Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Biocomposites
3.2. Printing of Samples
3.3. Mechanical Tests
3.3.1. Tensile Tests
3.3.2. Bending Tests
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Future Markets. The Global Market for Bioplastics and Biopolymers 2023–2033; Future Markets, Inc.: Edimburgo, UK, 2022. [Google Scholar]
- De Oliveira, P.Z.; de Souza Vandenberghe, L.P.; de Mello, A.F.M.; Soccol, C.R. A concise update on major poly-lactic acid bio-processing barriers. Bioresour. Technol. Rep. 2022, 18, 101094. [Google Scholar]
- Maia, B.S.; Behravesh, A.H.; Tjong, J.; Sain, M. Mechanical performance of modified Polypropylene/Polyamide matrix rein-forced with treated recycled carbon fibers for lightweight applications. J. Polym. Res. 2022, 29, 136. [Google Scholar]
- Lyu, Z.; Lim, G.J.; Koh, J.J.; Li, Y.; Ma, Y.; Ding, J.; Wang, J.; Hu, Z.; Wang, J.; Chen, W.; et al. Design and Manufacture of 3D-Printed Batteries. Joule 2020, 5, 89–114. [Google Scholar] [CrossRef]
- Tan, H.W.; Choong, Y.Y.C.; Kuo, C.N.; Low, H.Y.; Chua, C.K. 3D printed electronics: Processes, materials and future trends. Prog. Mater. Sci. 2022, 127, 100945. [Google Scholar]
- Song, J.; Cao, M.; Cai, L.; Zhou, Y.; Chen, J.; Liu, S.; Zhou, B.; Lu, Y.; Zhang, J.; Long, W.; et al. 3D printed polymeric formwork for lattice cementitious composites. J. Build. Eng. 2021, 43, 103074. [Google Scholar] [CrossRef]
- Bunsell, A.; Joannès, S.; Thionnet, A. Fundamentals of Fibre Reinforced Composite Materials; CRC Press: Boca Raton, FL, USA, 2021. [Google Scholar]
- Mitra, B.C. Environment Friendly Composite Materials: Biocomposites and Green Composites. Def. Sci. J. 2014, 64, 244–261. [Google Scholar] [CrossRef]
- De Almeida, V.H.M.; Pisani, M.B.; Camargo, J.C.; Sousa, E.F.M.; Gomes, V.; Almeida, E.C. Metallic Surface Coating of Polymeric Parts Produced by Additive Manufacturing Process. Mater. Sci. Forum 2020, 1012, 453–458. [Google Scholar] [CrossRef]
- Escursell, S.; Llorach-Massana, P.; Roncero, M.B. Sustainability in e-commerce packaging: A review. J. Clean. Prod. 2020, 280, 124314. [Google Scholar] [CrossRef]
- Diegel, O. Additive Manufacturing: An Overview. In Comprehensive Materials Processing; Saleem, H., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 10, pp. 3–18. [Google Scholar]
- Dicker, M.P.; Duckworth, P.F.; Baker, A.B.; Francois, G.; Hazzard, M.K.; Weaver, P.M. Green composites: A review of material attributes and complementary applications. Compos. Part A Appl. Sci. Manuf. 2014, 56, 280–289. [Google Scholar] [CrossRef]
- Shekar, H.S.; Ramachandra, M.J.M.T.P. Green Composites: A Review. Mater. Today Proc. 2018, 5, 2518–2526. [Google Scholar]
- Rafiee, K.; Schritt, H.; Pleissner, D.; Kaur, G.; Brar, S.K. Biodegradable green composites: It’s never too late to mend. Curr. Opin. Green Sustain. Chem. 2021, 30, 100482. [Google Scholar]
- Daver, F.; Lee, K.P.M.; Brandt, M.; Shanks, R. Cork–PLA composite filaments for fused deposition modelling. Compos. Sci. Technol. 2018, 168, 230–237. [Google Scholar]
- Kariz, M.; Sernek, M.; Obućina, M.; Kuzman, M.K. Effect of wood content in FDM filament on properties of 3D printed parts. Mater. Today Commun. 2018, 14, 135–140. [Google Scholar] [CrossRef]
- Dong, Y.; Milentis, J.; Pramanik, A. Additive manufacturing of mechanical testing samples based on virgin poly (lactic acid) (PLA) and PLA/wood fibre composites. Adv. Manuf. 2018, 6, 71–82. [Google Scholar] [CrossRef]
