Comparing Degradation Mechanisms, Quality, and Energy Usage for Pellet- and Filament-Based Material Extrusion for Short Carbon Fiber-Reinforced Composites with Recycled Polymer Matrices
Abstract
:1. Introduction
2. Materials and Processing Parameters
2.1. Material Selection and Preparation Composites
2.2. Fused Filament Fabrication and Direct Pellet-Based AM of sCF Composites
2.3. Printing Parameter Optimization
2.4. Rheological, Morphological, and Thermal Property Characterizations
2.4.1. GPC Analysis
2.4.2. Rheology Analysis
2.4.3. Optical and Scanning Electron Microscopy Analysis
2.4.4. Carbon Fiber Length
2.4.5. DSC Analysis
2.4.6. TGA Analysis
2.4.7. FTIR Analysis
2.5. Measurement of Mechanical Properties
2.5.1. Tensile Property Measurements
2.5.2. Flexural Property Measurements
2.5.3. Impact Property Measurements
2.6. Energy Consumption
3. Results and Discussions
3.1. GPC: Degradation by Scission
3.2. FTIR: Identifying Degradation Products
3.3. Rheological Behavior: Relevance of Crosslinking
3.4. Thermal Properties
3.5. Morphological Properties
3.6. Tensile, Flexural, and Impact Properties
3.7. Energy Consumption
4. Conclusions
- ▪
- An analysis of GPC data alone can lead to an incorrect evaluation of the degradation of the polymer matrix, as only the soluble fraction of the polymer is analyzed. However, SAOS allowed us to obtain deeper insights into the polymer matrix degradation process and to evaluate how DPAM leads to a lower degree of material degradation during processing.
- ▪
- Despite the lower layer thickness and better surface roughness of the FFF parts, the tensile and impact properties of the parts produced via DPAM and FFF were comparable.
- ▪
- DPAM offers a significant advantage, as it allows for faster printing. Furthermore, for FFF, only the lower energy consumption limit was calculated as the energy-consuming filament production process was not accounted for.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhou, Z.; Salaoru, I.; Morris, P.; Gibbons, G.J. Additive Manufacturing of Heat-Sensitive Polymer Melt Using a Pellet-Fed Material Extrusion. Addit. Manuf. 2018, 24, 552–559. [Google Scholar] [CrossRef]
- Dilberoglu, U.M.; Gharehpapagh, B.; Yaman, U.; Dolen, M. The Role of Additive Manufacturing in the Era of Industry 4.0. Procedia Manuf. 2017, 11, 545–554. [Google Scholar] [CrossRef]
- Tekinalp, H.L.; Kunc, V.; Velez-Garcia, G.M.; Duty, C.E.; Love, L.J.; Naskar, A.K.; Blue, C.A.; Ozcan, S. Highly Oriented Carbon Fiber–Polymer Composites via Additive Manufacturing. Compos. Sci. Technol. 2014, 105, 144–150. [Google Scholar] [CrossRef]
- Parandoush, P.; Lin, D. A Review on Additive Manufacturing of Polymer-Fiber Composites. Compos. Struct. 2017, 182, 36–53. [Google Scholar] [CrossRef]
- Tamez, M.B.A.; Taha, I. A Review of Additive Manufacturing Technologies and Markets for Thermosetting Resins and Their Potential for Carbon Fiber Integration. Addit. Manuf. 2021, 37, 101748. [Google Scholar] [CrossRef]
- Thomas, J.; Patil, R.S.; John, J.; Patil, M. A Comprehensive Outlook of Scope within Exterior Automotive Plastic Substrates and Its Coatings. Coatings 2023, 13, 1569. [Google Scholar] [CrossRef]
