Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites
Abstract
:1. Introduction
2. Experiments
2.1. Materials
2.2. Sample Production
2.3. SEM Tests
2.4. Moisture Absorption Test
2.5. Fracture Toughness Test
3. Results and Discussion
3.1. SEM Test
3.2. Moisture Absorption
3.3. Fracture Toughness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hata, K.; Ikeda, H.; Nagamatsu, Y.; Masaki, C.; Hosokawa, R.; Shimizu, H. Dental Poly (methyl methacrylate)-Based Resin Containing a Nanoporous silica Filler. J. Funct. Biomater. 2022, 13, 32. [Google Scholar] [CrossRef]
- Mousavi, A.; Aliha, M.R.; Imani, D.M. Effects of biocompatible Nanofillers on mixed-mode I and II fracture toughness of PMMA base dentures. J. Mech. Behav. Biomed. Mater. 2020, 103, 103566. [Google Scholar] [CrossRef]
- Abutalib, M.M.; Rajeh, A. Influence of MWCNTs/Li-doped TiO2 nanoparticles on the structural, thermal, electrical and mechanical properties of poly (ethylene oxide)/poly (methylmethacrylate) composite. J. Organomet. Chem. 2020, 918, 121309. [Google Scholar] [CrossRef]
- Earar, K.; Solomon, O.; Topor, G.; Constantin, I.; Beznea, A.; Ciprian, D.; Anghel, L.; Ștefănescu, V.; Fotea, S.L.; Feier, R.D.; et al. Comparison study on the influence of Al2O3Nanoparticle size and ternary hybrid on several properties of a PMMA denture composite. Mater. Plast. 2021, 58, 119–129. [Google Scholar] [CrossRef]
- Gad, M.M.; Abualsaud, R.; Khan, S.Q. Hydrophobicity of denture base resins: A systematic review and meta-analysis. J. Int. Soc. Prev. Community Dent. 2022, 12, 139. [Google Scholar] [CrossRef]
- Chladek, G.; Pakieła, K.; Pakieła, W.; Żmudzki, J.; Adamiak, M.; Krawczyk, C. Effect of antibacterial silver-releasing filler on the physicochemical properties of poly (methyl methacrylate) denture base material. Materials 2019, 12, 4146. [Google Scholar] [CrossRef] [PubMed]
- Alhotan, A.; Yates, J.; Zidan, S.; Haider, J.; Silikas, N. Assessing Fracture Toughness and Impact Strength of PMMA Reinforced with Nano-Particles and Fibre as Advanced Denture Base Materials. Materials 2021, 14, 4127. [Google Scholar] [CrossRef]
- Salih, S.I.; Oleiwi, J.K.; Mohamed, A.S. Investigation of mechanical properties of PMMA composite reinforced with different types of natural powders. ARPN J. Eng. Appl. Sci. 2018, 13, 8889–8900. [Google Scholar]
- Kumar, V.; Kumar, L.; Sehgal, K.; Datta, K.; Pal, B. A comparative evaluation of effect of reinforced autopolymerizing resin on the flexural strength of repaired heat-polymerized denture base resin before and after thermocycling. J. Int. Soc. Prev. Community Dent. 2017, 7 (Suppl. S2), S99. [Google Scholar] [CrossRef]
- Naji, S.A.; Behroozibakhsh, M.; Kashi, T.S.; Eslami, H.; Masaeli, R.; Mahgoli, H.; Tahriri, M.; Lahiji, M.G.; Rakhshan, V. Effects of incorporation of 2.5 and 5 wt% TiO2 nanotubes on fracture toughness, flexural strength, and microhardness of denture base poly methyl methacrylate (PMMA). J. Adv. Prosthodont. 2018, 10, 113–121. [Google Scholar] [CrossRef]
- Zafar, M.S. Prosthodontic applications of polymethyl methacrylate (PMMA): An update. Polymers 2020, 12, 2299. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A. PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 2017, 12, 3801. [Google Scholar] [CrossRef]