- Badouard, C.; Traon, F.; Denoual, C.; Mayer-Laigle, C.; Paës, G.; Bourmaud, A. Exploring mechanical properties of fully compostable flax reinforced composite filaments for 3D printing applications. Ind. Crop. Prod. 2019, 135, 246–250. [Google Scholar] [CrossRef]
- Zarna, C.; Opedal, M.T.; Echtermeyer, A.T.; Chinga-Carrasco, G. Reinforcement ability of lignocellulosic components in biocomposites and their 3D printed applications—A review. Compos. Part C Open Access 2021, 6, 100171. [Google Scholar] [CrossRef]
- Liu, H.; He, H.; Peng, X.; Huang, B.; Li, J. Three-dimensional printing of poly(lactic acid) bio-based composites with sugarcane bagasse fiber: Effect of printing orientation on tensile performance. Polym. Adv. Technol. 2019, 30, 910–922. [Google Scholar] [CrossRef]
- Ambone, T.; Torris, A.; Shanmuganathan, K. Enhancing the mechanical properties of 3D printed polylactic acid using nanocellulose. Polym. Eng. Sci. 2020, 60, 1842–1855. [Google Scholar] [CrossRef]
- Wang, Q.; Ji, C.; Sun, L.; Sun, J.; Liu, J. Cellulose Nanofibrils Filled Poly(Lactic Acid) Biocomposite Filament for FDM 3D Printing. Molecules 2020, 25, 2319. [Google Scholar] [CrossRef]
- Mazzanti, V.; Malagutti, L.; Mollica, F. FDM 3D Printing of Polymers Containing Natural Fillers: A Review of their Mechanical Properties. Polymers 2019, 11, 1094. [Google Scholar] [CrossRef]
- Rech, F.; Silva, S.M.D.; Roldo, L.; Oliveira, J.M.; Silva, F.P. Formulação e caracterização de potenciais filamentos compósitos de PLA e talos de tabaco para aplicação em manufatura aditiva. Rev. Mater. 2020, 26, e12988. [Google Scholar]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.; Hui, D. Additive manufacturing (3D printing): A review of materials, methods, applications and challenges. Compos. B. Eng. 2018, 143, 172–196. [Google Scholar]
- Vyavahare, S.; Teraiya, S.; Panghal, D.; Kumar, S. Fused deposition modelling: A review. Rapid Prototyp. J. 2019, 26, 176–201. [Google Scholar] [CrossRef]
- Bardot, M.; Schulz, M.D. Biodegradable Poly(Lactic Acid) Nanocomposites for Fused Deposition Modeling 3D Printing. Nanomaterials 2020, 10, 2567. [Google Scholar] [CrossRef]
- Das, A.K.; Agar, D.A.; Rudolfsson, M.; Larsson, S.H. A review on wood powders in 3D printing: Processes, properties and potential applications. J. Mater. Res. Technol. 2021, 15, 241–255. [Google Scholar]
- Stoof, D.; Pickering, K.; Zhang, Y. Fused Deposition Modelling of Natural Fibre/Polylactic Acid Composites. J. Compos. Sci. 2017, 1, 8. [Google Scholar] [CrossRef]
- Xie, G.; Zhang, Y.; Lin, W. Plasticizer Combinations and Performance of Wood Flour–Poly(Lactic Acid) 3D Printing Filaments. BioResources 2017, 12, 6736–6748. [Google Scholar] [CrossRef]
- Guo, R.; Ren, Z.; Bi, H.; Song, Y.; Xu, M. Effect of toughening agents on the properties of poplar wood flour/poly (lactic acid) composites fabricated with Fused Deposition Modeling. Eur. Polym. J. 2018, 107, 34–45. [Google Scholar] [CrossRef]
- Martikka, O.; Kärki, T.; Wu, Q.L. Mechanical Properties of 3D-Printed Wood-Plastic Composites. Key Eng. Mater. 2018, 777, 499–507. [Google Scholar] [CrossRef]
- Yang, T.-C. Effect of Extrusion Temperature on the Physico-Mechanical Properties of Unidirectional Wood Fiber-Reinforced Polylactic Acid Composite (WFRPC) Components Using Fused Deposition Modeling. Polymers 2018, 10, 976. [Google Scholar] [CrossRef]