- Jeantet, L.; Regazzi, A.; Perrin, D.; Pucci, M.F.; Corn, S.; Quantin, J.-C.; Ienny, P. Recycled Carbon Fiber Potential for Reuse in Carbon Fiber/PA6 Composite Parts. Compos. Part B Eng. 2024, 269, 111100. [Google Scholar] [CrossRef]
- Baddour, M.; Garcia-Campà, R.; Reyes, P.; D’hooge, D.R.; Cardon, L.; Edeleva, M. Designing Prepregnation and Fused Filament Fabrication Parameters for Recycled PP- and PA-Based Continuous Carbon Fiber Composites. Materials 2024, 17, 1788. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Shou, W.; Makatura, L.; Matusik, W.; Fu, K. (Kelvin) 3D Printing of Polymer Composites: Materials, Processes, and Applications. Matter 2022, 5, 43–76. [Google Scholar] [CrossRef]
- Yang, D.; Cao, Y.; Zhang, Z.; Yin, Y.; Li, D. Effects of Crystallinity Control on Mechanical Properties of 3D-Printed Short-Carbon-Fiber-Reinforced Polyether Ether Ketone Composites. Polym. Test. 2021, 97, 107149. [Google Scholar] [CrossRef]
- Blok, L.G.; Longana, M.L.; Yu, H.; Woods, B.K.S. An Investigation into 3D Printing of Fibre Reinforced Thermoplastic Composites. Addit. Manuf. 2018, 22, 176–186. [Google Scholar] [CrossRef]
- Spoerk, M.; Savandaiah, C.; Arbeiter, F.; Traxler, G.; Cardon, L.; Holzer, C.; Sapkota, J. Anisotropic Properties of Oriented Short Carbon Fibre Filled Polypropylene Parts Fabricated by Extrusion-Based Additive Manufacturing. Compos. Part A Appl. Sci. Manuf. 2018, 113, 95–104. [Google Scholar] [CrossRef]
- Bhandari, S.; Lopez-Anido, R.A.; Gardner, D.J. Enhancing the Interlayer Tensile Strength of 3D Printed Short Carbon Fiber Reinforced PETG and PLA Composites via Annealing. Addit. Manuf. 2019, 30, 100922. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, H.; Wu, J.; McCarthy, E.D. Fibre Flow and Void Formation in 3D Printing of Short-Fibre Reinforced Thermoplastic Composites: An Experimental Benchmark Exercise. Addit. Manuf. 2021, 37, 101686. [Google Scholar] [CrossRef]
- Jiang, D.; Smith, D.E. Anisotropic Mechanical Properties of Oriented Carbon Fiber Filled Polymer Composites Produced with Fused Filament Fabrication. Addit. Manuf. 2017, 18, 84–94. [Google Scholar] [CrossRef]
- Van Waeleghem, T.; Marchesini, F.H.; Cardon, L.; D’hooge, D.R. In Silico Quantification of 3D Thermal Gradients and Voids during Fused Filament Fabrication Deposition to Enhance Mechanical and Dimensional Stability. Addit. Manuf. 2023, 72, 103624. [Google Scholar] [CrossRef]
- La Gala, A.; Fiorio, R.; Ceretti, D.V.A.; Erkoç, M.; Cardon, L.; D’hooge, D.R. A Combined Experimental and Modeling Study for Pellet-Fed Extrusion-Based Additive Manufacturing to Evaluate the Impact of the Melting Efficiency. Materials 2021, 14, 5566. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Fidan, I.; Hasanov, S.; Nasirov, A. Processing, Mechanical Characterization, and Micrography of 3D-Printed Short Carbon Fiber Reinforced Polycarbonate Polymer Matrix Composite Material. Int. J. Adv. Manuf. Technol. 2020, 107, 3185–3205. [Google Scholar] [CrossRef]
- Ligon, S.C.; Liska, R.; Stampfl, J.; Gurr, M.; Mülhaupt, R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem. Rev. 2017, 117, 10212–10290. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, A.; Cruz Sanchez, F.A.; Boudaoud, H.; Camargo, M.; Pearce, J.M. Mechanical Properties of Direct Waste Printing of Polylactic Acid with Universal Pellets Extruder: Comparison to Fused Filament Fabrication on Open-Source Desktop Three-Dimensional Printers. 3D Print. Addit. Manuf. 2020, 7, 237–247. [Google Scholar] [CrossRef]
