Recent Development of Graphene-Based Composites for Electronics, Energy Storage, and Biomedical Applications: A Review
Abstract
:1. Introduction
2. Graphene and Graphene/Polymer Composites
Technic | Methods | Advantages/Disadvantages | Reference |
---|---|---|---|
Exfoliation | Adhesive tape | Achieving single layers typically requires multiple exfoliation steps | [13] |
Liquid-phase exfoliation | Low concentrationLarge energy requirement | [14] | |
Electrochemical synthesis | Flake area, number of defects, and lake properties | [15] | |
Laser-Induced Graphene (LIG) | High electrical conductivity compatible with roll-to-roll manufacturing processes | [16] | |
Hydrothermal self-assembly | Environmentally friendly, low-cost, scalable for mass production | [17] | |
Epitaxy | Chemical vapor deposition using plasma PECVD | Reactants in the gas phase, elevated temperatures, van der Waals forces, scalable | [18] |
Spin coating | Gas over the substrate, moderate temperature |
3. Applications of Graphene and Composites
3.1. Electronics and Sensors
3.2. Energy Storage
3.3. Medical Applications
4. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Titirici, M.-M.; White, R.J.; Brun, N.; Budarin, V.L.; Su, D.S.; del Monte, F.; MacLachlan, M.J. Sustainable carbon materials. Chem. Soc. Rev. 2015, 44, 250. [Google Scholar] [CrossRef] [PubMed]
- Karthik, P.S.; Himaja, A.L.; Singh, S.P. Carbon-allotropes: Synthesis methods, applications and future perspectives. Carbon Lett. 2014, 15, 219. [Google Scholar] [CrossRef]
- Kim, C.-H.; Hlaing, H.; Kymissis, I. A macroscopic model for vertical graphene-organic semiconductor heterojunction field-effect transistors. J. Org. Electron. 2016, 36, 45. [Google Scholar] [CrossRef]
- Sun, W.; Yu, S.; Tang, M.; Wang, X. Friction and Wear Properties of Graphene /Epoxy Composites. Earth Environ. Sci. 2021, 706, 012038. [Google Scholar] [CrossRef]
- Gaidukevic, J.; Barkauskas, J. Advanced Technologies in Graphene-Based Materials. Crystals 2024, 14, 769. [Google Scholar] [CrossRef]
- Nguyen, B.H.; Nguyen, V.H. Promising applications of Graphene and Graphene-based nanostructures. Adv. Nat. Sci. Nanosci. Nanotechnol. 2016, 7, 15. [Google Scholar] [CrossRef]
- Neto, A.H.C.; Guinea, F.; Peres, N.M.R. Electronic states and Landau levels in graphene stacks. Phys. World 2006, 19, 33. [Google Scholar] [CrossRef]
- Ibrahim, A.; Klopocinska, A.; Horvat, K.; Hamid, Z.A. Graphene-Based Nanocomposites: Synthesis, Mechanical Properties, and Characterizations. Polymers 2021, 13, 2869. [Google Scholar] [CrossRef]
- Pfc. Angel Luis Valverde Guijarro (BIGBANG.nucleares.unam.mx) 08 de junio de 2018. Available online: https://bigbang.nucleares.unam.mx/~jimenez/FAMC/TrabajosFAMC2018/Gordillo_Hansel_Grafeno.pdf (accessed on 16 October 2024).