- Ayrilmis, N.; Kariz, M.; Kwon, J.H.; Kuzman, M.K. Effect of printing layer thickness on water absorption and mechanical properties of 3D-printed wood/PLA composite materials. Int. J. Adv. Manuf. Technol. 2019, 102, 2195–2200. [Google Scholar] [CrossRef]
- Guessasma, S.; Belhabib, S.; Nouri, H. Microstructure and Mechanical Performance of 3D Printed Wood-PLA/PHA Using Fused Deposition Modelling: Effect of Printing Temperature. Polymers 2019, 11, 1778. [Google Scholar] [CrossRef]
- Le Guen, M.-J.; Hill, S.; Smith, D.; Theobald, B.; Gaugler, E.; Barakat, A.; Mayer-Laigle, C. Influence of Rice Husk and Wood Biomass Properties on the Manufacture of Filaments for Fused Deposition Modeling. Front. Chem. 2019, 7, 735. [Google Scholar] [CrossRef]
- Bhagia, S.; Lowden, R.R.; Erdman, D., III; Rodriguez, M., Jr.; Haga, B.A.; Solano, I.R.M.; Gallego, N.C.; Pu, Y.; Muchero, W.; Kunc, V.; et al. Tensile properties of 3D-printed wood-filled PLA materials using poplar trees. Appl. Mater. Today 2020, 21, 100832. [Google Scholar] [CrossRef]
- Estakhrianhaghighi, E.; Mirabolghasemi, A.; Zhang, Y.; Lessard, L.; Akbarzadeh, A. 3D-Printed Wood-Fiber Reinforced Ar-chitected Cellular Composites. Adv. Eng. Mater. 2020, 22, 2000565. [Google Scholar]
- Kumar, S.D.; Venkadeshwaran, K.; Aravindan, M. Fused deposition modelling of PLA reinforced with cellulose nano-crystals. Mater. Today Proc. 2020, 33, 868–875. [Google Scholar] [CrossRef]
- Ma, S.; Kou, L.; Zhang, X.; Tan, T. Energy grass/polylactic acid composites and pretreatments for additive manufacturing. Cellulose 2020, 27, 2669–2683. [Google Scholar] [CrossRef]
- Da Silva, S.M.; Antunes, T.; Costa, M.; Oliveira, J. Cork-like filaments for Additive Manufacturing. Addit. Manuf. 2020, 34, 101229. [Google Scholar] [CrossRef]
- Yang, F.; Zeng, J.; Long, H.; Xiao, J.; Luo, Y.; Gu, J.; Zhou, W.; Wei, Y.; Dong, X. Micrometer Copper-Zinc Alloy Particles-Reinforced Wood Plastic Composites with High Gloss and Antibacterial Properties for 3D Printing. Polymers 2020, 12, 621. [Google Scholar] [CrossRef]
- Yang, T.-C.; Yeh, C.-H. Morphology and Mechanical Properties of 3D Printed Wood Fiber/Polylactic Acid Composite Parts Using Fused Deposition Modeling (FDM): The Effects of Printing Speed. Polymers 2020, 12, 1334. [Google Scholar] [CrossRef]
- Figueroa-Velarde, V.; Diaz-Vidal, T.; Cisneros-López, E.O.; Robledo-Ortiz, J.R.; López-Naranjo, E.J.; Ortega-Gudiño, P.; Rosales-Rivera, L.C. Mechanical and Physicochemical Properties of 3D-Printed Agave Fibers/Poly(lactic) Acid Biocomposites. Materials 2021, 14, 3111. [Google Scholar]
- Jing, H.; He, H.; Liu, H.; Huang, B.; Zhang, C. Study on properties of polylactic acid/lemongrass fiber biocomposites prepared by fused deposition modeling. Polym. Compos. 2020, 42, 973–986. [Google Scholar] [CrossRef]
- Sekar, V.; Zarrouq, M.; Namasivayam, S.N. Development and Characterization of Oil Palm Empty Fruit Bunch Fibre Rein-forced Polylactic Acid Filaments for Fused Deposition Modeling. J. Mech. Eng. 2021, 18, 89–107. [Google Scholar]
- Yu, W.; Dong, L.; Lei, W.; Zhou, Y.; Pu, Y.; Zhang, X. Effects of Rice Straw Powder (RSP) Size and Pretreatment on Properties of FDM 3D-Printed RSP/Poly(lactic acid) Biocomposites. Molecules 2021, 26, 3234. [Google Scholar] [CrossRef]
