella, F.; Dattoma, V. Fatigue life prediction of notched components based on a new nonlinear continuum damage mechanics model. Procedia Eng. 2010, 2, 1317–1325. [Google Scholar] [CrossRef]
- Zhang, A.; Bui-Quoc, T.; Gomuc, R. A Procedure for Low Cycle Fatigue Life Prediction for Various Temperatures and Strain Rates. J. Eng. Mater. Technol. 1990, 112, 422–428. [Google Scholar] [CrossRef]
- Zhang, J.; Fu, X.; Lin, J.; Liu, Z.; Liu, N.; Wu, B. Study on Damage Accumulation and Life Prediction with Loads below Fatigue Limit Based on a Modified Nonlinear Model. Materials 2018, 11, 2298. [Google Scholar] [CrossRef] [PubMed]
- Sinclair, G. Investigation of coaxing effect in fatigue of metals. Proc. Am. Soc. Test. Mater. TAM R 28 1952, 52, 743–751. [Google Scholar]
- Xi, L.; Songlin, Z. Strengthening of transmission gear under low-amplitude loads. Mater. Sci. Eng. A 2008, 488, 55–63. [Google Scholar] [CrossRef]
- Xi, L.; Songlin, Z. Changes in mechanical properties of vehicle components after strengthening under low-amplitude loads below the fatigue limit. Fatigue Fract. Eng. Mater. Struct. 2009, 32, 847–855. [Google Scholar] [CrossRef]
- Xi, L.; Songlin, Z. Strengthening and damaging under low-amplitude loads below the fatigue limit. Int. J. Fatigue 2009, 31, 341–345. [Google Scholar] [CrossRef]
- Li, Z.X.; Chan, T.H.; Ko, J.M. Fatigue damage model for bridge under traffic loading: Application made to Tsing Ma Bridge. Theor. Appl. Fract. Mech. 2001, 35, 81–91. [Google Scholar] [CrossRef]
- Li, Z.X.; Chan, T.H.; Ko, J.M. Fatigue analysis and life prediction of bridges with structural health monitoring data—Part II: Application. Int. J. Fatigue 2001, 23, 55–64. [Google Scholar] [CrossRef]
- Li, Z.X.; Chan, T.H.T.; Ko, J.M. Evaluation of typhoon induced fatigue damage for Tsing Ma Bridge. Eng. Struct. 2002, 24, 1035–1047. [Google Scholar] [CrossRef]
- Li, Z.X.; Ko, J.M.; Chan, T.H.T. Modelling of load interaction and overload effect on fatigue damage of steel bridges. Fatigue Fract. Eng. Mater. Struct. 2001, 24, 379–390. [Google Scholar] [CrossRef]
- Xu, Y.L.; Chen, Z.W.; Xia, Y. Fatigue assessment of multi-loading suspension bridges using continuum damage model. Int. J. Fatigue 2012, 40, 27–35. [Google Scholar] [CrossRef]
- Xu, Y.L.; Liu, T.T.; Zhang, W.S. Buffeting-induced fatigue damage assessment of a long suspension bridge. Int. J. Fatigue 2009, 31, 575–586. [Google Scholar] [CrossRef]
- Wahidi, M. Real-time Structural Health Monitoring of Engineering Structures. Master’s Thesis, UIS, Selangor, Malaysia, 2023. Available online: https://uis.brage.unit.no/uis-xmlui/handle/11250/3080196 (accessed on 17 September 2024).
