Eco-Friendly Wall Cladding Panels from Recycled Fishing Gear and Clamshell Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Panels Production Process
2.3. Characterization of Clamshell Powder
2.3.1. Thermogravimetric Analysis (TGA)
2.3.2. X-Ray Diffraction (XRD)
2.4. Characterization of the Panels
2.4.1. Differential Scanning Calorimetry (DSC)
2.4.2. Flexural Test
2.4.3. Flammability Test
2.4.4. Water Absorption Tests
2.4.5. Dynamic Mechanical Analysis (DMA)
2.4.6. Scanning Electron Microscopy (SEM)
3. Results
3.1. Characterization of the Clamshell Powder
3.1.1. Thermogravimetric Analysis (TGA)
3.1.2. X-Ray Diffraction (XRD)
3.2. Characterization of the Panels
3.2.1. Differential Scanning Calorimetry (DSC)
3.2.2. Flexural Test
3.2.3. Dynamic Mechanical Analysis (DMA)
3.2.4. Water Absorption Tests
3.2.5. Flammability Test
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lebreton, L.; Slat, B.; Ferrari, F.; Sainte-Rose, B.; Aitken, J.; Marthouse, R.; Hajbane, S.; Cunsolo, S.; Schwarz, A.; Levivier, A.; et al. Evidence that the Great Pacific Garbage Patch is rapidly accumulating plastic. Sci. Rep. 2018, 8, 4666. [Google Scholar] [CrossRef]
- Richardson, K.; Hardesty, B.D.; Vince, J.; Wilcox, C. Global estimates of fishing gear lost to the ocean each year. Sci. Adv. 2022, 8, eabq0135. [Google Scholar] [CrossRef] [PubMed]
- Uhrin, A.V.; Matthews, T.R.; Lewis, C. Lobster Trap Debris in the Florida Keys National Marine Sanctuary: Distribution, Abundance, Density, and Patterns of Accumulation. Mar. Coast. Fish. 2014, 6, 20–32. [Google Scholar] [CrossRef]
- Allsopp, M.; Walters, A.; Santillo, D.; Johnston, P. Plastic Debris in the World’s Oceans; Greenpeace International: Amsterdam, The Netherlands, 2006; Available online: https://www.greenpeace.to/greenpeace/wp-content/uploads/2011/05/plastic_ocean_report.pdf. (accessed on 15 June 2024).
- Markham, L. Endangered Olive Ridley Sea Turtles Found Dead in Mexico. Available online: https://www.nationalgeographic.com/animals/article/endangered-olive-ridley-sea-turtles-dead-mexico-news (accessed on 3 June 2024).
- Azevedo-Santos, V.M.; Hughes, R.M.; Pelicice, F.M. Ghost nets: A poorly known threat to Brazilian freshwater biodiversity. An. Acad. Bras. Cienc. 2022, 94, e20201189. [Google Scholar] [CrossRef] [PubMed]
- Macfadyen, G.; Huntington, T.; Cappell, R. Abandoned, lost or otherwise discarded fishing gear. In UNEP Regional Seas Reports and Studies No. 185; FAO Fisheries and Aquaculture Technical Paper No. 523; UNEP/FAO: Rome, Italy, 2009; Available online: https://www.researchgate.net/publication/242491383_Abandoned_Lost_or_Otherwise_Discarded_Fishing_Gear. (accessed on 3 June 2024).
- Matthews, T. Assessing Opinions on Abandoned, Lost, or Discarded Fishing Gear in the Caribbean. 2009. Available online: https://www.researchgate.net/publication/228995317 (accessed on 20 June 2024).