- La Gala, A.; Fiorio, R.; Erkoç, M.; Cardon, L.; D’hooge, D.R. Theoretical Evaluation of the Melting Efficiency for the Single-Screw Micro-Extrusion Process: The Case of 3D Printing of ABS. Processes 2020, 8, 1522. [Google Scholar] [CrossRef]
- Ghabezi, P.; Flanagan, T.; Harrison, N. Short Basalt Fibre Reinforced Recycled Polypropylene Filaments for 3D Printing. Mater. Lett. 2022, 326, 132942. [Google Scholar] [CrossRef]
- Gaspar-Cunha, A.; Covas, J.A. The Design of Extrusion Screws: An Optimization Approach. Int. Polym. Process. 2001, 16, 229–240. [Google Scholar] [CrossRef]
- La Gala, A.; Cardon, L.; Dagmar, R.D. Comparing the Performance of Pellet-Based AM of Two Main Thermoplastic Materials. In Proceedings of the International Polymer Process Innovation Conference 2021 (PPI-2021), Online, 14–15 December 2021; pp. 8–12. [Google Scholar]
- La Gala, A.; Ceretti, D.V.A.; Fiorio, R.; Cardon, L.; D’hooge, D.R. Comparing Pellet- and Filament-Based Additive Manufacturing with Conventional Processing for ABS and PLA Parts. J. Appl. Polym. Sci. 2022, 139, e53089. [Google Scholar] [CrossRef]
- La Gala, A. Engineering Control of Polymer Pellet-Based Additive Manufacturing. Doctoral Dissertation, Ghent University, Ghent, Belgium, 2022. [Google Scholar]
- Callister, W.D.; Rethwisch, D.G. Materials Science and Engineering: An Introduction; Wiley: Hoboken, NJ, USA, 2007. [Google Scholar]
- Silveira, Z.C.; de Freitas, M.S.; Inforçatti Neto, P.; Noritomi, P.Y.; Silva, J.V.L. Study of the Technical Feasibility and Design of a Mini Head Screw Extruder Applied to Filament Deposition in Desktop 3-D Printer. Key Eng. Mater. 2013, 572, 151–154. [Google Scholar] [CrossRef]
- Tseng, J.-W.; Liu, C.-Y.; Yen, Y.-K.; Belkner, J.; Bremicker, T.; Liu, B.H.; Sun, T.-J.; Wang, A.-B. Screw Extrusion-Based Additive Manufacturing of PEEK. Mater. Des. 2018, 140, 209–221. [Google Scholar] [CrossRef]
- Ceretti, D.V.A.; Marien, Y.W.; Edeleva, M.; La Gala, A.; Cardon, L.; D’hooge, D.R. Thermal and Thermal-Oxidative Molecular Degradation of Polystyrene and Acrylonitrile Butadiene Styrene during 3D Printing Starting from Filaments and Pellets. Sustainability 2022, 14, 15488. [Google Scholar] [CrossRef]
- Schall, C.; Schöppner, V. Measurement of Material Degradation in Dependence of Shear Rate, Temperature, and Residence Time. Polym. Eng. Sci. 2022, 62, 815–823. [Google Scholar] [CrossRef]
- Five Industries Utilizing 3D Printing. Available online: https://markforged.com/resources/blog/3d-printed-robot-arm/ (accessed on 6 June 2024).
- Pignatelli, F.; Percoco, G. An Application- and Market-Oriented Review on Large Format Additive Manufacturing, Focusing on Polymer Pellet-Based 3D Printing. Prog. Addit. Manuf. 2022, 7, 1363–1377. [Google Scholar] [CrossRef]
- Singamneni, S.; Behera, M.P.; Truong, D.; Le Guen, M.J.; Macrae, E.; Pickering, K. Direct Extrusion 3D Printing for a Softer PLA-Based Bio-Polymer Composite in Pellet Form. J. Mater. Res. Technol. 2021, 15, 936–949. [Google Scholar] [CrossRef]
- The World’s Most Productive FFF 3D Printing Solutions. Available online: https://www.bcn3d.com/ (accessed on 6 June 2024).