- Fico, D.; Rizzo, D.; De Carolis, V.; Montagna, F.; Palumbo, E.; Corcione, C.E. Development and characterization of sustainable PLA/Olive wood waste composites for rehabilitation applications using Fused Filament Fabrication (FFF). J. Build. Eng. 2022, 56, 104673. [Google Scholar] [CrossRef]
- Inseemeesak, B.; Siripaiboon, C.; Somkeattikul, K.; Attasophonwattana, P.; Kiatiwat, T.; Punsuvon, V.; Areeprasert, C. Biocom-posite fabrication from pilot-scale steam-exploded coconut fiber and PLA/PBS with mechanical and thermal characterizations. J. Clean. Prod. 2022, 379, 134517. [Google Scholar]
- Lohar, D.; Nikalje, A.; Damle, P. Development and testing of hybrid green polymer composite (HGPC) filaments of PLA reinforced with waste bio fillers. Mater. Today Proc. 2022, 62, 818–824. [Google Scholar]
- Lohar, D.; Nikalje, A.; Damle, P. Synthesis and characterization of PLA hybrid composites using bio waste fillers. Mater. Today Proc. 2023, 72, 2155–2162. [Google Scholar]
- Mansingh, B.B.; Binoj, J.S.; Tan, Z.Q.; Eugene, W.W.L.; Amornsakchai, T.; Hassan, S.A.; Goh, K.L. Comprehensive characterization of raw and treated pineapple leaf fiber/polylactic acid green composites manufactured by 3D printing technique. Polym. Compos. 2022, 43, 6051–6061. [Google Scholar]
- Müller, M.; Šleger, V.; Kolář, V.; Hromasová, M.; Piš, D.; Mishra, R.K. Low-Cycle Fatigue Behavior of 3D-Printed PLA Reinforced with Natural Filler. Polymers 2022, 14, 1301. [Google Scholar] [CrossRef]
- Palaniyappan, S.; Veeman, D.; Sivakumar, N.K.; Natrayan, L. Development and optimization of lattice structure on the walnut shell reinforced PLA composite for the tensile strength and dimensional error properties. Structures 2022, 45, 163–178. [Google Scholar] [CrossRef]
- Scaffaro, R.; Gulino, E.F.; Citarrella, M.C.; Maio, A. Green Composites Based on Hedysarum coronarium with Outstanding FDM Printability and Mechanical Performance. Polymers 2022, 14, 1198. [Google Scholar] [CrossRef]
- Shahar, F.S.; Sultan, M.T.H.; Safri, S.N.A.; Jawaid, M.; Talib, A.R.A.; Basri, A.A.; Shah, A.U.M. Fatigue and impact properties of 3D printed PLA reinforced with kenaf particles. J. Mater. Res. Technol. 2022, 16, 461–470. [Google Scholar]
- Sun, Y.; Wang, Y.; Mu, W.; Zheng, Z.; Yang, B.; Wang, J.; Zhang, R.; Zhou, K.; Chen, L.; Ying, J.; et al. Mechanical properties of 3D printed micro-nano rice husk/polylactic acid filaments. J. Appl. Polym. Sci. 2022, 139, e52619. [Google Scholar] [CrossRef]
- Basnett, P.; Ravi, S.; Roy, I. 8—Natural bacterial biodegradable medical polymers: Polyhydroxyalkanoates. In Science and Principles of Biodegradable and Bioresorbable Medical Polymers; Zhang, X., Ed.; Woodhead Publishing: Sawston, UK, 2017; pp. 257–277. [Google Scholar]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2015.
- ISO 527-1:2019; Plastics—Determination of Tensile Properties. International Organization for Standardization: Geneva, Switzerland, 2019.
- GB/T 1040-92; Plastics-Determination of Tensile Properties. Standardization Administration of China: Beijing, China, 1992.
- GB/T 24508-2009; Wood-Plastic Composite Flooring. Standardization Administration of China: Beijing, China, 2009.
- ASTM D790-17; Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials. ASTM International: West Conshohocken, PA, USA, 2017.
- ISO 178; Plastics—Determination of Flexural Properties. International Organization for Standardization: Geneva, Switzerlan, 2019.