- Zengah, S.; Aid, A.; Benguediab, M. Comparative Study of Fatigue Damage Models Using Different Number of Classes Combined with the Rainflow Method. Eng. Technol. Appl. Sci. Res. 2013, 3, 446–451. [Google Scholar] [CrossRef]
- Yue, P.; Lei, Q.; Zhang, C.L.; Zhu, S.P.; Huang, H.Z. A Modified Cumulative Damage Model for Fatigue Life Prediction under Variable Amplitude Loadings. Appl. Mech. Mater. 2017, 853, 62–66. [Google Scholar] [CrossRef]
- Hectors, K.; Vanspeybrouck, D.; Plets, J.; Bouckaert, Q.; De Waele, W. Open-Access Experiment Dataset for Fatigue Damage Accumulation and Life Prediction Models. Metals 2023, 13, 621. [Google Scholar] [CrossRef]
- Bandara Sudath, C.; Dissanayake, U.I.; Dissanayake, R.C.S.S. Fatigue failure predictions for steels in the very high cycle region—A review and recommendations. Eng. Fail. Anal. 2014, 45, 421–435. [Google Scholar] [CrossRef]
- Adasooriya, N.D.; Siriwardane, S.C. Remaining fatigue life estimation of corroded bridge members. Fatigue Fract. Eng. Mater. Struct. 2014, 37, 603–622. [Google Scholar] [CrossRef]
- Pitoiset André, X.P. Spectral methods for multiaxial random fatigue analysis of metallic structures. Int. J. Fatigue 2000, 22, 541–550. [Google Scholar] [CrossRef]
- Crossland, B. Effect of large hydrostatic pressures on the torsional fatigue strength of an alloy steel. J. Mech. Eng. Sci. 1964, 6, 293–310. [Google Scholar]
- Aid, A.; Bendouba, M.; Aminallah, L.; Amrouche, A.; Benseddiq, N.; Benguediab, M. An equivalent stress process for fatigue life estimation under multiaxial loadings based on a new non linear damage model. Mater. Sci. Eng. -Struct. Mater. Prop. Microstruct. Process. 2012, 538, 20–27. [Google Scholar] [CrossRef]
- Sines, G.; Ohgi, G. Fatigue Criteria Under Combined Stresses or Strains. J. Eng. Mater. Technol. 1981, 103, 82–90. [Google Scholar] [CrossRef]
- Bannantine, J.A. A variable amplitude multiaxial fatigue life prediction method. In Proceedings of the Thirth International Conference on Biaxial/Multiaxial Fatigue, Champaign, IL, USA, 18 April 1989; University of Illinois at Urbana-Champaign: Champaign, IL, USA, 1989; pp. 12.1–12.20. Available online: https://fcp.mechse.illinois.edu/fcp_report151/ (accessed on 17 September 2024).
- Fatemi, A.; Socie, D.F. A Critical Plane Approach to Multiaxial Fatigue Damage Including out-of-Phase Loading. Fatigue Fract. Eng. Mater. Struct. 1988, 11, 149–165. [Google Scholar] [CrossRef]
- Socie, D. Critical plane approaches for multiaxial fatigue damage assessment. In Advances in Multiaxial Fatigue; ASTM: Washington, DC, USA, 1993. [Google Scholar] [CrossRef]
- Benkabouche, S.; Guechichi, H.; Amrouche, A.; Benkhettab, M. A modified nonlinear fatigue damage accumulation model under multiaxial variable amplitude loading. Int. J. Mech. Sci. 2015, 100, 180–194. [Google Scholar] [CrossRef]
- Wang, C.H.; Brown, M.W. A Path-Independent Parameter for Fatigue Under Proportional and Non-Proportional Loading. Fatigue Fract. Eng. Mater. Struct. 1993, 16, 1285–1297. [Google Scholar] [CrossRef]
- Łagoda, T.; Macha, E.; Będkowski, W. A critical plane approach based on energy concepts: Application to biaxial random tension-compression high-cycle fatigue regime. Int. J. Fatigue 1999, 21, 431–443. [Google Scholar] [CrossRef]
