Mitigating Crack Propagation in Hybrid Composites: An Experimental and Computational Study
Abstract
:1. Introduction
2. Materials, Experimental and Modeling Procedures
2.1. Synthesis of Hybrid CNTs Reinforcements
2.2. Composites Fabrication
2.3. DCB Experimental Setup and Analysis
2.4. FEA Delamination Mode
3. Results and Discussion
3.1. Experimental DCB Result
3.2. CZM Simulation Results
4. Conclusions
- Patterns of 105 μm CNTs contributed to delayed crack initiation and propagation, while full growth of CNTs exhibited inferior crack initiation and propagation properties compared to reference samples without CNT growth.
- A moderate 13% increase in fracture toughness values was observed for the 105 μm configuration at the onset of crack propagation compared to composites based on desized fibers, highlighting the influence of CNT growth topology on enhancing interlaminar fracture toughness.
- Cohesive zone modeling (CZM) simulation results qualitatively supported the conclusion that the coarser CNT pattern surpassed other composite configurations in resisting interlaminar crack propagation.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Balasubramanian, K.; Sultan, M.T.H.; Rajeswari, N. 4—Manufacturing techniques of composites for aerospace applications. In Sustainable Composites for Aerospace Application; Jawaid, M., Thariq, M., Eds.; Woodhead Publishing: Cambridge, UK, 2018; pp. 55–67. [Google Scholar] [CrossRef]
- Ishikawa, T.; Amaoka, K.; Masubuchi, Y.; Yamamoto, T.; Yamanaka, A.; Arai, M.; Takahashi, J. Overview of automotive structural composites technology developments in Japan. Compos. Sci. Technol. 2018, 155, 221–246. [Google Scholar] [CrossRef]
- Babu, J.; Sunny, T.; Paul, N.A.; Mohan, K.P.; Philip, J.; Davim, J.P. Assessment of delamination in composite materials: A review. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 1990–2003. [Google Scholar] [CrossRef]
- Hintze, W.; Hartmann, D.; Schütte, C. Occurrence and propagation of delamination during the machining of carbon fibre reinforced plastics (CFRPs)—An experimental study. Compos. Sci. Technol. 2011, 71, 1719–1726. [Google Scholar] [CrossRef]
- Geng, D.; Liu, Y.; Shao, Z.; Lu, Z.; Cai, J.; Li, X.; Jiang, X.; Zhang, D. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Compos. Struct. 2019, 216, 168–186. [Google Scholar] [CrossRef]
- Casavola, C.; Palano, F.; De Cillis, F.; Tati, A.; Terzi, R.; Luprano, V. Analysis of CFRP Joints by Means of T-Pull Mechanical Test and Ultrasonic Defects Detection. Materials 2018, 11, 620. [Google Scholar] [CrossRef] [PubMed]
- Saadati, Y.; Chatelain, J.-F.; Lebrun, G.; Beauchamp, Y.; Bocher, P.; Vanderesse, N. A Study of the Interlaminar Fracture Toughness of Unidirectional Flax/Epoxy Composites. J. Compos. Sci. 2020, 4, 66. [Google Scholar] [CrossRef]
- Nasuha, N.; Azmi, A.I.; Tan, C.L. A review on mode-I interlaminar fracture toughness of fibre reinforced composites. J. Phys. Conf. Ser. 2017, 908, 012024. [Google Scholar] [CrossRef]
- Boroujeni, A.Y.; Al-Haik, M.S. Interlaminar fracture toughness of hybrid carbon fiber-carbon nanotubes-reinforced polymer composites. Polym. Compos. 2019, 40, E1470–E1478. [Google Scholar] [CrossRef]
- Samborski, S.; Gliszczynski, A.; Rzeczkowski, J.; Wiacek, N. Mode I interlaminar fracture of glass/epoxy unidirectional laminates. Part I: Experimental studies. Materials 2019, 12, 1607. [Google Scholar] [CrossRef]
- Pappas, G.; Botsis, J. Intralaminar fracture of unidirectional carbon/epoxy composite: Experimental results and numerical analysis. Int. J. Solids Struct. 2016, 85–86, 114–124. [Google Scholar] [CrossRef]