- Donohue, M.J.; Boland, R.C.; Sramek, C.M.; Antonelis, G.A. Derelict Fishing Gear in the Northwestern Hawaiian Islands: Diving Surveys and Debris Removal in 1999 Confirm Threat to Coral Reef Ecosystems. Mar. Pollut. Bull. 2001, 42, 1301–1312. [Google Scholar] [CrossRef] [PubMed]
- Dameron, O.J.; Parke, M.; Albins, M.A.; Brainard, R. Marine debris accumulation in the Northwestern Hawaiian Islands: An examination of rates and processes. Mar. Pollut. Bull. 2007, 54, 423–433. [Google Scholar] [CrossRef]
- Yoon, G.-L.; Kim, B.-T.; Kim, B.-O.; Han, S.-H. Chemical–mechanical characteristics of crushed oyster-shell. Waste Manag. 2003, 23, 825–834. [Google Scholar] [CrossRef]
- Bee, S.-L.; Hamid, Z. Hydroxyapatite derived from food industry bio-wastes: Syntheses, properties and its potential multifunctional applications. Ceram. Int. 2020, 46, 17149–17175. [Google Scholar] [CrossRef]
- Das, K.C.; Minkara, M.Y.; Melear, N.D.; Tollner, E.W. Effect of Poultry Litter Amendment on Hatchery Waste Composting. J. Appl. Poult. Res. 2002, 11, 282–290. [Google Scholar] [CrossRef]
- Ni, M.; Ratner, B.D. Differentiating calcium carbonate polymorphs by surface analysis techniques—An XPS and TOF-SIMS study. Surf. Interface Anal. 2008, 40, 1356–1361. [Google Scholar] [CrossRef]
- Feng, Q.; Pu, G.; Pei, Y.; Cui, F.; Li, H.; Kim, T. Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell. J. Cryst. Growth 2000, 216, 459–465. [Google Scholar] [CrossRef]
- Jing, Y.; Nai, X.; Dang, L.; Zhu, D.; Wang, Y.; Dong, Y.; Li, W. Reinforcing polypropylene with calcium carbonate of different morphologies and polymorphs. Sci. Eng. Compos. Mater. 2018, 25, 745–751. [Google Scholar] [CrossRef]
- Li, H.-Y.; Tan, Y.-Q.; Zhang, L.; Zhang, Y.-X.; Song, Y.-H.; Ye, Y.; Xia, M.-S. Bio-filler from waste shellfish shell: Preparation, characterization, and its effect on the mechanical properties on polypropylene composites. J. Hazard. Mater. 2012, 217–218, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Richard, O.; Thibodeau, M.; Massé, M.-O.; Beaudoin-Gagnon, M.-H.; Cummings, I.; Rabenasolo, H. Valorisation Agricole des Coquilles de Palourdes: Mise en Place de la Filière de Valorisation (Phase 3). Centre de Recherche sur les Milieux Insulaires et Maritimes (CERMIM), Îles-de-la-Madeleine (Québec). 46 p. + Annexes. 2019. Available online: https://www.cermim.ca/wp-content/uploads/2023/08/191220_Rapport-FINAL_Coquilles_Redacted.pdf (accessed on 12 November 2024).
- Journal de Montréal. Forcée de Déménager 11 Fois en 6 Ans: La Pénurie de Logements Est Criante Aux Îles-de-la-Madeleine. Available online: https://www.journaldemontreal.com/2023/03/24/forcee-de-demenager-11-fois-en-6-ans-la-penurie-de-logements-est-criante-aux-iles-de-la-madeleine (accessed on 15 June 2024).
- Radio-Canada. Pénurie de Logement Aux Îles-de-la-Madeleine: Un Eté 2022 Critique Pour le Service D’aide au Logement. Available online: https://ici.radio-canada.ca/nouvelle/1901679/penurie-logement-iles-de-la-madeleine-ete-2022-service-aide-logement (accessed on 15 June 2024).
- Bertelsen, I.M.G.; Ottosen, L.M. Recycling of Waste Polyethylene Fishing Nets as Fibre Reinforcement in Gypsum-based Materials. Fibers Polym. 2022, 23, 164–174. [Google Scholar] [CrossRef]
- Hussan, A.; Sebaibi, N.; El Haddaji, B.; Zelloufi, M. Comparative Effects of Polyethylene and Polypropylene-Based Waste Fishing Gear Fibers on Mechanical Parameters and Porosity of Cementitious Materials. In Proceedings of the RILEM Spring Convention and Conference 2024, Milan, Italy, 7–12 April 2024; pp. 132–140. [Google Scholar] [CrossRef]
- Ojeda, J.P. A meta-analysis on the use of plastic waste as fibers and aggregates in concrete composites. Constr. Build. Mater. 2021, 295, 123420. [Google Scholar] [CrossRef]
- Belmokhtar, Z.; Sanchez-Diaz, S.; Cousin, P.; Elkoun, S.; Robert, M. Polyolefin-Based Cladding Panels from Discarded Fishing Ropes: A Sustainable Solution for Managing Fishing Gear Waste in Isolated Islands. Waste 2024, 2, 337–353. [Google Scholar] [CrossRef]
- Sigma Aldrich. Polyethylene-Graft-Maleic Anhydride. Available online: https://www.sigmaaldrich.com/CA/en/product/aldrich/456632 (accessed on 29 May 2024).