Fiber (Acronym) | Average Fiber Diameter (µm) | Fiber Pretreatment | Polymeric Matrix | Additives in the Biocomposite | Source |
---|---|---|---|---|---|
Harakeke fiber (HKF) | 12 | 5% NaOH and 2% Sodium Sulphite | PLA Ingeo™ 3052D | - | [29] |
Hemp fiber (HF) | 28 | 5% NaOH | |||
Poplar wood flour (PWF) | 95 to 105 | - | PLA | Glycerol | [30] |
Tributyl citrate | |||||
Cork powder (CP) | 272 to 733 | - | PLA Ingeo™ 4032D | Tributyl citrate | [15] |
Wood powder (WP) | - | - | PLA | - | [17] |
Poplar wood flour (WF) | 149 | - | PLA Ingeo™ 4032D | Polyurethane | [31] |
PCL | |||||
POE | |||||
Glycidyl methacrylate | |||||
DCP | |||||
Beech wood (BW) | 237 | - | PLA Ingeo™ 2003D | - | [16] |
Pinewood fiber (PW) | - | - | PLA | Polyhydroxyalkanoate - | [32] |
Wood Fiber (WF) | |||||
Cedar wood fiber (WF) | - | - | PLA | - | [33] |
Wood fiber (WF) | - | - | PLA | - | [34] |
Flax fiber (FF) | 20 to 650 | PLA Ingeo™ 7001D | Polybutylene succinate | [18] | |
Flax shives (FS) | 162 to 220 | ||||
Pinewood fiber (PW) | - | - | PLA | PHA- | [35] |
Camargue rice husks (RHF) | 28 | - | PLA Ingeo™ 3001D | - | [36] |
Pinus wood flour (WF) | 209 | ||||
Raw sugarcane bagasse fiber (RSCB) | 177 | - | PLA Ingeo™ 4032D | - | [20] |
Cellulose from sugarcane (SCBF) | 177 | 7.5 wt.% NaOH | |||
1% (w/v) NaClO2 | |||||
Glacial acetic acid | |||||
Cellulose nanofibrils (CNF) from sisal | 0.01 to 0.05 | 5% (wt.% NaOH | PLA Ingeo™ 3051D | Dimethylformamide and chloroform | [21] |
1.5 wt.% NaClO, 7 g NaOH, and 75 mL glacial acetic acid | |||||
Poplar wood (PW) | 43 | - | PLA Ingeo™ 4043D | - | [37] |
Wood fiber (WF) | 250 | - | PLA Ingeo™ 4043D | - | [38] |
Cellulose nanocrystals (CNC) | 0.005 to 0.02 | - | PLA Ingeo™ 2003D | - | [39] |
Pennisetum | 20–40 | 1.5% (w/v) of H2SO4 | PLA Ingeo™ 4032D | - | [40] |
Silvergrass (SG) | 3% (v/v) H2O2, 1.5% (w/v) NaOH, and 12.5 g/L Na2SiO3 | ||||
Switch grass | Steam explosion | ||||
Reed grass | |||||
Cork | 20–40 | - | PLA Ingeo™ 4032D | MA | [41] |
Cellulose nanofibrils (CNF) | 0.05 | Acetic acid-sodium acetate buffer and 0.5 mL cellic CTec2 | PLA Ingeo™ 4032D | PEG600 | [22] |
High-pressure homogenization | |||||
Particleboard wood flour (PWF) | 30 | 30 gr NaOH | PLA Ingeo™ 4032D | - | [42] |
30 wt.% H2O2 | |||||
Wood powder (WP) | - | - | PLA | - | [43] |
Agave fiber (AF) | 36.6 | - | PLA Ingeo™ 3051D | - | [44] |
Lemongrass fiber (LF) | 65.6 | - | PLA Ingeo™ 4032D | MA | [45] |
Oil Palm empty fruit bunch fibers (OPEFBF) | 500 | - | PLA Ingeo™ 2003D | - | [46] |
Rice straw powder (RSP) | 100 | 5 wt.% NaOH | PLA Ingeo™ 3052D | - | [47] |
1 wt.% acetic acid | |||||
Ultrasound | |||||
Olive wood bark (OW_b) | 250 | - | PLA Ingeo™ 4043D | - | [48] |
Coconut fiber (CF) | 297 | Steam Explosion | PLA Ingeo™ 4043D | PBS | [49] |
