A Design Optimization Study of Step/Scarf Composite Panel Repairs, Targeting the Maximum Strength and the Minimization of Material Removal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methodology of the Study—The Algorithm
- Stepped.
- Every step’s height is equal to one ply’s thickness, so that each step corresponds to one ply.
- For each ply of the patch, the fiber direction has the same direction as the corresponding ply of the parent structure (patch and plate fiber direction coincide in each step)
- Elliptical form for each ply: from the bottom of the patch to its top, each ellipse is bigger than the previous one. Each smaller ellipse is fully inside the next one.
- Uniaxial loading of plate under the plate’s equivalent theoretical strength (x direction)—Coded name for this design method: XP
- Biaxial loading of plate under the plate’s equivalent theoretical strengths (x and y direction)—Coded name for this design method: XYP
- Biaxial loading of each lamina under the lamina’s strengths (principal system of lamina)—Coded name for this design method: 12L
- Max stress method [6]:θ: scarf angleσ: stress on scarf angle’s directionτf: adhesive shear strength
- Kt stress concentration factor:
- Scarf angle is not calculated: a specific value is defined by the designer.
- According to adhesive shear strength:
- Fiber-oriented methodology [3]:
- According to geometry of the stepped profile:
2.3. Concept of the Design Methodology
2.3.1. First Part of the Algorithm: Calculation of Plate’s Equivalent Strengths
2.3.2. Second Part of the Algorithm: Patch Design
2.3.3. Third Part of the Algorithm: FE Model in Abaqus—The Code of Modeling
2.3.4. Fourth Part of the Algorithm
2.4. Parametric Characteristics of the Algorithm
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Federal-Aviation-Administration. Order 8900.1A—Flight Standards Information Management System; Federal-Aviation-Administration: Washington, DC, USA, 2022. [Google Scholar]
- Wu, C.; Chen, C.; He, L.; Yan, W. Comparison on damage tolerance of scarf and stepped-lap bonded composite joints under quasi-static loading. Compos. Part B Eng. 2018, 155, 19–30. [Google Scholar] [CrossRef]
- Pierce, R.S.; Falzon, B.G. Modelling the size and strength benefits of optimised step/scarf joints and repairs in composite structures. Compos. Part B Eng. 2019, 173, 107020. [Google Scholar] [CrossRef]
- Niedernhuber, M.; Holtmannspötter, J.; Ehrlich, I. Fiber-oriented repair geometries for composite materials. Compos. Part B Eng. 2016, 94, 327–337. [Google Scholar] [CrossRef]
- Bendemra, H.; Compston, P.; Crothers, P.J. Optimisation study of tapered scarf and stepped-lap joints in composite repair patches. Compos. Struct. 2015, 130, 1–8. [Google Scholar] [CrossRef]
- Wang, C.H.; Venugopal, V.; Peng, L. Stepped Flush Repairs for Primary Composite Structures. J. Adhes. 2015, 91, 95–112. [Google Scholar] [CrossRef]
- Chamorro-Cruz, I.; López-Santiago, R.; Vázquez-Castillo, V.; Hernández-Moreno, H.; Beltrán-Zúñiga, M.A.; González-Velázquez, J.L.; Rivas-López, D.I. Elliptical one-side composite bonded repair analysis through a differential evolution algorithm. Aircr. Eng. Aerosp. Technol. 2023, 95, 1116–1127. [Google Scholar] [CrossRef]
- Echer, L.; Souza CE, D.; Marczak, R.J. A Study on the Best Conventional Shapes for Composite Repair Patches. Mater. Res. 2021, 24 (Suppl. S2), e20210304. [Google Scholar] [CrossRef]
- Benyahia, F.; Albedah, A.; Bouiadjra, B.A.B. Elliptical and circular bonded composite repair under mechanical and thermal loading in aircraft structures. Mater. Res. 2014, 17, 1219–1225. [Google Scholar] [CrossRef]
- Collombet, F.; Davila, Y.; Avila, S.; Morales, A.; Crouzeix, L.; Grunevald, Y.-H.; Hernandez, H.; Rocher, N.; Cénac, F. Proof of a composite repair concept for aeronautical structures: A simplified method. Mech. Ind. 2019, 20, 812. [Google Scholar] [CrossRef]