- Ye, L. On fatigue damage accumulation and material degradation in composite materials. Compos. Sci. Technol. 1989, 36, 339–350. [Google Scholar] [CrossRef]
- Pattin, C.A.; Caler, W.E.; Carter, D.R. Cyclic mechanical property degradation during fatigue loading of cortical bone. J. Biomech. 1996, 29, 69–79. [Google Scholar] [CrossRef]
- Lohbauer, U.; Belli, R.; Ferracane, J. Factors Involved in Mechanical Fatigue Degradation of Dental Resin Composites. J. Dent. Res. 2013, 92, 584–591. [Google Scholar] [CrossRef]
- Duyi, Y.; Zhenlin, W. Change characteristics of static mechanical property parameters and dislocation structures of 45# medium carbon structural steel during fatigue failure process. Mater. Sci. Eng. A 2001, 297, 54–61. [Google Scholar] [CrossRef]
- Cadenas, P.; Amrouche, A.; Mesmacque, G.; Jozwiak, K. Effect of the residual fatigue damage on the static and toughness properties. In Damage and Fracture Mechanics: Failure Analysis of Engineering Materials and Structures; Springer: Berlin/Heidelberg, Germany, 2009; pp. 323–330. [Google Scholar] [CrossRef]
- Kurath, P.; Sehitoglu, H.; Morrow, J.; Deves, T. Effect of Selected Subcycle Sequences in Fatigue Loading Histories; American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP: New York, NY, USA, 1983; Volume 72, pp. 43–60. [Google Scholar]
- Nakai-Chapman, J.; Park, Y.H.; Sakai, J. Progressive Fatigue Life Prediction of Composite Materials Based on Residual Material Property Degradation Model; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 8. [Google Scholar] [CrossRef]
- Inglis, N.P. Hysteresis and fatigue of Wohler rotating cantilever specimen. In The Metallurgist; Springer: Berlin/Heidelberg, Germany, 1927; pp. 23–27. [Google Scholar]
- Budiansky Richard J., B.O. Elastic moduli of a cracked solid. Int. J. Solids Struct. 1976, 12, 81–97. [Google Scholar] [CrossRef]
- Glinka, G. Relations Between the Strain Energy Density Distribution and Elastic-Plastic Stress-Strain Fields Near Cracks and Notches and Fatigue Life Calculation. In Low Cycle Fatigue; ASTM: Washington, DC, USA, 1988; pp. 1022–1047. [Google Scholar] [CrossRef]
- Kujawski Fernand, D.E. A cumulative damage theory for fatigue crack initiation and propagation. Int. J. Fatigue 1984, 6, 83–88. [Google Scholar] [CrossRef]
- Lefebvre Fernand, D.E. Cyclic response and inelastic strain energy in low cycle fatigue. Int. J. Fatigue 1984, 6, 9–15. [Google Scholar] [CrossRef]
- Ellyin K., F.G. Multiaxial Fatigue Damage Criterion. J. Eng. Mater. Technol. 1988, 110, 63–68. [Google Scholar] [CrossRef]
- Kujawski, D.; Ellyin, F. On the concept of cumulative fatigue damage. Int. J. Fract. 1988, 37, 263–278. [Google Scholar] [CrossRef]
- Kreiser, D.; Jia, S.X.; Han, J.J.; Dhanasekar, M. A nonlinear damage accumulation model for shakedown failure. Int. J. Fatigue 2007, 29, 1523–1530. [Google Scholar] [CrossRef]
- Feng, D.C.; Ren, X. Analytical examination of mesh-dependency issue for uniaxial RC elements and new fracture energy-based regularization technique. Int. J. Damage Mech. 2023, 32, 321–339. [Google Scholar] [CrossRef]