- Sigma Aldrich. Polypropylene-Graft-Maleic Anhydride. Available online: https://www.sigmaaldrich.com/CA/en/product/aldrich/427845 (accessed on 29 May 2024).
- Hyatt, E.P.; Cutler, I.B.; Wadsworth, M.E. Calcium Carbonate Decomposition in Carbon Dioxide Atmosphere. J. Am. Ceram. Soc. 1958, 41, 70–74. [Google Scholar] [CrossRef]
- Owuamanam, S.; Cree, D. Progress of Bio-Calcium Carbonate Waste Eggshell and Seashell Fillers in Polymer Composites: A Review. J. Compos. Sci. 2020, 4, 70. [Google Scholar] [CrossRef]
- Patnaik, P. Handbook of inorganic chemicals. Choice Rev. Online 2003, 40, 40–6428. [Google Scholar] [CrossRef]
- PubChem. Calcium Carbonate. Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Calcium-carbonate (accessed on 29 May 2024).
- Blaine, R.L. Polymer Heats of Fusion; Thermal Applications Note TN048; TA Instruments: New Castle, DE, USA, 1990; Available online: https://www.tainstruments.com/pdf/literature/TN048.pdf (accessed on 29 May 2024).
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D635-22; Standard Test Method for Rate of Burning and/or Extent and Time of Burning of Plastics in a Horizontal Position. ASTM International: West Conshohocken, PA, USA, 2022.
- ASTM D570-22; Standard Test Method for Water Absorption of Plastics. ASTM International: West Conshohocken, PA, USA, 2022.
- Qu, T.; Yao, X.; Owens, G.; Gao, L.; Zhang, H. A sustainable natural clam shell derived photocatalyst for the effective adsorption and photodegradation of organic dyes. Sci. Rep. 2022, 12, 2988. [Google Scholar] [CrossRef]
- Shariffuddin, J.H.; Yean, W.C.; Ghazali, S.S. Investigating the catalytic properties of calcium compounds derived from marine based shell waste for wastewater treatment. Mater. Today Proc. 2018, 5, 21718–21727. [Google Scholar] [CrossRef]
- Barros, M.; Bello, P.; Bao, M.; Torrado, J. From waste to commodity: Transforming shells into high purity calcium carbonate. J. Clean. Prod. 2009, 17, 400–407. [Google Scholar] [CrossRef]
- Yao, Z.; Chen, T.; Li, H.; Xia, M.; Ye, Y.; Zheng, H. Mechanical and thermal properties of polypropylene (PP) composites filled with modified shell waste. J. Hazard. Mater. 2013, 262, 212–217. [Google Scholar] [CrossRef]
- Moustafa, H.; Youssef, A.M.; Duquesne, S.; Darwish, N.A. Characterization of bio-filler derived from seashell wastes and its effect on the mechanical, thermal, and flame retardant properties of ABS composites. Polym. Compos. 2017, 38, 2788–2797. [Google Scholar] [CrossRef]
- Aumnate, C.; Rudolph, N.; Sarmadi, M. Recycling of Polypropylene/Polyethylene Blends: Effect of Chain Structure on the Crystallization Behaviors. Polymers 2019, 11, 1456. [Google Scholar] [CrossRef]
- Sahebian, S.; Zebarjad, S.; Khaki, J.V.; Sajjadi, S. The effect of nano-sized calcium carbonate on thermodynamic parameters of HDPE. J. Mech. Work. Technol. 2009, 209, 1310–1317. [Google Scholar] [CrossRef]
- Zhang, Q.-X.; Yu, Z.-Z.; Xie, X.-L.; Mai, Y.-W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer 2004, 45, 5985–5994. [Google Scholar] [CrossRef]
- Huang, L.; Wang, H.; Wang, W.; Wang, Q.; Song, Y. Non-isothermal crystallization kinetics of wood-flour/polypropylene composites in the presence of β-nucleating agent. J. For. Res. 2016, 27, 949–958. [Google Scholar] [CrossRef]