Walnut shell powder (WSP) | 100 | - | PLA | - | [50] |
Walnut shell powder (WSP) | 90 | - | PLA | - | [51] |
Eggshell powder (ESP) | |||||
Pineapple leaf fiber (PALF) | - | - | PLA Ingeo™ 4043D | - | [52] |
Pineapple leaf fiber (APALF) | - | 6 wt.% NaOH | - | ||
Acetic acid | |||||
Bamboo (B) | 18.5 to 22.9 | - | PLA | - | [53] |
Pinewood (PW) | 31.4 to 77.6 | ||||
Cork (C) | 11.2–12.7 | ||||
Walnut shell (WS) | 50 | - | PLA Ingeo™ 3D850 | Tri vinyl ethoxy silane | [54] |
Hedysarum coronarium (HC) flour | 150 | - | PLA Ingeo™ 2003D | - | [55] |
Kenaf (K) | 250 | - | PLA Ingeo™ 2003D | - | [56] |
Rice husk (RH) | 50 | 2 wt.% NaOH | PLA Ingeo™ 4032D | KH570 | [57] |
Silane KH550 and ethanol |
Diameter of Filament mm | Diameter of Nozzle mm | Layer Thickness mm | Infill % | Raster Angle (°) | Contour Layers | Speed mm.s−1 | Printing Temp. °C | Bed Temp. °C | Source |
---|---|---|---|---|---|---|---|---|---|
3.0 | 1 | 1 | - | - | - | - | - | 110 | [29] |
1.75 | - | - | - | - | - | - | 220 | - | [30] |
1.75 | 0.8 | 0.4 | 100 | - | - | 30 | 230 | 60 | [15] |
1.75 | - | 0.1 | 45 | - | 6 | 90 | 230 | 70 | [17] |
- | - | - | - | - | - | - | - | - | [31] |
1.75 | 0.4 | 0.19 | - | - | 3 | - | 230 | - | [16] |
1.75 | 0.5 | 0.4 | 55 | - | 1 | 60 | 188 | 50 | [32] |
1.75 | 0.4 | 0.2 | 100 | 0 | 0 | 30 | 200 | 50 | [33] |
1.75 | 0.4 | 0.05 | - | 0 | - | - | 200 | 80 | [34] |
2.85 | 1.0 | 0.6 | 100 | 0 | - | 13 | 190 | 70 | [18] |
1.75 | 0.4 | 0.2 | 100 | ±45 | - | 23 | 230 | 25 | [35] |
1.75 | 0.75 | 0.2 | - | 0 | - | - | 210 | 70 | [36] |
1.75 | 0.6 | 0.1 | 100 | 0 | - | 40 | 200 | 50 | [20] |
1.75 | 0.6 | 0.2 | 100 | ±45 | - | 45 | 180 | 60 | [21] |
2.6 | 0.5 | 0.3 | 0 | - | - | 20 | 230 | - | [37] |
1.75 | 0.6 | 0.2 | 100 | - | - | 35 | 190 | 45 | [38] |
1.75 | 0.35 | 0.2 | 100 | - | - | - | 230 | 60 | [39] |
1.75 | - | - | - | - | - | - | - | - | [40] |
1.75 | 0.4 | 0.06 | 100 | ±45 | - | 40 | 190 | 40 | [41] |
1.75 | 0.4 | - | - | - | - | 40 | 210 | - | [22] |
1.75 | 0.4 | 0.1 | 100 | ±45 | 3 | - | 200 | 50 | [42] |
1.75 | 0.4 | 0.2 | - | - | - | 30 | 210 | 50 | [43] |
1.70 | - | 0.3 | 100 | ±45 | - | 50 | 190 | 70 | [44] |
1.75 | - | 0.1 | 100 | ±45 | - | 40 | 200 | 60 | [45] |
1.75 | - | - | - | - | - | - | - | - | [46] |
1.75 | 0.4 | 0.2 | 100 | - | - | 55 | 205 | 45 | [47] |
- | - | - | 100 | ±45 | - | - | 200 | - | [48] |
1.75 | 1.0 | 0.1 | 100 | ±45 | - | 70 | 230 | 50 | [49] |
1.75 | - | - | - | - | - | - | - | - | [50] |
1.75 | 0.4 | 0.25 | - | ±45 | - | 100 | 215 | 60 | [51] |
1.8 | 1.5 | - | - | 0/90 | - | 85 | 199 | - | [52] |
1.75 | 0.6 | 0.2 | 100 | ±45 | - | 45 | 200 | 50 | [53] |
1.75 | 0.4 | 0.3 | 100 | - | 2 | 30 | 230 | 60 | [54] |
1.75 | 0.4 | 0.1 | 100 | ±45 | 1 | 20 | 230 | 60 | [55] |
1.75 | - | - | 100 | ±45 | - | 60 | 200 | 50 | [56] |