- Tashi, S.; Abedian, A. A comprehensive 2 Dimensional and 3 Dimensional FEM study of scarf repair for a variety of common composite laminates under in-plane uniaxial and equibiaxial loadings. Int. J. Adhes. Adhes. 2022, 114, 103092. [Google Scholar] [CrossRef]
- Wang, C.; Gunnion, A. Optimum shapes of scarf repairs. Compos. Part A Appl. Sci. Manuf. 2009, 40, 1407–1418. [Google Scholar] [CrossRef]
- Hall, Z.E.C.; Liu, J.; Brooks, R.A.; Liu, H.; Crocker, J.W.M.; Joesbury, A.M.; Harper, L.T.; Blackman, B.R.K.; Kinloch, A.J.; Dear, J.P. The effectiveness of patch repairs to restore the impact properties of carbon-fibre reinforced-plastic composites. Eng. Fract. Mech. 2022, 270, 108570. [Google Scholar] [CrossRef]
- Wang, C.H.; Gunnion, A.J. Optimum shapes for minimising bond stress in scarf repairs. Aust. J. Mech. Eng. 2008, 6, 153–158. [Google Scholar] [CrossRef]
- Ramji, M.; Srilakshmi, R.; Prakash, M. Towards optimization of patch shape on the performance of bonded composite repair using FEM. Compos. Part B Eng. 2013, 45, 710–720. [Google Scholar] [CrossRef]
- Wang, C.; Duong, C. Design and optimization of scarf repairs. In Bonded Joints and Repairs to Composite Airframe Structures; Academic Press: London, UK, 2016; ISBN 9780124171534. [Google Scholar] [CrossRef]
- Pitanga, M.Y.; Cioffi, M.O.H.; Voorwald, H.J.C.; Wang, C.H. Reducing repair dimension with variable scarf angles. Int. J. Adhes. Adhes. 2021, 104, 102752. [Google Scholar] [CrossRef]
- Psarras, S.; Loutas, T.; Papanaoum, M.; Triantopoulos, O.K.; Kostopoulos, V. Investigating the Effect of Stepped Scarf Repair Ratio in Repaired CFRP Laminates under Compressive Loading. J. Compos. Sci. 2020, 4, 153. [Google Scholar] [CrossRef]
- Barbosa, N.G.C.; Campilho, R.D.S.G.; Silva, F.J.G.; Moreira, R.D.F. Comparison of different adhesively-bonded joint types for mechanical structures. Appl. Adhes. Sci. 2018, 6, 15. [Google Scholar] [CrossRef]
- Damghani, M.; Bolanos, S.; Chahar, A.; Matthews, J.; Atkinson, G.A.; Murphy, A.; Edwards, T. Design, novel quality check and experimental test of an original variable length stepped scarf repair scheme. Compos. Part B Eng. 2022, 230, 109542. [Google Scholar] [CrossRef]
- Yoo, J.-S.; Truong, V.-H.; Park, M.-Y.; Choi, J.-H.; Kweon, J.-H. Parametric study on static and fatigue strength recovery of scarf-patch-repaired composite laminates. Compos. Struct. 2016, 140, 417–432. [Google Scholar] [CrossRef]
- Bhise, V.; Kashfuddoja, M.; Ramji, M. Optimization of circular composite patch reinforcement on damaged carbon fiber reinforced polymer laminate involving both mechanics-based and genetic algorithm in conjunction with 3D finite element analysis. J. Compos. Mater. 2013, 48, 2679–2695. [Google Scholar] [CrossRef]
- Psarras, S.; Loutas, T.; Galanopoulos, G.; Karamadoukis, G.; Sotiriadis, G.; Kostopoulos, V. Evaluating experimentally and numerically different scarf-repair methodologies of composite structures. Int. J. Adhes. Adhes. 2019, 97, 102495. [Google Scholar] [CrossRef]
- Psarras, S.; Loutas, T.; Sotiriadis, G.; Kostopoulos, V. Evaluating the compressive strength of stepped scarf repaired single stiffener composite panels. J. Compos. Mater. 2023, 57, 2887–2898. [Google Scholar] [CrossRef]
- AITM 1-0010; Airbus Test Method. Determination of Compression Strength After Impact. Airbus S.A.S Engineering Directorate: Blagnac, France, 2005.
- ASTM. D7137/D7137M—07; Standard Test Method for Compressive Residual Strength Properties of Damaged Polymer Matrix Composite Plates. ASTM: West Conshohocken, PA, USA, 2011; p. 16. [CrossRef]
Elastic Properties | ||
---|---|---|
Lamina Properties | Symbol and Unit of Measure | Value |
Density | ρ [kg/mm3] | 1.597 × 10−6 |
Elastic modulus—direction 1 (parallel to fibers) | E1 [ΜPa] | 125,000 |
Elastic modulus—direction 2 (vertical to fibers) | E2 [MPa] | 8680 |
Shear modulus—plane 12 (lamina plane) | G12 [MPa] | 4700 |
Shear modulus—plane 23 (vertical to lamina plane) | G23 [MPa] | 4700 |
Shear modulus—plane 13 (vertical to lamina plane) | G13 [MPa] | 4700 |
Poisson’s ratio—plane 12 | v12 | 0.35 |
Damage Initiation Properties | ||
---|---|---|