- Jiangkongkho, P.; Arksornnukit, M.; Takahashi, H. The synthesis, modification, and application of nanosilica in polymethyl methacrylate denture base. Dent. Mater. J. 2018, 37, 582–591. [Google Scholar] [CrossRef]
- Tzetzis, D.; Tsongas, K.; Mansour, G. Determination of the mechanical properties of epoxy silica nanocomposites through FEA-supported evaluation of ball indentation test results. Mater. Res. 2017, 20, 1571–1578. [Google Scholar] [CrossRef]
- Ergun, G.; Sahin, Z.; Ataol, A.S. The effects of adding various ratios of zirconium oxide nanoparticles to poly (methyl methacrylate) on physical and mechanical properties. J. Oral Sci. 2018, 60, 304–315. [Google Scholar] [CrossRef]
- Elshereksi, N.W.; Muchtar, A.; Azhari, C.H. Effects of nanobarium titanate on physical and mechanical properties of poly (methyl methacrylate) denture base nanocomposites. Polym. Polym. Compos. 2021, 29, 484–496. [Google Scholar] [CrossRef]
- Slane, J.; Vivanco, J.; Meyer, J.; Ploeg, H.L.; Squire, M. Modification of acrylic bone cement with mesoporous silica nanoparticles: Effects on mechanical, fatigue and absorption properties. J. Mech. Behav. Biomed. Mater. 2014, 29, 451–461. [Google Scholar] [CrossRef] [PubMed]
- Tommasini, F.J.; Ferreira, L.D.; Tienne, L.G.; Aguiar, V.D.; Silva, M.H.; Rocha, L.F.; Marques, M.D. Poly (methyl methacrylate)-SiC nanocomposites prepared through in situ polymerization. Mater. Res. 2018, 21, e20180086. [Google Scholar] [CrossRef]
- Cevik, P.; Yildirim-Bicer, A.Z. The effect of silica and prepolymer nanoparticles on the mechanical properties of denture base acrylic resin. J. Prosthodont. 2018, 27, 763–770. [Google Scholar] [CrossRef]
- Canché-Escamilla, G.; Duarte-Aranda, S.; Toledano, M. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites. Mater. Sci. Eng. C 2014, 42, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, H.; Nagamatsu, Y.; Shimizu, H. Preparation of silica–poly (methyl methacrylate) composite with a nanoscale dual-network structure and hardness comparable to human enamel. Dent. Mater. 2019, 35, 893–899. [Google Scholar] [CrossRef]
- Silva, E.D.; Ribeiro, L.A.; Nascimento, M.C.; Ito, E.N. Rheological and mechanical characterization of poly (methyl methacrylate)/silica (PMMA/SiO2) composites. Mater. Res. 2014, 17, 926–932. [Google Scholar] [CrossRef]
- Gad, M.M.; Bahgat, H.A.; Edrees, M.F.; Alhumaidan, A.; Khan, S.Q.; Ayad, N.M. Antifungal activities and some surface characteristics of denture soft liners containing silicon dioxide nanoparticles. J. Int. Soc. Prev. Community Dent. 2022, 12, 109. [Google Scholar] [CrossRef]
- Bai, X.; Lin, C.; Wang, Y.; Ma, J.; Wang, X.; Yao, X.; Tang, B. Preparation of Zn doped mesoporous silica nanoparticles (Zn-MSNs) for the improvement of mechanical and antibacterial properties of dental resin composites. Dent. Mater. 2020, 36, 794–807. [Google Scholar] [CrossRef]
- Thongchom, C.; Refahati, N.; Roodgar Saffari, P.; Roudgar Saffari, P.; Niyaraki, M.N.; Sirimontree, S.; Keawsawasvong, S. An experimental study on the effect of nanomaterials and fibers on the mechanical properties of polymer composites. Buildings 2021, 12, 7. [Google Scholar] [CrossRef]