1.75 | 0.6 | 0.2 | - | ±45 | - | - | - | 60 | [57] |
Sample | Composition by Weight % | Tensile Strength (MPa) | Young’s Modulus (MPa) | Elongation at Break % | Standard | Source |
---|---|---|---|---|---|---|
PLA | 100 | 52.35 | 900 | 9.35 | ASTM D638 | [49] |
PLA/PBS/CF | 77/20/3 | 71.81 | 1120 | 10.27 | ||
PLA | 100 | 56 | 1260 | 10 | - | [55] |
PLA/HC | 90/10 | 63 | 1843 | 9 | ||
PLA | 100 | 51.39 | 3030 | 8.7 | ASTM D638 | [39] |
PLA/CNC | 99/1 | 61.07 | 4550 | 2.87 | ||
PLA | 100 | 47.99 | 492.64 | - | ISO 527 | [47] |
PLA/FPA #120 AU | 99/1 | 58.59 | 568.68 | - | ||
PLA | 100 | 64.2 | - | - | ISO 527 | [20] |
PLA/SCBF | 94/6 | 57.1 | - | - | ||
PLA | 100 | * 55 | * 3270 | - | - | [16] |
PLA/BW | 90/10 | * 57 | * 3630 | - | ||
PLA | 100 | * ~46 | - | * ~3 | - | [22] |
PLA/PEG/CNF | 97.5/2.5 | * ~57 | - | * ~4.5 | ||
PLA | 100 | 56.36 | - | - | ASTM D638 | [56] |
PLA/K | 97/3 | 54.78 | - | - | ||
PLA | 100 | 59.6 | - | - | ISO 527 | [45] |
PLA/LF/gMA | 90/5/5 | 54.0 | - | - | ||
PLA | 100 | 48.46 | - | - | ASTM D638 | [51] |
PLA/WSP/ESP | 92.5/5/2.5 | 53.26 | - | - | ||
PLA | 100 | 43.79 | 760 | 7.0 | ISO 527-3 | [42] |
PLA/PWF | 95/5 | 52.54 | 3340 | 8.52 | ||
PLA/WSP | 97.5/2.5 | * 50.13 | - | 24.62 | - | [50] |
PLA | 100 | 60 | 2870 | 2.5 | ASTM D638 | [37] |
PLA/PW | 80/20 | 50 | 3630 | 1.5 | ||
PLA | 100 | ~51 | ~1100 | - | ASTM D638-03 | [44] |
PLA/AF | 97/3 | ~46 | ~1060 | - | ||
PLA | 100 | 40.8 | 3474 | - | ASTM D638 | [38] |
PLA/WF | 97.5/2.5 | 44.4 | 3608 | - | ||
PLA | 100 | 29.5 | 879.4 | 4.34 | ASTM D638 | [52] |
PLA/APALF | 97/3 | 42.9 | 1337.7 | 5.97 | ||
PLA/PALF | 97/3 | 42.3 | 1311.0 | 6.89 | ||
PLA | 100 | 22.37 | 2062.75 | 1.49 | - | [21] |
PLA/CNF | 99/1 | 41.15 | 3365.66 | 2.09 | ||
PLA | 100 | 21.27 | 1030 | - | ASTM D638 | [57] |
PLA/RH6/KH | 94/6 | 38.70 | 2040 | - | ||
PLA | 100 | ~38 | - | - | ASTM D638 | [31] |
PLA/TPU/WF/gGMA | 78/10/10/2 | ~38 | - | - | ||
PLA | 100 | ~35 | ~2500 | - | - | [29] |
PLA/HKF | 80/20 | ~37 | ~4300 | - | ||
PLA/HF | 90/10 | ~38 | ~3400 | - | ||
PLA/Wood | 70/30 | 35.5 | 3642 | - | ISO 527 | [34] |
PLA | 100 | ~48 | ISO 527-2 | [41] | ||
PLA/C/MAgPLA | 81/15/4 | ~35 | ||||
PLA/FF | 90/10 | 34.2 | 3968 | 1.2 | ISO 527-1 | [18] |
PLA/PBS/FS | 45/45/10 | 34.1 | 2190 | 1.3 | ||
PLA/PC 5% TBC | 95/5 | 30.53 | 2498 | 1.89 | ASTM D638 | [15] |
PLA | 100 | 59.3 | - | - | - | [53] |
PLA/PW | 85/15 | 30.4 | - | - | ||
PLA/WS | 90/10 | 27.04 | - | - | ASTM D638 | [54] |
PLA/SG | 90/10 | 26.94 | 720.36 | - | GB/T 24508 | [40] |
PLA/PWF 4% TBC | 70/30 | 24.6 | - | 1.77 | GB/T 1040 | [30] |
PLA | 100 | * 35.9 | * 1970 | - | [46] | |
PLA/OPEFBF | 90/10 | * 22.79 | * 1920 | |||
PLA/PHA/PW | 70/30 | 20.8 | 446 | 6.7 | ISO 527-1 | [35] |
PLA/WF | 60/40 | 20.0 | 1802 | - | ASTM D638 | [33] |