- Yang, K.; Wu, C.; Zhang, G. A state of review for graphene-based materials in preparation methods, characterization, and properties. Mater. Sci. Eng. B 2024, 310, 117698. [Google Scholar] [CrossRef]
- Liu, F.; Wang, C.; Sui, X.; Riaz, M.A.; Xu, M.; Wei, L.; Chen, Y. Synthesis of graphene materials by electrochemical exfoliation: Recent progress and future potential. Carbon Energy 2019, 1, 173–199. [Google Scholar] [CrossRef]
- Bilyak, R. Methods of Obtaining Graphene. Comput. Probl. Electr. Eng. 2023, 13, 1–8. [Google Scholar] [CrossRef]
- Lee, S.J.; Yoon, S.J.; Jeon, I.-Y. Graphene/Polymer Nanocomposites: Preparation, Mechanical Properties, and Application. Polymers 2022, 14, 4733. [Google Scholar] [CrossRef] [PubMed]
- Verdejo, R.; Bernal, M.M.; Romasanta, L.J.; Lopez-Manchado, M.A. Graphene Filled Polymer Nanocomposites. J. Mater. Chem. 2011, 21, 3301. [Google Scholar] [CrossRef]
- Geim, A.K.; MacDonald, A.H. Graphene: Exploring carbon flatland. Phys. Today 2007, 60, 35–41. [Google Scholar] [CrossRef]
- Paton, K.R. Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 2014, 13, 624–630. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.; Chiang, W.-Y.; Nguyễn, T.D.; Hsieh, Y.-P. Controlling the properties of graphene produced by electrochemical exfoliation. Nanotechnology 2015, 26, 335607. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Peng, Z.; Liu, Y.; Ruiz-Zepeda, F.; Ye, R.; Samuel, E.L.G.; Yacaman, M.J.; Yakobson, B.I.; Tour, J.M. Laser-induced porous graphene films from commercial polymers. Nat. Commun. 2014, 5, 5714. [Google Scholar] [CrossRef] [PubMed]
- Tang, L.; Li, X.; Ji, R.; Teng, K.S.; Tai, G.; Ye, J.; Wei, C.; Lau, S.P. Bottom-up synthesis of large-scale graphene oxide nanosheets. J. Mater. Chem. 2012, 22, 5676. [Google Scholar] [CrossRef]
- Bianco, G.V.; Losurdo, M.; Giangregorio, M.M.; Sacchetti, A.; Prete, P.; Lovergine, N.; Capezzuto, P.; Bruno, G. Direct epitaxial CVD synthesis of tungsten disulfide on epitaxial and CVD graphene. RSC Adv. 2015, 5, 98700–98708. [Google Scholar] [CrossRef]
- Chee, W.K.; Lim, H.N.; Huang, N.M.; Harrison, I. Nanocomposites of Graphene/Polymers: A Review. RSC Adv. 2015, 5, 68014. [Google Scholar] [CrossRef]
- González, F.J.; González-Castillo, E.I.; Peña, A.; Avalos Belmontes, F. Nanofillers and Nanomaterials for Green Based Nanocomposites in Engineering Materials; Belmontes, F.A., González, F.J., López-Manchado, M.A., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2023; pp. 13–30. ISBN 978-3-031-18428-4. [Google Scholar]
- Sun, T.; Luo, W.; Luo, Y.; Wang, Y.; Zhou, S.; Liang, M.; Chen, Y.; Zou, H. Self-reinforced Polypropylene/Graphene composite with segregated structure to achieve balanced electrical and mechanical properties. Ind. Eng. Chem. Res. 2020, 59, 11206–11218. [Google Scholar] [CrossRef]
- Bai, Q.-Q.; Wei, X.; Yang, J.-H.; Zhang, N.; Huang, T.; Wang, Y.; Zhou, Z.-W. Dispersion and network formation of graphene platelets in polystyrene composites and the resultant conductive properties. Compos. Part A Appl. Sci. Manuf. 2017, 96, 89. [Google Scholar] [CrossRef]
- Tang, G.; Jiang, Z.-G.; Li, X.; Zhang, H.-B.; Dasari, A.; Yu, Z.-Z. Three-dimensional Graphene aerogels and their electrically conductive composites. Carbon 2014, 77, 592. [Google Scholar] [CrossRef]