- Kadam, V.; Kumar, S.; Bongale, A.; Wazarkar, S.; Kamat, P.; Patil, S. Enhancing Surface Fault Detection Using Machine Learning for 3d Printed Products. Appl. Syst. Innov. 2021, 4, 34. [Google Scholar] [CrossRef]
- Vanaei, H.R.; Raissi, K.; Deligant, M.; Shirinbayan, M.; Fitoussi, J.; Khelladi, S.; Tcharkhtchi, A. Toward the Understanding of Temperature Effect on Bonding Strength, Dimensions and Geometry of 3D-Printed Parts. J. Mater. Sci. 2020, 55, 14677–14689. [Google Scholar] [CrossRef]
- ISO 527-1:2012; Plastics—Determination of Tensile Properties—Part 1: General Principles Plastiques. Bureau voor Normalisatie: Brussels, Belgium, 2005.
- ISO 178:2010; Plastics—Determination of Flexural Properties Plastiques. Bureau voor Normalisatie: Brussels, Belgium, 2006.
- ISO/FDIS 179-1:2010(E); Plastics—Determination of Charpy Impact Properties. Bureau voor Normalisatie: Brussels, Belgium, 2014; Volume 2013.
- Harris, M.; Potgieter, J.; Ray, S.; Archer, R.; Arif, K.M. Acrylonitrile Butadiene Styrene and Polypropylene Blend with Enhanced Thermal and Mechanical Properties for Fused Filament Fabrication. Materials 2019, 12, 4167. [Google Scholar] [CrossRef] [PubMed]
- Desrousseaux, C.; Cueff, R.; Aumeran, C.; Garrait, G.; Mailhot-Jensen, B.; Traoré, O.; Sautou, V. Fabrication of Acrylonitrile-Butadiene-Styrene Nanostructures with Anodic Alumina Oxide Templates, Characterization and Biofilm Development Test for Staphylococcus Epidermidis. PLoS ONE 2015, 10, e0135632. [Google Scholar] [CrossRef] [PubMed]
- Fiorillo, C.; Ohnmacht, H.; Reyes, P.; Van Steenberge, P.H.M.; Cardon, L.; D’hooge, D.R.; Edeleva, M. Quantifying Hydrolytic Degradation of Poly(Ethylene Terephthalate Glycol) under Storage Conditions and for Fused Filament Fabrication Mechanical Properties. Polym. Degrad. Stab. 2023, 217, 110511. [Google Scholar] [CrossRef]
- Riemann, R.E.; Cantow, H.J.; Friedrich, C. Rheological Investigation of Form Relaxation and Interface Relaxation Processes in Polymer Blends. Polym. Bull. 1996, 36, 637–643. [Google Scholar] [CrossRef]
- Hannecart, C.; Clasen, C.; van Ruymbeke, E. Constraint Release Rouse Mechanisms in Bidisperse Linear Polymers: Investigation of the Release Time of a Short-Long Entanglement. Polymers 2023, 15, 1569. [Google Scholar] [CrossRef] [PubMed]
- Ceretti, D.V.A.; Edeleva, M.; Cardon, L.; D’hooge, D.R. Molecular Pathways for Polymer Degradation during Conventional Processing, Additive Manufacturing, and Mechanical Recycling. Molecules 2023, 28, 2344. [Google Scholar] [CrossRef]