PLA/WP | 60/40 | 19.8 | 1731 | - | ASTM D638 | [43] |
PLA | 100 | 37.38 | - | - | ASTM D638 | [17] |
PLA/WP | 60/40 | 13.49 | - | - | ||
PLA | 100 | 26.8 | 1800 | - | EN ISO 527-1 | [32] |
PLA/WF | 70/30 | 7.3 | 700 | - | ||
PLA/LW | 60/40 | 4.8 | 300 | - |
Sample | Composition by Weight (%) | Flexural Strength (MPa) | Flexural Modulus (MPa) | Standard | Source |
---|---|---|---|---|---|
PLA/Wood | 70/30 | 128.3 | 4887 | ISO 178 | [34] |
PLA | 100 | 102.3 | 2560 | ASTM D790 | [49] |
PLA/PBS/F | 77/20/3 | 106.9 | 3280 | ||
PLA | 100 | 98.3 | 2220 | ISO 178 | [45] |
PLA/LF/gMA | 93/5/2 | 97.4 | 3252 | ||
PLA | 100 | ~103 | ~3050 | ISO 178 | [20] |
PLA/SCBF | 97/3 | ~91 | ~3150 | ||
PLA | 100 | 77.62 | 2586.80 | ISO 178 | [47] |
PLA/FPA #120 AU | 99/1 | 90.32 | 3218.12 | ||
PLA | 100 | 81.18 | - | ASTM D790 | [51] |
PLA/WSP/ESP | 92.5/5/2.5 | 88.25 | - | ||
PLA | 100 | 65.21 | 760 | ISO 178 | [42] |
PLA/PWF | 95/5 | 80.66 | 3340 | ||
PLA | 100 | 87 | 3280 | ASTM D790 | [44] |
PLA/AF | 97/3 | 79 | 3374 | ||
PLA | 100 | 33 | 500 | ASTM D790 | [55] |
PLA/HC | 80/20 | 68 | 980 | ||
PLA | 100 | ~70 | - | ASTM D790 | [31] |
PLA/TPU/WF | 80/10/10 | ~60 | - | ||
PLA | 100 | ~73 | ~2300 | - | [36] |
PLA/WF | 90/10 | ~58 | ~2600 | ||
PLA/RHF | 90/10 | ~52 | ~2100 | ||
PLA | 100 | 32.2 | 1027.4 | ASTM D790 | [52] |
PLA/APALF | 97/3 | 51.9 | 1966.0 | ||
PLA/PALF | 97/3 | 48.5 | 1499.9 | ||
PLA | 100 | 99.2 | 3200 | ISO 178 | [48] |
PLA/OWB | 90/10 | 40.9 | 2100 | ||
PLA/WS | 90/10 | 38.68 | - | - | [54] |
PLA/WF | 60/40 | 35.2 | 1928 | ASTM D790 | [33] |
PLA/WP | 60/40 | 34.0 | 1680 | ASTM D790 | [43] |
PLA | 100 | 80.09 | - | ASTM D790 | [17] |
PLA/WP | 40/60 | 33.00 | - | ||
PLA | 100 | 20.95 | 1062 | ASTM D790 | [57] |
PLA/RH6/KH | 94/6 | 32.27 | 1710 | ||
PLA/SG | 90/10 | 29.89 | 946.83 | GB/T 24508 | [40] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almeida, V.H.M.; Jesus, R.M.; Santana, G.M.; Pereira, T.B. Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review. J. Compos. Sci. 2024, 8, 67. https://doi.org/10.3390/jcs8020067
Almeida VHM, Jesus RM, Santana GM, Pereira TB. Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review. Journal of Composites Science. 2024; 8(2):67. https://doi.org/10.3390/jcs8020067
Chicago/Turabian StyleAlmeida, Victor Hugo M., Raildo M. Jesus, Gregório M. Santana, and Thaís B. Pereira. 2024. "Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review" Journal of Composites Science 8, no. 2: 67. https://doi.org/10.3390/jcs8020067
APA StyleAlmeida, V. H. M., Jesus, R. M., Santana, G. M., & Pereira, T. B. (2024). Polylactic Acid Polymer Matrix (Pla) Biocomposites with Plant Fibers for Manufacturing 3D Printing Filaments: A Review. Journal of Composites Science, 8(2), 67. https://doi.org/10.3390/jcs8020067