- Kim, C.I.; Oh, S.M.; Oh, K.M.; Gansukh, E.; Lee, H.-I. Graphenes for low percolation threshold in electroconductive nylon 6 composites. Polym. Int. 2013, 63, 1003. [Google Scholar] [CrossRef]
- Vićentić, T.; Greco, I.; Iorio, C.S.; Miskovic, V.; Bajuk-Bogdanovic, D.; A Pašti, I.; Radulović, K.; Klenk, S.; Stimpel-Lindner, T.; Duesberg, G.S. Laser-induced graphene on cross-linked sodium alginate. Nanotechnology 2024, 35, 115103. [Google Scholar] [CrossRef]
- Han, S.-J.; Garcia, A.V.; Oida, S.; Jenkins, K.A.; Haensch, W. Graphene radio frequency receiver integrated circuit. Nat. Commun. 2014, 5, 3086. [Google Scholar] [CrossRef]
- Raimondo, M.; Naddeo, C.; Guadagno, L. Effect of non-covalent functionalization of graphene-based nanoparticles on the local electrical properties of epoxy nanocomposites. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1024, 012004. [Google Scholar] [CrossRef]
- Li, H.; Qu, Z.; Xie, Z.; Chen, Y. Field-induced semi-conductor-metal transition of hybrid ZnO and Graphene nanocomposites. Comput. Mater. Sci. 2022, 203, 111138. [Google Scholar] [CrossRef]
- Li, Y.; Chen, P.; Chen, X.; Gong, H.; Hu, X.; Peng, Y.; Xu, X.; Xie, Z.; Xiu, X.; Chen, D.; et al. Gate-Controlled NiO/Graphene/4H-SiC Double Schottky Barrier Heterojunction Based on a Metal-Oxide-Semiconductor Structure for Dual-Mode and Wide Range Ultra-violet Detection. ACS Appl. Electron. Mater. 2022, 4, 1807. [Google Scholar] [CrossRef]
- Orhan, E.O.; Efil, E.; Bayram, O.; Kaymak, N.; Berberoğlu, H.; Candemir, O.; Pavlov, I.; Ocak, S.B. 3D-Graphene-laser patterned p-type silicon Schottky diode. Mater. Sci. Semicond. Process. 2021, 121, 105454. [Google Scholar] [CrossRef]
- Negri, E.; Fuscaldo, W.; Burghignoli, P.; Galli, A. Reconfigurable THz leaky-wave antennas based on innovative metal–graphene metasurfaces. J. Phys. D Appl. Phys. 2024, 57, 485102. [Google Scholar] [CrossRef]
- Malik, S.; Zhao, Y.; He, Y.; Zhao, X.; Li, H.; Yi, W.; Occhipinti, L.G. Spray-lithography of hybrid graphene perovskite paper-based photodetectors for sustainable electronics. Nanotechnology 2024, 35, 325301. [Google Scholar] [CrossRef]
- Kumar, P.; Šilhavík, M.; Červenka, J.; Kužel, P. Ultra-broadband THz absorbers based on 3D graphene. J. Phys. D Appl. Phys. 2023, 56, 505103. [Google Scholar] [CrossRef]
- Rehman, M.A.; Roy, S.B.; Gwak, D.; Akhtar, I.; Nasir, N.; Kumar, S.; Khan, M.F.; Heo, K.; Chun, S.-H.; Seo, Y. Solar cells based on vertical Graphene nano hills directly grown on silicon. Carbon 2020, 164, 235. [Google Scholar] [CrossRef]
- Zhao, J.; Ji, P.; Li, Y.; Li, R.; Zhang, K.; Tian, H.; Yu, K.; Bian, B.; Hao, L.; Xiao, X.; et al. Ultrahigh-mobility semiconducting epitaxial graphene on silicon carbide. Nature 2024, 625, 60. [Google Scholar] [CrossRef]
- Kim, J.; Liu, Q.; Cui, T. Solution-gated nitrate sensitive field effect transistor with hybrid film: CVD Graphene/polymer selective membrane. Org. Electron. 2020, 78, 105551. [Google Scholar] [CrossRef]
- Peplowski, A.; Janczak, D.; Wróblewski, G.; Słoma, M.; Górski, Ł.; Malinowska, E.; Pałko, T.; Jakubowska, M. Graphene electrodes for voltammetric measurements in biological fluids. Circuit World 2015, 41, 112. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric Field Effect in Atomic Thin Carbon Films. Science 2004, 306, 666. [Google Scholar] [CrossRef]