- Liu, R.; Yu, Z.; Nasonov, F. Evaluations on VCCT and CZM methods of delamination propagation simulation for composite specimens. Aerosp. Syst. 2023, 6, 621–632. [Google Scholar] [CrossRef]
- Cao, D.; Duan, Q.; Hu, H.; Zhong, Y.; Li, S. Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements. Compos. Struct. 2018, 192, 300–309. [Google Scholar] [CrossRef]
- Krueger, R. 1—The virtual crack closure technique for modeling interlaminar failure and delamination in advanced composite materials. In Numerical Modelling of Failure in Advanced Composite Materials; Camanho, P.P., Hallett, S.R., Eds.; Woodhead Publishing: Cambridge, UK, 2015; pp. 3–53. [Google Scholar] [CrossRef]
- Xie, D.; Biggers Jr, S.B. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation. Eng. Fract. Mech. 2006, 73, 771–785. [Google Scholar] [CrossRef]
- Turon, A.; Camanho, P.; Costa, J.; Renart, J. Accurate simulation of delamination growth under mixed-mode loading using cohesive elements: Definition of interlaminar strengths and elastic stiffness. Compos. Struct. 2010, 92, 1857–1864. [Google Scholar] [CrossRef]
- Sinnott, S.B.; Andrews, R. Carbon Nanotubes: Synthesis, Properties, and Applications. Crit. Rev. Solid State Mater. Sci. 2001, 26, 145–249. [Google Scholar] [CrossRef]
- Boroujeni, A.Y.; Al-Haik, M. Carbon nanotube—Carbon fiber reinforced polymer composites with extended fatigue life. Compos. Part B Eng. 2019, 164, 537–545. [Google Scholar] [CrossRef]
- Boroujeni, A.Y.; Tehrani, M.; Nelson, A.J.; Al-Haik, M. Hybrid carbon nanotube–carbon fiber composites with improved in-plane mechanical properties. Compos. Part B Eng. 2014, 66, 475–483. [Google Scholar] [CrossRef]
- Borowski, E.; Soliman, E.; Kandil, U.F.; Taha, M.R. Interlaminar Fracture Toughness of CFRP Laminates Incorporating Multi-Walled Carbon Nanotubes. Polymers 2015, 7, 1020–1045. [Google Scholar] [CrossRef]
- Jiang, J.; Xu, C.; Su, Y.; Guo, Q.; Liu, F.; Deng, C.; Yao, X.; Zhou, L. Influence of Carbon Nanotube Coatings on Carbon Fiber by Ultrasonically Assisted Electrophoretic Deposition on Its Composite Interfacial Property. Polymers 2016, 8, 302. [Google Scholar] [CrossRef]
- Kumar, M.; Ando, Y. Chemical Vapor Deposition of Carbon Nanotubes: A Review on Growth Mechanism and Mass Production. J. Nanosci. Nanotechnol. 2010, 10, 3739–3758. [Google Scholar] [CrossRef]
- Al-Haik, M.; Luhrs, C.C.; Reda Taha, M.M.; Roy, A.K.; Dai, L.; Phillips, J.; Doorn, S. Hybrid Carbon Fibers/Carbon Nanotubes Structures for Next Generation Polymeric Composites. J. Nanotechnol. 2010, 2010, 860178. [Google Scholar] [CrossRef]
- De Greef, N.; Zhang, L.; Magrez, A.; Forró, L.; Locquet, J.-P.; Verpoest, I.; Seo, J.W. Direct growth of carbon nanotubes on carbon fibers: Effect of the CVD parameters on the degradation of mechanical properties of carbon fibers. Diam. Relat. Mater. 2015, 51, 39–48. [Google Scholar] [CrossRef]
- Boroujeni, A.Y.; Tehrani, M.; Nelson, A.J.; Al-Haik, M. Effect of carbon nanotubes growth topology on the mechanical behavior of hybrid carbon nanotube/carbon fiber polymer composites. Polym. Compos. 2016, 37, 2639–2648. [Google Scholar] [CrossRef]
- Luhrs, C.C.; Garcia, D.; Tehrani, M.; Al-Haik, M.; Taha, M.R.; Phillips, J. Generation of carbon nanofilaments on carbon fibers at 550 °C. Carbon 2009, 47, 3071–3078. [Google Scholar] [CrossRef]
- Ayyagari, S.; Al-Haik, M.; Ren, Y.; Nepal, D. Effect of Nano-Reinforcement Topologies on the Viscoelastic Performance of Carbon Nanotube/Carbon Fiber Hybrid Composites. Nanomaterials 2020, 10, 1213. [Google Scholar] [CrossRef]
- ASTM D5528-13; Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites. ASTM International: West Conshohocken, PA, USA, 2013.