- Niu, X.; Li, G.; Lee, H. Hardening law and fatigue damage of a cyclic hardening metal. Eng. Fract. Mech. 1987, 26, 163–170. [Google Scholar] [CrossRef]
- Niu, X.D. Memory Behavior of Stress Amplitude Responses and Fatigue Damage Model of A Hot-Rolled Low Carbon Steel. In Mechanical Behaviour of Materials V; Elsevier: Amsterdam, The Netherlands, 1988; pp. 685–690. [Google Scholar] [CrossRef]
- Radhakrishnan, V.M. Cumulative damage in low-cycle fatigue: An analysis is presented for cumulative damage on the basis of absorbed plastic energy. Exp. Mech. 1978, 18, 292–296. [Google Scholar] [CrossRef]
- Lagoda, T. Energy models for fatigue life estimation under uniaxial random loading. Part II: Verification of the model. Int. J. Fatigue 2001, 23, 481–489. [Google Scholar] [CrossRef]
- Pawliczek, R.; Lagoda, T. Investigation of changes in fatigue damage caused by mean load under block loading conditions. Materials 2021, 14, 2738. [Google Scholar] [CrossRef]
- Park, S.H.; Hong, S.G.; Lee, B.H.; Lee, C.S. Fatigue life prediction of rolled AZ31 magnesium alloy using an energy-based model. Int. J. Mod. Phys. B 2008, 22, 5503–5508. [Google Scholar] [CrossRef]
- Jahed, H.; Varvani-Farahani, A. Upper and lower fatigue life limits model using energy-based fatigue properties. Int. J. Fatigue 2006, 28, 467–473. [Google Scholar] [CrossRef]
- Jahed, A.; Noban, M.; Khalaji, I.H.V.F. An energy-based fatigue life assessment model for various metallic materials under proportional and non-proportional loading conditions. Int. J. Fatigue 2007, 29, 647–655. [Google Scholar] [CrossRef]
- Gu, Z.; Mi, C.; Ding, Z.; Zhang, Y.; Liu, S.; Nie, D. An energy-based fatigue life prediction of a mining truck welded frame. J. Mech. Sci. Technol. 2016, 30, 3615–3624. [Google Scholar] [CrossRef]
- Ozaltun, H.; Shen, M.H.H.; George, T.; Cross, C. An Energy Based Fatigue Life Prediction Framework for In-Service Structural Components. Exp. Mech. 2011, 51, 707–718. [Google Scholar] [CrossRef]
- Djebli, A.; Aid, A.; Bendouba, M.; Amrouche, A.; Benguediab, M.; Benseddiq, N. A non-linear energy model of fatigue damage accumulation and its verification for Al-2024 aluminum alloy. Int. J.-Non-Linear Mech. 2013, 51, 145–151. [Google Scholar] [CrossRef]
- Djebli, A.; Mostefa, B.; Abdelkarim, A. Fatigue Life Prediction under Variable Loading Based a Non-Linear Energy Model. Int. J. Eng. Res. Afr. 2016, 22, 14–21. [Google Scholar] [CrossRef]
- Peng, Z.; Huang, H.; Wang, H.K.; Zhu, S.; Lv, Z. A new approach to the investigation of load interaction effects and its application in residual fatigue life prediction. Int. J. Damage Mech. 2016, 25, 672–690. [Google Scholar] [CrossRef]
- Gan, L.; Wu, H.; Zhong, Z. Multiaxial fatigue life prediction based on a simplified energy-based model. Int. J. Fatigue 2021, 144, 106036. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, H.; Zhong, Z. A modified energy-based model for low-cycle fatigue life prediction under multiaxial irregular loading. Int. J. Fatigue 2019, 128, 105187. [Google Scholar] [CrossRef]
- Sikadur-330, 0. Available online: https://gcc.sika.com/en/construction/refurbishment/structural-strengthening/sikadur-330.html (accessed on 22 May 2024).