- Elias; Alam, R.; Khatun, S.; Hossain, S.; Shah, S.S.; Aziz, A.; Uddin, N.; Hossain, M.A. Hydrothermal Synthesis of Carboxylated Functionalized Jute Stick Carbon and Reduced Graphene Oxide Based ZnO. Nanocomposite Photocatalysts: A Comparative Study. J. Ind. Eng. Chem. 2024; in press. [Google Scholar] [CrossRef]
- Song, X.; Wang, X.; Wang, M.; Dong, W.; Li, M.; Yang, F. Solar Light-Responsive ZnS/Reduced Graphene Oxide Photocatalysts for Enhanced Hydrogen Evolution. Catal. Lett. 2024, 154, 2527. [Google Scholar] [CrossRef]
- Lu, N.; Jing, X.; Zhang, J.; Zhang, P.; Qiao, Q.; Zhang, Z. Photo-Assisted Self-Assembly Synthesis of All 2D-Layered Heterojunction Photocatalysts with Long-Range Spatial Separation of Charge-Carriers toward Photocatalytic Redox Reactions. Chem. Eng. J. 2022, 431, 134001. [Google Scholar] [CrossRef]
- Velasco-Hernández, A.; Esparza-Muñoz, R.A.; de Moure-Flores, F.J.; Santos-Cruz, J.; Mayén-Hernández, S.A. Synthesis and Characterization of Graphene Oxide—TiO2 Thin Films by Sol-Gel for Photocatalytic Applications. Mater. Sci. Semicond. Process. 2020, 114, 105082. [Google Scholar] [CrossRef]
- Ramalingam, G.; Perumal, N.; Priya, A.K.; Rajendran, S. A Review of Graphene-Based Semiconductors for Photocatalytic Degradation of Pollutants in Wastewater. Chemosphere 2022, 300, 134391. [Google Scholar] [CrossRef]
- Oyedotun, K.O.; Mamba, B.B. Mamba New trends in supercapacitors applications. Inorg. Chem. Commun. 2024, 170, 113154. [Google Scholar] [CrossRef]
- Luo, D.; Hu, X.; Ji, W. Construction of battery charge state prediction model for new energy electric vehicles. Comput. Electr. Eng. 2024, 280, 109561. [Google Scholar] [CrossRef]
- Sankar, K.; Vijaya, R.; Selvan, K. Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances. Electrochim. Acta 2016, 213, 469. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, J.; Jia, X.; Li, W.; Zhang, Q.; Fan, L.; Ding, H.; Yang, H.; Yu, X.; Li, X.; et al. Graphene Armored with a Crystal Carbon Shell for Ultrahigh-Performance Potassium Ion Batteries and Aluminum Batteries. ACS Nano 2019, 13, 10631. [Google Scholar] [CrossRef]
- Dai, J.; Cheng, C.; Li, H.; Cui, T.; Xiao, K.; Ning, J.; Liu, J.; Wang, C. Synthesis of nickel silicate/reduced graphene oxide composite for long-life lithium-ion storage. Mater. Res. Express 2023, 10, 035503. [Google Scholar] [CrossRef]
- Polishchuk, Y.; Dubinevych, S.; Zinin, V.; Shembel, E. Graphene-enhanced sulfur cathode with high interface stability in Li-S batteries. J. Phys. Conf. Ser. 2022, 2382, 012005. [Google Scholar] [CrossRef]
- Wu, Z.-Y.; Wu, C.-Y.; Duh, J.-G. Facile synthesis of boron-doped graphene-silicon conductive network composite from recycling silicon for lithium-ion batteries anodes materials. Mater. Lett. 2021, 296, 129875. [Google Scholar] [CrossRef]
- Meng, W.-J.; Han, X.-Y.; Hou, Y.-L.; Xie, Y.; Zhang, J.; He, C.-J.; Zhao, D.-L. Defect-repaired reduced Graphene oxide caging silicon nanoparticles for lithium-ion anodes with enhanced reversible capacity and cyclic performance. Electrochim. Acta 2021, 382, 138271. [Google Scholar] [CrossRef]
- Cho, Y.; Kim, J.M.; Yan, B.; Hong, H.; Piao, Y. Influence of flake size and porosity of activated graphene on the performance of silicon/activated graphene composites as lithium-ion battery anodes. J. Electroanal. Chem. 2020, 876, 114475. [Google Scholar] [CrossRef]