- Wang, W.; Liu, L.; Ding, N.; Zhang, R.; Yu, J. Mechanical and thermal behavior analysis of wood–polypropylene composites. Text. Res. J. 2021, 91, 347–357. [Google Scholar] [CrossRef]
- Cui, Y.; Tao, J.; Noruziaan, B.; Cheung, M.; Lee, S. DSC Analysis and Mechanical Properties of Wood—Plastic Composites. J. Reinf. Plast. Compos. 2010, 29, 278–289. [Google Scholar] [CrossRef]
- Demir, H.; Atikler, U.; Balköse, D.; Tıhmınlıoğlu, F. The effect of fiber surface treatments on the tensile and water sorption properties of polypropylene–luffa fiber composites. Compos. Part A Appl. Sci. Manuf. 2006, 37, 447–456. [Google Scholar] [CrossRef]
- Wu, C. Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid–Characterization and Biodegradability Assessment. Macromol. Biosci. 2005, 5, 352–361. [Google Scholar] [CrossRef]
- Tserki, V.; Matzinos, P.; Kokkou, S.; Panayiotou, C. Novel biodegradable composites based on treated lignocellulosic waste flour as filler. Part I. Surface chemical modification and characterization of waste flour. Compos. Part A Appl. Sci. Manuf. 2005, 36, 965–974. [Google Scholar] [CrossRef]
- Ndiaye, D.; Tidjani, A. Effects of coupling agents on thermal behavior and mechanical properties of wood flour/polypropylene composites. J. Compos. Mater. 2012, 46, 3067–3075. [Google Scholar] [CrossRef]
- Ndiaye, D.; Gueye, M.; Diop, B. Characterization, Physical and Mechanical Properties of Polypropylene/Wood-Flour Composites. Arab. J. Sci. Eng. 2012, 38, 59–68. [Google Scholar] [CrossRef]
- Chua, P.S. Dynamic mechanical analysis studies of the interphase. Polym. Compos. 1987, 8, 308–313. [Google Scholar] [CrossRef]
- Bakly, N.S.; Al-Mutairi, N.H.; Layla, A.A.; Almaamori, M.H. Investigate the Effect of Temperature Change on the Properties of the PP/CaCO3 Composites: A Comparative Study. Al-Mustaqbal J. Sustain. Eng. Sci. 2024, 1, 1. [Google Scholar] [CrossRef]
- Xu, J.; Mucalo, M.R.; Pickering, K.L. Bioinspired surface modification of mussel shells and their application as a biogenic filler in polypropylene composites. Compos. Part C Open Access 2024, 15, 100520. [Google Scholar] [CrossRef]
- Melo, P.M.A.; Macêdo, O.B.; Barbosa, G.P.; Ueki, M.M.; Silva, L.B. High-density polyethylene/mollusk shell-waste composites: Effects of particle size and coupling agent on morphology, mechanical and thermal properties. J. Mater. Res. Technol. 2019, 8, 1915–1925. [Google Scholar] [CrossRef]
- Yeshiwas, T.A.; Yigezu, B.S.; Desalegn, Y.M. Investigation on the Mechanical Properties of Wood-Plastic Composites for theApplication of Ceiling Panels. Mater. Res. Express 2024, 11, 085304. [Google Scholar] [CrossRef]
- Srivabut, C.; Ratanawilai, T.; Hiziroglu, S. Effect of nanoclay, talcum, and calcium carbonate as filler on properties of composites manufactured from recycled polypropylene and rubberwood fiber. Constr. Build. Mater. 2018, 162, 450–458. [Google Scholar] [CrossRef]
- Mulford Plastics. HDPE Leaflet. Available online: https://www.mulfordplastics.com.au/media/1257/hdpe-leaflet.pdf (accessed on 4 June 2024).