Lamina Strengths | Symbol and Unit of Measure | Value |
Tensile strength—direction 1 (parallel to fibers) | F1T [ΜPa] | 3325 |
Compressive strength—direction 1 (parallel to fibers) | F1C [ΜPa] | 911 |
Tensile strength—direction 2 (vertical to fibers) | F2T [ΜPa] | 66 |
Compressive strength—direction 2 (vertical to fibers) | F2C [ΜPa] | 170 |
Shear strength—lamina plane | S [ΜPa] | 90 |
Shear strength—plane vertical to lamina plane | R [MPa] | 60 |
Damage Evolution Properties | ||
---|---|---|
Lamina Strengths | Symbol and Unit of Measure | Value |
Tensile fracture energy—direction 1 (parallel to fibers) | [Ν/mm] | 163 |
Compressive fracture energy—direction 1 (parallel to fibers) | [Ν/mm] | 70 |
Tensile fracture energy—direction 2 (vertical to fibers) | [Ν/mm] | 0.5 |
Compressive fracture energy—direction 2 (vertical to fibers) | [Ν/mm] | 17 |
Adhesive Properties | Symbol and Unit of Measure | Value |
---|---|---|
Elastic Properties | ||
Stiffness modulus—normal direction | Κn [N/mm3] | 100 |
Stiffness modulus—first shear direction | Ks [N/mm3] | 35 |
Stiffness modulus—second shear direction | Kt [N/mm3] | 35 |
Damage initiation properties | ||
Strength—normal direction | tn [ΜPa] | 14 |
Strength—first shear direction | ts [ΜPa] | 40 |
Strength—second shear direction | tt [ΜPa] | 40 |
Damage evolution properties | ||
Critical fracture energy—normal direction | GIC [N/mm2] | 400 |
Critical fracture energy—first shear direction | GIIC [N/mm2] | 600 |
Critical fracture energy—second shear direction | GIIIC [N/mm2] | 600 |
Specimen | Vmatloss [mm3] | Difference from Circular [%] | r Ratio | Specimen | Vmatloss [mm3] | Difference from Circular [%] | r Ratio |
---|---|---|---|---|---|---|---|
R-NL-C4-FD | 569.17 | −34.1 | 0.09 | NR-NL-C5-FD | 227.01 | −23.9 | 0.25 |
R-NL-C5-FD | 408.49 | −39.5 | 0.11 | NR-NL-C6-FD | 177.79 | −22.9 | 0.33 |
R-NL-C6-FD | 314.23 | −30.2 | 0.17 | NR-NL-C7-FD | 145.35 | −19.9 | 0.42 |
R-NL-C7-FD | 253.2 | −44.9 | 0.16 | NR-NL-C8-FD | 122.5 | −14.2 | 0.53 |
R-NL-C8-FD | 210.85 | −48.9 | 0.18 | NR-NL-C9-FD | 105.6 | −32.9 | 0.48 |
R-NL-C9-FD | 179.93 | −44.9 | 0.23 | NR-NL-C10-FD | 96.62 | −14.2 | 0.67 |
R-NL-C10-FD | 156.46 | −46.2 | 0.26 | NR-XP-NC-AD | 77.397 | 1.5 | 0.99 |
R-XP-NC-AD | 215.12 | −34.2 | 0.23 | NR-XYP-NC-AD | 255.82 | −5.7 | 0.28 |
R-XYP-NC-AD | 400.69 | −26.0 | 0.14 | NR-XYP-MS-G | 250.5 | −3.2 | 0.29 |
R-XYP-MS-G | 389.47 | −14.6 | 0.17 | NR-XYP-MS-FD | 144.49 | −50.3 | 0.26 |
R-XYP-MS-FD | 356.11 | −29.0 | 0.15 | NR-XYP-KT-G | 1083 | 1.5 | 0.07 |
R-12L-NC-AD | 1051 | −25.1 | 0.05 | NR-XYP-ΚΤ-FD | 566.37 | −2.3 | 0.13 |
R-12L-MS-G | 1024.1 | −22.5 | 0.06 | NR-12L-NC-AD | 456.62 | −18.3 | 0.14 |
R-12L-MS-FD | 1402.3 | −5.2 | 0.05 | NR-12L-MS-G | 449.19 | 0.4 | 0.17 |
NR-NL-C2-FD | 870.67 | −22.0 | 0.07 | NR-12L-MS-FD | 364.5 | −21.8 | 0.16 |
NR-NL-C4-FD | 309.17 | −21.8 | 0.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Psarras, S.; Giannoutsou, M.-P.; Kostopoulos, V. A Design Optimization Study of Step/Scarf Composite Panel Repairs, Targeting the Maximum Strength and the Minimization of Material Removal. J. Compos. Sci. 2024, 8, 248. https://doi.org/10.3390/jcs8070248
Psarras S, Giannoutsou M-P, Kostopoulos V. A Design Optimization Study of Step/Scarf Composite Panel Repairs, Targeting the Maximum Strength and the Minimization of Material Removal. Journal of Composites Science. 2024; 8(7):248. https://doi.org/10.3390/jcs8070248
Chicago/Turabian StylePsarras, Spyridon, Maria-Panagiota Giannoutsou, and Vassilis Kostopoulos. 2024. "A Design Optimization Study of Step/Scarf Composite Panel Repairs, Targeting the Maximum Strength and the Minimization of Material Removal" Journal of Composites Science 8, no. 7: 248. https://doi.org/10.3390/jcs8070248
APA StylePsarras, S., Giannoutsou, M. -P., & Kostopoulos, V. (2024). A Design Optimization Study of Step/Scarf Composite Panel Repairs, Targeting the Maximum Strength and the Minimization of Material Removal. Journal of Composites Science, 8(7), 248. https://doi.org/10.3390/jcs8070248