- Argyropoulos, D.-P.; Selinis, P.; Vrithias, N.R.; Viskadourakis, Z.; Salmas, C.E.; Karakassides, M.A.; Kenanakis, G.; Elmasides, C.; Farmakis, F. Poly-Lactic Acid/Graphene Anode for Lithium-Ion Batteries Manufactured with a Facile Hot—Pressed Solvent-Free Process. J. Electrochem. Soc. 2023, 170, 050515. [Google Scholar] [CrossRef]
- Čerņevičs, K.; Yazyev, O.V. From defect to effect: Controlling electronic transport in chevron graphene. Electron. Struct. 2023, 5, 014006. [Google Scholar] [CrossRef]
- Chen, B.; Wang, D.; Zhang, B.; Zhong, X.; Liu, Y.; Sheng, I.; Zhang, Q.; Zou, X.; Zhou, G.; Cheng, H.-M. Engineering the Active Sites of Graphene Catalyst: From CO2 Activation to Activate LiCO2 Batteries. ACS Nano 2021, 15, 9841. [Google Scholar] [CrossRef]
- Yanik, M.O.; Yigit, E.A.; Akansu, Y.E.; Sahmetlioglu, E. Magnetic conductive polymer-graphene nanocomposites-based supercapacitors for energy storage. Energy 2023, 138, 883–889. [Google Scholar] [CrossRef]
- Bin, Y.; Zhang, J.; Kou, T.; Song, Y.; Liu, T.; Li, Y. Paper-Based Electrodes for Flexible Energy Storage Devices. Adv. Sci. 2017, 4, 1700107. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q. Contractile and torsional dual-responsive artificial muscles actuated by electric heating and water droplet. Smart Mater. Struct. 2023, 32, 075017. [Google Scholar] [CrossRef]
- Helps, T.; Taghavi, M.; Rossiter, J. Thermoplastic electroactive gels for 3D-printable artificial muscles. Smart Mater. Struct. 2019, 28, 085001. [Google Scholar] [CrossRef]
- Gao, Y.; Wang, X.; Fan, C. Advances in graphene-based 2D materials, for tendon, nerve, bone/cartilage regeneration and biomedicine. iScience 2024, 27, 110214. [Google Scholar] [CrossRef]
- Park, C.-L.; Goh, B.; Kim, K.J.; Oh, S.; Suh, D.; Song, Y.-C.; Kim, H.; Kim, E.S.; Lee, H.; Lee, D.W.; et al. Synergistic actuation performance of artificial fern muscle with a double nanocarbon structure. Mater. Today Adv. 2024, 21, 100459. [Google Scholar] [CrossRef]
- Mahmoudifard, M.; Soleimani, M.; Hatamie, S.; Zamanlui, S.; Ranjbarvan, P.; Vossoughi, M.; Hosseinzadeh, S. The different fate of satellite cells on conductive composite electrospun nanofibers with graphene and graphene oxide nanosheets. Biomed. Mater. 2016, 11, 025006. [Google Scholar] [CrossRef] [PubMed]
- Romo-Rico, J.; Bright, R.; Krishna, S.M.; Vasilev, K.; Golledge, J.; Jacob, M.V. Antimicrobial graphene-based coatings for biomedical implant applications. Carbon Trends 2023, 12, 100282. [Google Scholar] [CrossRef]
- Ma, Z. Advances in graphene-assisted flexible substrate sensors for human motion monitoring. Int. J. Electrochem. Sci. 2024, 19, 100760. [Google Scholar] [CrossRef]
- Butler, D.J.; Sankhe, C.S.; Khamsi, P.S.; Gomez, E.W.; Ebrahimi, A. Solution-processed graphene films for electrochemical monitoring of extracellular nitric oxide released by breast cancer cells. 2D Materials 2023, 11, 015021. [Google Scholar] [CrossRef]
- Wekalao, J.; Patel, S.K.; Anushkannan, N.; Alsalman, O.; Surve, J.; Parmar, J. Design of ring and cross shaped graphene metasurface sensor for efficient detection of malaria and 2 bit encodng applications. Diam. Relat. Mater. 2023, 139, 110401. [Google Scholar] [CrossRef]
- Islam, M.S.; Branigan, A.; Ye, D.; Collinson, M.M. Reduced Graphene Oxide Decorated Titanium Nitride Nanorod Array Electrodes for Electrochemical Applications. Electrochem 2024, 5, 274–286. [Google Scholar] [CrossRef]