Property | Value |
---|---|
Density | 2560 kg/m3 |
Young’s Modulus | 25 GPa |
Tensile Strength | 307.5 MPa |
Poisson’s Ratio | 0.23 |
Property | Value |
---|---|
Flexural Strength | 60.6 MPa |
Modulus of Elasticity in Flexure | 3489 MPa |
Tensile Strength | 33.8 MPa |
Elongation at Break | 1.2% |
Heat Deflection Temperature | 50 °C |
Fmax1 [kN] | n1 | N1 | D1 = n1/N1 | Fmax2 [kN] | n2 | N2 | D2 = n2/N2 | D | |
---|---|---|---|---|---|---|---|---|---|
Low-High Sequence | 14.4 | 48,649 | 142,978 | 0.3403 | 21.6 | 483 | 1070 | 0.4514 | 0.7917 |
12 | 456,038 | 1,291,993 | 0.3530 | 19.2 | 2592 | 4434 | 0.5846 | 0.9376 | |
High-Low Sequence | 21.6 | 287 | 1070 | 0.2682 | 14.4 | 207,559 | 142,978 | 1.4517 | 1.7199 |
19.2 | 1330 | 4434 | 0.3000 | 12.0 | 4,832,688 | 1,291,993 | 3.7405 | 4.040 |
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
Experiment | 49,132 | 458,630 | 207,846 | 4,834,018 |
Miner | 49,355 | 458,906 | 104,915 | 905,784 |
Corten–Dolan | 48,963 | 457,158 | 236,000 | 2,317,476 |
Freudenthal–Heller | 49,558 | 459,860 | 57,277 | 301,967 |
Damage Curve Approach | 49,516 | 459,558 | 127,992 | 1,109,683 |
Kwofie | 49,064 | 457,749 | 178,565 | 1,517,491 |
Subramanyan | 48,650 | 456,038 | 142,978 | 1,291,993 |
Dattoma | 48,650 | 456,038 | 142,978 | 1,291,993 |
Xie | 49,018 | 457,465 | 138,338 | 1,242,244 |
Radhakrishnana | 48,963 | 457,158 | 236,000 | 2,317,476 |
Carpenteri | 49,551 | 459,848 | 82,304 | 682,574 |
Iso-Damage line modification | 50,688 | 470,081 | 22,160 | 97,819 |
Morrow | 218,377 | 2,107,692 | 722 | 2901 |
Bilinear Cohesive model | 51,400 | 300,000 | 107,180 | 913,610 |
Case 1 | Case 2 | Case 3 | Case 4 | |
---|---|---|---|---|
Experiment | 0 | 0 | 0 | 0 |
Miner | 0.4539 | 0.06018 | 49.5227 | 81.2623 |
Corten Dolan | 0.3440 | 0.3210 | 13.5456 | 52.0590 |
Fruedenthal Heller | 0.8671 | 0.2682 | 72.4426 | 93.7533 |
Damage curve approach | 0.7816 | 0.2023 | 38.4198 | 77.0443 |
Kwofie | 0.1384 | 0.1921 | 14.0878 | 68.6081 |
Subramanyan | 0.9810 | 0.5651 | 31.2096 | 73.2729 |
Dattoma | 0.9810 | 0.5651 | 31.2096 | 73.2729 |
Xie | −0.2320 | 0.2540 | 33.4421 | 74.3020 |
Radhakrishnan | 0.3440 | 0.3210 | 13.5456 | 52.0590 |
Carpenteri | 0.8528 | 0.2656 | 60.4015 | 85.880 |
Iso-damage line modification | 3.1670 | 2.4968 | 89.3383 | 97.9764 |
Morrow | 344.470 | 359.5626 | 99.6526 | 99.940 |
Bilinear cohesive model | 4.616 | 34.588 | 48.433 | 81.100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patro, A.; Tabiei, A. Fatigue Failure of Adhesive Joints in Fiber-Reinforced Composite Material Under Step/Variable Amplitude Loading—A Critical Literature Review. J. Compos. Sci. 2024, 8, 477. https://doi.org/10.3390/jcs8110477
Patro A, Tabiei A. Fatigue Failure of Adhesive Joints in Fiber-Reinforced Composite Material Under Step/Variable Amplitude Loading—A Critical Literature Review. Journal of Composites Science. 2024; 8(11):477. https://doi.org/10.3390/jcs8110477
Chicago/Turabian StylePatro, Abinash, and Ala Tabiei. 2024. "Fatigue Failure of Adhesive Joints in Fiber-Reinforced Composite Material Under Step/Variable Amplitude Loading—A Critical Literature Review" Journal of Composites Science 8, no. 11: 477. https://doi.org/10.3390/jcs8110477
APA StylePatro, A., & Tabiei, A. (2024). Fatigue Failure of Adhesive Joints in Fiber-Reinforced Composite Material Under Step/Variable Amplitude Loading—A Critical Literature Review. Journal of Composites Science, 8(11), 477. https://doi.org/10.3390/jcs8110477