- Broek, D. Elementary Engineering Fracture Mechanics; Springer Science & Business Media: New York, NY, USA, 2012. [Google Scholar]
- Co, A. Solver Theory Guide. Release 2021 R2; ANSYS Inc.: Canonsburg, PA, USA, 2021. [Google Scholar]
- HS, M.W.; Kumar, K. Finite Element Modeling for Delamination Analysis of Double Cantilever Beam Specimen. SSRG Int. J. Mech. Eng. 2014, 1, 1–11. [Google Scholar]
- Heidari-Rarani, M.; Sayedain, M. Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Theor. Appl. Fract. Mech. 2019, 103, 102246. [Google Scholar] [CrossRef]
- Gliszczynski, A.; Samborski, S.; Wiacek, N.; Rzeczkowski, J. Mode I interlaminar fracture of glass/epoxy unidirectional laminates. Part II: Numerical analysis. Materials 2019, 12, 1604. [Google Scholar] [CrossRef]
- Zhu, G.; Qu, P.; Nie, J.; Guo, Y.; Jia, Y. Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive Zone Model. Polym. Polym. Compos. 2014, 22, 25–30. [Google Scholar] [CrossRef]
- Bahei-El-Din, Y.A. Finite element analysis of viscoplastic composite materials and structures. Mech. Compos. Mater. Struct. 1996, 3, 1–28. [Google Scholar] [CrossRef]
- De Baere, I.; Jacques, S.; Van Paepegem, W.; Degrieck, J. Study of the Mode I and Mode II interlaminar behaviour of a carbon fabric reinforced thermoplastic. Polym. Test. 2012, 31, 322–332. [Google Scholar] [CrossRef]
- Mobasher, B.; Li, C.Y. Effect of interfacial properties on the crack propagation in cementitious composites. Adv. Cem. Based Mater. 1996, 4, 93–105. [Google Scholar] [CrossRef]
- Sakai, M.; Miyajima, T.; Inagaki, M. Fracture toughness and fiber bridging of carbon fiber reinforced carbon composites. Compos. Sci. Technol. 1991, 40, 231–250. [Google Scholar] [CrossRef]
- Spearing, S.; Evans, A.G. The role of fiber bridging in the delamination resistance of fiber-reinforced composites. Acta Metall. Mater. 1992, 40, 2191–2199. [Google Scholar] [CrossRef]
- Ou, Y.; González, C.; Vilatela, J.J. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Compos. Part A Appl. Sci. Manuf. 2019, 124, 105477. [Google Scholar] [CrossRef]
- Krieger, W.E. Cohesive Zone Modeling for Predicting Interfacial Delamination in Microelectronic Packaging. Master’s Thesis, Woodruff School of Mechanical Engineering, Atlanta, GA, USA, 2014. [Google Scholar]
- Li, S.; Thouless, M.; Waas, A.; Schroeder, J.; Zavattieri, P. Use of mode-I cohesive-zone models to describe the fracture of an adhesively-bonded polymer-matrix composite. Compos. Sci. Technol. 2005, 65, 281–293. [Google Scholar] [CrossRef]
- Barbero Ever, J. Finite Element Analysis of Composite Materials Using ANSYS®; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
Sample Type | Strength (MPa) | Modulus (GPa) E1 = E2 | * Out of Plane Modulus E3 (GPa) | * Poisson’s Ratio ν12 | * In-Plane Shear Modulus G12 (GPa) |
---|---|---|---|---|---|
Desized | 526.67 | 29.74 | 6.00 | 0.18 | 5.00 |
Full Growth | 485.69 | 38.59 | 6.00 | 0.18 | 5.00 |
105 μm | 503.50 | 45.80 | 6.00 | 0.18 | 5.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ayyagari, S.; Al-Haik, M. Mitigating Crack Propagation in Hybrid Composites: An Experimental and Computational Study. J. Compos. Sci. 2024, 8, 122. https://doi.org/10.3390/jcs8040122
Ayyagari S, Al-Haik M. Mitigating Crack Propagation in Hybrid Composites: An Experimental and Computational Study. Journal of Composites Science. 2024; 8(4):122. https://doi.org/10.3390/jcs8040122
Chicago/Turabian StyleAyyagari, Suma, and Marwan Al-Haik. 2024. "Mitigating Crack Propagation in Hybrid Composites: An Experimental and Computational Study" Journal of Composites Science 8, no. 4: 122. https://doi.org/10.3390/jcs8040122
APA StyleAyyagari, S., & Al-Haik, M. (2024). Mitigating Crack Propagation in Hybrid Composites: An Experimental and Computational Study. Journal of Composites Science, 8(4), 122. https://doi.org/10.3390/jcs8040122