- Oktay, B.; Erarslan, A.; Üstündağ, C.B.; Özerol, E.A. Preparation and characterization of graphene oxide quantum dots/silver nanoparticles and investigation of their antibacterial effects. Mater. Res. Express 2024, 11, 015603. [Google Scholar] [CrossRef]
- Jing, Z.; Zhang, Q.; Cheng, Y.; Ji, C.; Zhao, D.; Liu, Y.; Jia, W.; Pan, S.; Sang, S. Highly sensitive, reliable, and flexible piezo-resistive pressure sensors based on graphene-PDMS @ sponge. J. Micromech. Microeng. 2020, 30, 085012. [Google Scholar] [CrossRef]
- Karaca, E.; Acaralı, N. Application of graphene and its derivatives in medicine: A review. Mater. Today Commun. 2023, 37, 107054. [Google Scholar] [CrossRef]
- Priyadarsini, S.; Mohanty, S.; Mukherjee, S.; Basu, S.; Mishra, M. Graphene and graphene oxide as nanomaterials for medicine and biology application. J. Nanostruct. Chem. 2018, 8, 123. [Google Scholar] [CrossRef]
- Han, S.; Sun, J.; He, S.; Tang, M.; Chai, R. The application of graphene-based biomaterials in biomedicine. Am. J. Transl. Res. 2019, 11, 3246. [Google Scholar] [PubMed]
- Nicoletti, N.F.; Marinowic, D.R.; Perondi, D.; Gonçalves, J.I.B.; Piazza, D.; da Costa, J.C.; Falavigna, A. Non-Cytotoxic Graphene Nanoplatelets Upregulate Cell Proliferation and Self-Renewal Genes of Mesenchymal Stem Cells. Int. J. Mol. Sci. 2024, 25, 9817. [Google Scholar] [CrossRef] [PubMed]
Physical Property | Value |
---|---|
Specific surface | 2600 m2/g |
Young’s module | 0.5 TPa |
Breaking stress | 42 N m |
Thermal conductivity | 5000 W/m K |
Electric conductivity | 0.96 × 108 Ohms·m−1 |
Refractive index at 670 nm | 3.135 |
Absorption coefficient at 670 nm | 0.897 |
Graphene Applications | Reference |
---|---|
Field effect transistor | [28,29] |
Shoctty diode | [30,31,32] |
Antenna THz | [33] |
Photodetector | [34] |
Logic gate | [35] |
Solar cell | [36] |
Semiconductor | [37,38] |
Sensor | [38,39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elizalde-Herrera, F.J.; Flores-Soto, P.A.; Mora-Cortes, L.F.; González, F.J.; Soria-Arguello, G.; Avalos-Belmontes, F.; Narro-Céspedes, R.I.; Hoyos, M. Recent Development of Graphene-Based Composites for Electronics, Energy Storage, and Biomedical Applications: A Review. J. Compos. Sci. 2024, 8, 481. https://doi.org/10.3390/jcs8110481
Elizalde-Herrera FJ, Flores-Soto PA, Mora-Cortes LF, González FJ, Soria-Arguello G, Avalos-Belmontes F, Narro-Céspedes RI, Hoyos M. Recent Development of Graphene-Based Composites for Electronics, Energy Storage, and Biomedical Applications: A Review. Journal of Composites Science. 2024; 8(11):481. https://doi.org/10.3390/jcs8110481
Chicago/Turabian StyleElizalde-Herrera, Felipe J., Pablo A. Flores-Soto, Luis F. Mora-Cortes, Francisco J. González, Gustavo Soria-Arguello, Felipe Avalos-Belmontes, Rosa I. Narro-Céspedes, and Mario Hoyos. 2024. "Recent Development of Graphene-Based Composites for Electronics, Energy Storage, and Biomedical Applications: A Review" Journal of Composites Science 8, no. 11: 481. https://doi.org/10.3390/jcs8110481
APA StyleElizalde-Herrera, F. J., Flores-Soto, P. A., Mora-Cortes, L. F., González, F. J., Soria-Arguello, G., Avalos-Belmontes, F., Narro-Céspedes, R. I., & Hoyos, M. (2024). Recent Development of Graphene-Based Composites for Electronics, Energy Storage, and Biomedical Applications: A Review. Journal of Composites Science, 8(11), 481. https://doi.org/10.3390/jcs8110481