- Rende, D.; Schadler, L.S.; Ozisik, R. Controlling foam morphology of poly (methyl methacrylate) via surface chemistry and concentration of silica nanoparticles and supercritical carbon dioxide process parameters. J. Chem. 2013, 2013, 864926. [Google Scholar] [CrossRef]
- Kaseem, M.; Ur Rehman, Z.; Hossain, S.; Singh, A.K.; Dikici, B. A Review on Synthesis, Properties, and Applications of Polylactic Acid/Silica Composites. Polymers 2021, 13, 3036. [Google Scholar] [CrossRef] [PubMed]
- Ali, U.; Karim, K.J.; Buang, N.A. A review of the properties and applications of poly (methyl methacrylate)(PMMA). Polym. Rev. 2015, 55, 678–705. [Google Scholar] [CrossRef]
- Lee, D.W.; Yoo, B.R. Advanced silica/polymer composites: Materials and applications. J. Ind. Eng. Chem. 2016, 38, 1–2. [Google Scholar] [CrossRef]
- Kim, G.H.; Hwang, S.W.; Jung, B.N.; Kang, D.; Shim, J.K.; Seo, K.H. Effect of PMMA/Silica hybrid particles on interfacial adhesion and crystallization properties of Poly (Lactic Acid)/Block acrylic elastomer composites. Polymers 2020, 12, 2231. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Wu, S.; Shen, J. Polymer/silica nanocomposites: Preparation, characterization, properties, and applications. Chem. Rev. 2008, 108, 3893–3957. [Google Scholar] [CrossRef]
- Ali Sabri, B.; Satgunam, M.; Abreeza, N.M.; N Abed, A. A review on enhancements of PMMA denture base material with different nano-fillers. Cogent Eng. 2021, 8, 1875968. [Google Scholar] [CrossRef]
- Zhen, X.; Zhang, L.; Shi, M.; Li, L.; Cheng, L.; Jiao, Z.; Yang, W.; Ding, Y. Mechanical behavior of PMMA/SiO2 multilayer nanocomposites: Experiments and molecular dynamics simulation. Macromol. Res. 2020, 28, 266–274. [Google Scholar] [CrossRef]
- Balos, S.; Puskar, T.; Potran, M.; Milekic, B.; Djurovic Koprivica, D.; Laban Terzija, J.; Gusic, I. Modulus, strength and cytotoxicity of PMMA-silica nanocomposites. Coatings 2020, 10, 583. [Google Scholar] [CrossRef]
- Fatalla, A.A.; Tukmachi, M.S.; Jani, G.H. Assessment of some mechanical properties of PMMA/silica/zirconia nanocomposite as a denture base material. IOP Conf. Ser. Mater. Sci. Eng. 2020, 987, 012031. [Google Scholar] [CrossRef]
- Siot, A.; Léger, R.; Longuet, C.; Otazaghine, B.; Caro-Bretelle, A.S.; Azéma, N. Dispersion control of raw and modified silica particles in PMMA. Impact on mechanical properties, from experiments to modelling. Compos. Part B Eng. 2019, 157, 163–172. [Google Scholar] [CrossRef]
- Mussatto, C.M.; Oliveira, E.M.; Subramani, K.; Papaléo, R.M.; Mota, E.G. Effect of silica nanoparticles on mechanical properties of self-cured acrylic resin. J. Nanopart. Res. 2020, 22, 317. [Google Scholar] [CrossRef]
- Salman, A.D.; Jani, G.H.; Fatalla, A.A. Comparative study of the effect of incorporating SiO2 nano-particles on properties of poly methyl methacrylate denture bases. Biomed. Pharmacol. J. 2017, 10, 1525–1535. [Google Scholar] [CrossRef]
- Topouzi, M.; Kontonasaki, E.; Bikiaris, D.; Papadopoulou, L.; Paraskevopoulos, K.M.; Koidis, P. Reinforcement of a PMMA resin for interim fixed prostheses with silica nanoparticles. J. Mech. Behav. Biomed. Mater. 2017, 69, 213–222. [Google Scholar] [CrossRef] [PubMed]
- Kundie, F.; Azhari, C.H.; Muchtar, A.; Ahmad, Z.A. Effects of filler size on the mechanical properties of polymer-filled dental composites: A review of recent developments. J. Phys. Sci. 2018, 29, 141–165. [Google Scholar] [CrossRef]