- SIMONA AMERICA INDUSTRIES. SIMONA® HDPE POLYTONE® SHEET. Available online: https://www.simona-america.com/fileadmin/user_upload/USA/Applications/Outdoor/Playground/16_SIMONA-HDPE-Polytone.pdf (accessed on 4 June 2024).
- Lu, Q.-C.; Dou, Q. Investigation on microstructures, melting and crystallization behaviors, mechanical and processing properties of β-isotactic polypropylene/CaCO3 toughening masterbatch composites. J. Polym. Res. 2017, 24, 206. [Google Scholar] [CrossRef]
- Bassyouni, M. Dynamic mechanical properties and characterization of chemically treated sisal fiber-reinforced polypropylene biocomposites. J. Reinf. Plast. Compos. 2018, 37, 1402–1417. [Google Scholar] [CrossRef]
- Biswal, M.; Mohanty, S.; Nayak, S.K. Mechanical, thermal and dynamic-mechanical behavior of banana fiber reinforced polypropylene nanocomposites. Polym. Compos. 2011, 32, 1190–1201. [Google Scholar] [CrossRef]
- White, R.P.; Lipson, J.E.G. Polymer Free Volume and Its Connection to the Glass Transition. Macromolecules 2016, 49, 3987–4007. [Google Scholar] [CrossRef]
- Turnbull, D.; Cohen, M.H. Free-Volume Model of the Amorphous Phase: Glass Transition. J. Chem. Phys. 1961, 34, 120–125. [Google Scholar] [CrossRef]
- Tajvidi, M.; Falk, R.H.; Hermanson, J.C. Effect of natural fibers on thermal and mechanical properties of natural fiber polypropylene composites studied by dynamic mechanical analysis. J. Appl. Polym. Sci. 2006, 101, 4341–4349. [Google Scholar] [CrossRef]
- Zhang, D.; Guo, J.; Zhang, K. Effects of compatilizers on mechanical and dynamic mechanical properties of polypropylene–long glass fiber composites. J. Thermoplast. Compos. Mater. 2015, 28, 643–655. [Google Scholar] [CrossRef]
- Huang, R.; Xu, X.; Lee, S.; Zhang, Y.; Kim, B.-J.; Wu, Q. High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance. Materials 2013, 6, 4122–4138. [Google Scholar] [CrossRef]
- Hristov, V.; Vasileva, S. Dynamic Mechanical and Thermal Properties of Modified Poly(propylene) Wood Fiber Composites. Macromol. Mater. Eng. 2003, 288, 798–806. [Google Scholar] [CrossRef]
- John, M.J.; Anandjiwala, R.D. Chemical modification of flax reinforced polypropylene composites. Compos. Part A Appl. Sci. Manuf. 2009, 40, 442–448. [Google Scholar] [CrossRef]
- Pluta, M.; Kryszewski, M. Studies of α relaxation process in spherulitic and nonspherulitic samples of isotactic polypropylene with different molecular ordering. Acta Polym. 1987, 38, 42–52. [Google Scholar] [CrossRef]
- Hassen, A.A.; Dizbay-Onat, M.; Bansal, D.; Bayush, T.; Vaidya, U. Utilization of Chicken Eggshell Waste as a Bio-Filler for Thermoplastic Polymers: Thermal and Mechanical Characterization of Polypropylene Filled with Naturally Derived CaCo3. Polym. Polym. Compos. 2015, 23, 653–662. [Google Scholar] [CrossRef]
- Deodhar, S.; Shanmuganathan, K.; Fan, Q.; Wilkie, C.A.; Costache, M.C.; Dembsey, N.A.; Patra, P.K. Calcium carbonate and ammonium polyphosphate-based flame retardant composition for polypropylene. J. Appl. Polym. Sci. 2011, 120, 1866–1873. [Google Scholar] [CrossRef]
- PRODUCT SAFETY INFORMATION SHEET. 2022. Available online: www.borealisgroup.com (accessed on 6 June 2024).