- Run, M.; Wang, H.; Li, X. Morphology, Mechanical, Rheological, and Thermal Properties Study on the PTT/ABS/SCF Composites. Compos. Interfaces 2012, 19, 333–351. [Google Scholar] [CrossRef]
- Spoerk, M.; Arbeiter, F.; Raguž, I.; Holzer, C.; Gonzalez-Gutierrez, J. Mechanical Recyclability of Polypropylene Composites Produced by Material Extrusion-Based Additive Manufacturing. Polymers 2019, 11, 1318. [Google Scholar] [CrossRef]
- Mills, N.J. The Rheology of Filled Polymers. J. Appl. Polym. Sci. 1971, 15, 2791–2805. [Google Scholar] [CrossRef]
- Costanzo, A.; Cavallo, D.; McIlroy, C. High-Performance Co-Polyesters for Material-Extrusion 3D Printing: A Molecular Perspective of Weld Properties. Addit. Manuf. 2022, 49, 102474. [Google Scholar] [CrossRef]
- Jin, H.; Gonzalez-Gutierrez, J.; Oblak, P.; Zupančič, B.; Emri, I. The Effect of Extensive Mechanical Recycling on the Properties of Low Density Polyethylene. Polym. Degrad. Stab. 2012, 97, 2262–2272. [Google Scholar] [CrossRef]
- Cho, K.; Li, F.; Choi, J. Crystallization and Melting Behavior of Polypropylene and Maleated Polypropylene Blends. Polymer 1999, 40, 1719–1729. [Google Scholar] [CrossRef]
- Kuram, E.; Ozcelik, B.; Yilmaz, F. The Effects of Recycling Process on Thermal, Chemical, Rheological, and Mechanical Properties of PC/ABS Binary and PA6/PC/ABS Ternary Blends. J. Elastomers Plast. 2016, 48, 164–181. [Google Scholar] [CrossRef]
- Balart, R.; López, J.; García, D.; Dolores Salvador, M. Recycling of ABS and PC from Electrical and Electronic Waste. Effect of Miscibility and Previous Degradation on Final Performance of Industrial Blends. Eur. Polym. J. 2005, 41, 2150–2160. [Google Scholar] [CrossRef]
- Herrera, N.; Roch, H.; Salaberria, A.M.; Pino-Orellana, M.A.; Labidi, J.; Fernandes, S.C.M.; Radic, D.; Leiva, A.; Oksman, K. Functionalized Blown Films of Plasticized Polylactic Acid/Chitin Nanocomposite: Preparation and Characterization. Mater. Des. 2016, 92, 846–852. [Google Scholar] [CrossRef]
- Tian, H.; Zhang, S.; Ge, X.; Xiang, A. Crystallization Behaviors and Mechanical Properties of Carbon Fiber-Reinforced Polypropylene Composites. J. Therm. Anal. Calorim. 2017, 128, 1495–1504. [Google Scholar] [CrossRef]
- Chicos, L.-A.; Pop, M.A.; Zaharia, S.-M.; Lancea, C.; Buican, G.R.; Pascariu, I.S.; Stamate, V.-M. Infill Density Influence on Mechanical and Thermal Properties of Short Carbon Fiber-Reinforced Polyamide Composites Manufactured by FFF Process. Materials 2022, 15, 3706. [Google Scholar] [CrossRef] [PubMed]
- What Is Surface Roughness? Available online: https://www.keyence.eu/ss/products/microscope/roughness/line/ (accessed on 6 June 2024).