- Zirak, M.; Vojdani, M.; Mohammadi, S.; Khaledi, A.A. Comparison of the water sorption and solubility of four reline acrylic resins after immersion in food-simulating agents. J. Int. Soc. Prev. Community Dent. 2019, 9, 40. [Google Scholar] [PubMed]
- Ristic, B.; Carr, L. Water sorption by denture acrylic resin and consequent changes in vertical dimension. J. Prosthet. Dent. 1987, 58, 689–693. [Google Scholar] [CrossRef] [PubMed]
- Rajaee, N.; Vojdani, M.; Adibi, S. Effect of food simulating agents on the flexural strength and surface hardness of denture base acrylic resins. Oral Health Dent Manag. 2014, 15, 1041–1047. [Google Scholar]
- Karabela, M.M.; Sideridou, I.D. Synthesis and study of properties of dental resin composites with different nanosilica particles size. Dent. Mater. 2011, 27, 825–835. [Google Scholar] [CrossRef] [PubMed]
- Karkanis, S.; Nikolaidis, A.K.; Koulaouzidou, E.A.; Achilias, D.S. Effect of Silica Nanoparticles Silanized by Functional/Functional or Functional/Non-Functional Silanes on the Physicochemical and Mechanical Properties of Dental Nanocomposite Resins. Appl. Sci. 2021, 12, 159. [Google Scholar] [CrossRef]
- Kundie, F.; Azhari, C.H.; Ahmad, Z.A. Effect of nano-and micro-alumina fillers on some properties of poly(methyl methacrylate) denture base composites. J. Serbian Chem. Soc. 2018, 83, 75–91. [Google Scholar] [CrossRef]
- de Menezes, B.R.; da Graça Sampaio, A.; da Silva, D.M.; do Amaral Montanheiro, T.L.; Koga-Ito, C.Y.; Thim, G.P. AgVO3 nanorods silanized with γ-MPS: An alternative for effective dispersion of AgVO3 in dental acrylic resins improving the mechanical properties. Appl. Surf. Sci. 2021, 543, 148830. [Google Scholar] [CrossRef]
Sample | A | B | C | D | E |
---|---|---|---|---|---|
SiO2(%) | 0 | 2 | 5 | 7 | 10 |
pH | 5 | 6 | 7 | 8 | 9 | |
---|---|---|---|---|---|---|
Sample | ||||||
A | 0.0174 | 0.0239 | 0.0644 | 0.0196 | 0.0177 | |
B | 0.0152 | 0.0195 | 0.0310 | 0.0095 | 0.0075 | |
C | 0.0146 | 0.0189 | 0.0189 | 0.0092 | 0.0070 | |
D | 0.0123 | 0.0188 | 0.0167 | 0.0087 | 0.0066 | |
E | 0.0023 | 0.0014 | 0.0059 | 0.0046 | 0.0033 |
Sample | F (N) | Bending Strain | KIC (Mpa/√m) |
---|---|---|---|
A | 140.97 | 0.06 | 66.25 |
B | 151.83 | 0.06 | 70.97 |
C | 221.97 | 0.07 | 104.3 |
D | 175.16 | 0.06 | 82.32 |
E | 119.9 | 0.05 | 56.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Golshokouh, M.A.; Refahati, N.; Saffari, P.R. Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites. J. Compos. Sci. 2024, 8, 69. https://doi.org/10.3390/jcs8020069
Golshokouh MA, Refahati N, Saffari PR. Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites. Journal of Composites Science. 2024; 8(2):69. https://doi.org/10.3390/jcs8020069
Chicago/Turabian StyleGolshokouh, Mohammad Ali, Nima Refahati, and Pouyan Roodgar Saffari. 2024. "Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites" Journal of Composites Science 8, no. 2: 69. https://doi.org/10.3390/jcs8020069
APA StyleGolshokouh, M. A., Refahati, N., & Saffari, P. R. (2024). Effect of Silicon Nanoparticles on Moisture Absorption and Fracture Toughness of Polymethyl Methacrylate Matrix Nanocomposites. Journal of Composites Science, 8(2), 69. https://doi.org/10.3390/jcs8020069