- Shi, L.; Chew, M.Y.L. Experimental study of woods under external heat flux by autoignition. J. Therm. Anal. Calorim. 2012, 111, 1399–1407. [Google Scholar] [CrossRef]
- QUADRANT ENGINEERING PLASTIC PRODUCTS. Material Safety Data Sheet. Available online: https://www.alro.com/dataPDF/Plastics/PlasticsMSDS/MSDS_HDPE.pdf (accessed on 6 June 2024).
- Karlsson, L.; Lundgren, A.; Jungqvist, J.; Hjertberg, T. Influence of melt behaviour on the flame retardant properties of ethylene copolymers modified with calcium carbonate and silicone elastomer. Polym. Degrad. Stab. 2009, 94, 527–532. [Google Scholar] [CrossRef]
- Rasib, S.Z.M.; Mariatti, M.; Atay, H.Y. Effect of waste fillers addition on properties of high-density polyethylene composites: Mechanical properties, burning rate, and water absorption. Polym. Bull. 2021, 78, 6777–6795. [Google Scholar] [CrossRef]
Panel | Fishing Rope | Wood Fiber | MAPP | MAPE | Clamshell Powder |
---|---|---|---|---|---|
FRW-M | 97 | 0 | 1.5 | 1.5 | 0 |
30WF-M | 67 | 30 | 1.5 | 1.5 | 0 |
30CS-M | 67 | 0 | 1.5 | 1.5 | 30 |
15CS15WF-M | 67 | 15 | 1.5 | 1.5 | 15 |
Samples | ΔHm,HDPE (J/g) | ΔHm,PP (J/g) | XHDPE (%) | XPP (%) | Tm,HDPE (°C) | Tm,PP (°C) | Tc,PP (°C) | Tc,HDPE (°C) |
---|---|---|---|---|---|---|---|---|
FRW-M | 28 | 24 | 39.4 | 16 | 137.8 | 169.7 | 115 | 110.09 |
30CS-M | 8 | 7 | 16.3 | 6.8 | 136 | 168.3 | 115.3 | 111.79 |
30WF-M | 18 | 15 | 36.6 | 14.5 | 138.4 | 170.3 | 114.3 | 108.2 |
15CS15WF-M | 14 | 15 | 28.5 | 14.5 | 138 | 170.4 | 115.6 | 112.3 |
Sample | Flexural Strength (Mpa) | Flexural Modulus (Gpa) | Elongation at Break (%) |
---|---|---|---|
FRW-M | 23.33 ± 4.36 | 0.65 ± 0.20 | 15.15 ± 2.56 |
30CS-M | 12.71 ± 1.56 | 1.03 ± 0.23 | 2.9 ± 0.35 |
30WF-M | 16 ± 3.97 | 0.87 ± 0.19 | 5.98 ± 0.45 |
15CS15WF-M | 27 ± 4.61 | 1.96 ± 0.58 | 4.86 ± 1.04 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belmokhtar, Z.; Cousin, P.; Elkoun, S.; Robert, M. Eco-Friendly Wall Cladding Panels from Recycled Fishing Gear and Clamshell Waste. J. Compos. Sci. 2024, 8, 484. https://doi.org/10.3390/jcs8110484
Belmokhtar Z, Cousin P, Elkoun S, Robert M. Eco-Friendly Wall Cladding Panels from Recycled Fishing Gear and Clamshell Waste. Journal of Composites Science. 2024; 8(11):484. https://doi.org/10.3390/jcs8110484
Chicago/Turabian StyleBelmokhtar, Zakariae, Patrice Cousin, Saïd Elkoun, and Mathieu Robert. 2024. "Eco-Friendly Wall Cladding Panels from Recycled Fishing Gear and Clamshell Waste" Journal of Composites Science 8, no. 11: 484. https://doi.org/10.3390/jcs8110484
APA StyleBelmokhtar, Z., Cousin, P., Elkoun, S., & Robert, M. (2024). Eco-Friendly Wall Cladding Panels from Recycled Fishing Gear and Clamshell Waste. Journal of Composites Science, 8(11), 484. https://doi.org/10.3390/jcs8110484