- Mishra, V.; Ror, C.K.; Negi, S.; Kar, S.; Borah, L.N. 3D Printing with Recycled ABS Resin: Effect of Blending and Printing Temperature. Mater. Chem. Phys. 2023, 309, 128317. [Google Scholar] [CrossRef]
- Spoerk, M.; Arbeiter, F.; Raguž, I.; Weingrill, G.; Fischinger, T.; Traxler, G.; Schuschnigg, S.; Cardon, L.; Holzer, C. Polypropylene Filled With Glass Spheres in Extrusion-Based Additive Manufacturing: Effect of Filler Size and Printing Chamber Temperature. Macromol. Mater. Eng. 2018, 303, 1800179. [Google Scholar] [CrossRef]
- Rajan, K.; Samykano, M.; Kadirgama, K.; Harun, W.S.W.; Rahman, M.M. Fused Deposition Modeling: Process, Materials, Parameters, Properties, and Applications. Int. J. Adv. Manuf. Technol. 2022, 120, 1531–1570. [Google Scholar] [CrossRef]
- Somireddy, M.; Singh, C.V.; Czekanski, A. Mechanical Behaviour of 3D Printed Composite Parts with Short Carbon Fiber Reinforcements. Eng. Fail. Anal. 2020, 107, 104232. [Google Scholar] [CrossRef]
- Cheng, S.Z.D.; Janimak, J.J.; Zhang, A.; Cheng, H.N. Regime Transitions in Fractions of Isotactic Polypropylene. Macromolecules 1990, 23, 298–303. [Google Scholar] [CrossRef]
- Tsutsumi, K.; Ishida, S.; Shibata, K. Determination of the Surface Free Energy of Modified Carbon Fibers and Its Relation to the Work of Adhesion. Colloid Polym. Sci. 1990, 268, 31–37. [Google Scholar] [CrossRef]
- Akhoundi, B.; Behravesh, A.H.; Bagheri Saed, A. Improving Mechanical Properties of Continuous Fiber-Reinforced Thermoplastic Composites Produced by FDM 3D Printer. J. Reinf. Plast. Compos. 2019, 38, 99–116. [Google Scholar] [CrossRef]
- Pulipaka, A.; Gide, K.M.; Beheshti, A.; Bagheri, Z.S. Effect of 3D Printing Process Parameters on Surface and Mechanical Properties of FFF-Printed PEEK. J. Manuf. Process. 2023, 85, 368–386. [Google Scholar] [CrossRef]
- Parmiggiani, A.; Prato, M.; Pizzorni, M. Effect of the Fiber Orientation on the Tensile and Flexural Behavior of Continuous Carbon Fiber Composites Made via Fused Filament Fabrication. Int. J. Adv. Manuf. Technol. 2021, 114, 2085–2101. [Google Scholar] [CrossRef]
- Bakshi, S.; Kulshreshtha, A.K.; Singh, B.P.; Anand, J.S. Stress-Whitening of Polypropylene Block Copolymer in Impact Tests and Its Measurement. Polym. Test. 1988, 8, 191–199. [Google Scholar] [CrossRef]
Matrix and Nozzle Temperature [°C] | Additive | Vol% of sCF | Retraction Distance [mm] | Retraction Speed [mm/s] | Fan Speed [%] | Layer Thickness [mm] |
---|---|---|---|---|---|---|
rPP, 220 | PPI | 20 | 4, 8, 12 | 20, 40, 60 | 50 | 0.2 |
rPP, 230 | PPI | 20 | 4, 8, 12 | 20, 40, 60 | 50 | 0.2 |
rPP, 240 | PPI | 20 | 4, 8, 12 | 20, 40, 60 | 50 | 0.2 |
rPP, 250 | PPI | 20 | 4, 8, 12 | 20, 40, 60 | 50 | 0.2 |
rPC/ABS, 260 | Hostanox P-EPQ | 2.5 | 4, 8, 12 | 20, 40, 60 | 0, 12.5, 25, 50, 100 | 0.1 |
rPC/ABS, 270 | Hostanox P-EPQ | 2.5 | 4, 8, 12 | 20, 40, 60 | 0, 12.5, 25, 50, 100 | 0.1 |
rPC/ABS, 280 | Hostanox P-EPQ | 2.5 | 4, 8, 12 | 20, 40, 60 | 0, 12.5, 25, 50, 100 | 0.1 |
Material | rPC/ABS + 1%PEQ | rPC/ABS + 1%PEQ + 2.5% sCF | rPP | rPP + 20%sCF rPP + 20%sCF + 4%PPI | |
---|---|---|---|---|---|
Used parameters for DPAM | T1 (°C) | 230 | 230 | 190 | 170 |
T2 (°C) | 250 | 250 | 210 | 235 | |
T3 (°C) | 270 | 270 | 230 | 210 | |
Print speed (mm/s) | 21.67 | 20 | 20 | 20 | |
Screw frequency (RPM) | 0.95 | 1.15 | 4 | 1.3/1.6 | |
Used parameters for FFF | Printing temperature (°C) | 280 | 280 | 190 | 220 |
Print speed (mm/s) | 40 | 60 | 40 | 40 | |
Fan speed (%) | 10 | 10 | 20 | 50 | |
Retraction length (mm) | 12 | 12 | 8 | 8 | |
Retraction velocity (mm/s) | 60 | 60 | 40 | 40 |
Samples | Tm (°C) | Tg (°C) | Crystallinity Degree (%) |
---|---|---|---|
rPC/ABS + 1%PEQ | / | 106.9 (ABS); 137.8 (PC) | / |
rPC/ABS + 1%PEQ + 2.5%sCF | / | 106.8 (ABS); 137.9 (PC) | / |
rPP | 164.9 | / | 39.1 |
rPP + 20%sCF | 164.8 | / | 42.3 |
rPP + 20%sCF + 4%PPI | 164.3 | / | 47.7 |
Samples | T 99% (°C) | Residual Mass (%) |
---|---|---|
rPC/APS + 1%PEQ (DPAM) | 386.6 | 13.19 |
rPC/APS + 1%PEQ (FFF) | 368.9 | 12.44 |
rPC/APS + 1%PEQ + 2.5%sCF (DPAM) | 368.8 | 12.62 |
rPC/APS + 1%PEQ + 2.5%sCF (FFF) | 381.4 | 11.06 |
rPP (DPAM) | 335.6 | 1.89 |
rPP (FFF) | 332.0 | 1.10 |
rPP + 20%sCF + 4%PPI (DPAM) | 256.1 | 22.25 |
rPP + 20%sCF + 4%PPI (FFF) | 334.5 | 24.75 |
rPP + 20%sCF (DPAM) * | 359.9 | 17.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baddour, M.; Fiorillo, C.; Trossaert, L.; Verberckmoes, A.; Ghekiere, A.; D’hooge, D.R.; Cardon, L.; Edeleva, M. Comparing Degradation Mechanisms, Quality, and Energy Usage for Pellet- and Filament-Based Material Extrusion for Short Carbon Fiber-Reinforced Composites with Recycled Polymer Matrices. J. Compos. Sci. 2024, 8, 222. https://doi.org/10.3390/jcs8060222
Baddour M, Fiorillo C, Trossaert L, Verberckmoes A, Ghekiere A, D’hooge DR, Cardon L, Edeleva M. Comparing Degradation Mechanisms, Quality, and Energy Usage for Pellet- and Filament-Based Material Extrusion for Short Carbon Fiber-Reinforced Composites with Recycled Polymer Matrices. Journal of Composites Science. 2024; 8(6):222. https://doi.org/10.3390/jcs8060222
Chicago/Turabian StyleBaddour, Marah, Chiara Fiorillo, Lynn Trossaert, Annabelle Verberckmoes, Arthur Ghekiere, Dagmar R. D’hooge, Ludwig Cardon, and Mariya Edeleva. 2024. "Comparing Degradation Mechanisms, Quality, and Energy Usage for Pellet- and Filament-Based Material Extrusion for Short Carbon Fiber-Reinforced Composites with Recycled Polymer Matrices" Journal of Composites Science 8, no. 6: 222. https://doi.org/10.3390/jcs8060222
APA StyleBaddour, M., Fiorillo, C., Trossaert, L., Verberckmoes, A., Ghekiere, A., D’hooge, D. R., Cardon, L., & Edeleva, M. (2024). Comparing Degradation Mechanisms, Quality, and Energy Usage for Pellet- and Filament-Based Material Extrusion for Short Carbon Fiber-Reinforced Composites with Recycled Polymer Matrices. Journal of Composites Science, 8(6), 222. https://doi.org/10.3390/jcs8060222