Polymer Microspheres Carrying Schiff-Base Ligands for Metal Ion Adsorption Obtained via Pickering Emulsion Polymerization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Silica Nanoparticles
2.3. Synthesis of Schiff-Base Ligand: 2-((Allylimino)methyl)phenol and Complex with Copper (II)
2.4. Polymer Microsphere Synthesis via Pickering Emulsion Polymerization
2.5. Characterization of the Materials
2.6. Measurement of Ion Extraction and Recovery Capacity of Polymer Absorbents
3. Results and Discussion
3.1. Synthesis of the Polymer Microspheres
3.2. Effect of Chemical Composition on the Metal Ion Adsorption Capacity
3.3. Effect of Ligand Concentration on the Metal Ion Adsorption Capacity
3.4. Competitive Metal Ion Adsorption
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dean, J.G.; Bosqui, F.L.; Lanouette, K.H. Removing Heavy Metals from Waste Water. Environ. Sci. Technol. 1972, 6, 518–522. [Google Scholar] [CrossRef]
- Mansourri, G.; Madani, M. Examination of the Level of Heavy Metals in Wastewater of Bandar Abbas Wastewater Treatment Plant. Open J. Ecol. 2016, 06, 55–61. [Google Scholar] [CrossRef]
- Manzo, L. 70—Metals. In Neurobiology of Disease; Gilman, S., Ed.; Academic Press: Burlington, MA, USA, 2007; pp. 759–769. ISBN 978-0-12-088592-3. [Google Scholar]
- Rehman, K.; Fatima, F.; Waheed, I.; Akash, M.S.H. Prevalence of Exposure of Heavy Metals and Their Impact on Health Consequences. J. Cell. Biochem. 2018, 119, 157–184. [Google Scholar] [CrossRef] [PubMed]
- Kinuthia, G.K.; Ngure, V.; Beti, D.; Lugalia, R.; Wangila, A.; Kamau, L. Levels of Heavy Metals in Wastewater and Soil Samples from Open Drainage Channels in Nairobi, Kenya: Community Health Implication. Sci. Rep. 2020, 10, 8434. [Google Scholar] [CrossRef] [PubMed]
- Sharma, Y.C.; Srivastava, V.; Singh, V.K.; Kaul, S.N.; Weng, C.H. Nano-adsorbents for the Removal of Metallic Pollutants from Water and Wastewater. Environ. Technol. 2009, 30, 583–609. [Google Scholar] [CrossRef] [PubMed]
- El Ouardi, Y.; Giove, A.; Laatikainen, M.; Branger, C.; Laatikainen, K. Benefit of Ion Imprinting Technique in Solid-Phase Extraction of Heavy Metals, Special Focus on the Last Decade. J. Environ. Chem. Eng. 2021, 9, 106548. [Google Scholar] [CrossRef]
- Shakerian, F.; Kim, K.-H.; Kwon, E.; Szulejko, J.E.; Kumar, P.; Dadfarnia, S.; Haji Shabani, A.M. Advanced Polymeric Materials: Synthesis and Analytical Application of Ion Imprinted Polymers as Selective Sorbents for Solid Phase Extraction of Metal Ions. TrAC Trends Anal. Chem. 2016, 83, 55–69. [Google Scholar] [CrossRef]
- Rao, T.P.; Kala, R.; Daniel, S. Metal Ion-Imprinted Polymers—Novel Materials for Selective Recognition of Inorganics. Anal. Chim. Acta 2006, 578, 105–116. [Google Scholar] [CrossRef] [PubMed]
- Luo, F.; Huang, S.; Xiong, X.; Lai, X. Synthesis and Characterization of Hg(ii)-Ion-Imprinted Polymer and Its Application for the Determination of Mercury in Water Samples. RSC Adv. 2015, 5, 67365–67371. [Google Scholar] [CrossRef]
- Ashouri, N.; Mohammadi, A.; Shekarchi, M.; Hajiaghaee, R.; Rastegar, H. Synthesis of a New Ion-Imprinted Polymer and Its Characterization for the Selective Extraction and Determination of Nickel Ions in Aqueous Solutions. Desalination Water Treat. 2015, 56, 2135–2144. [Google Scholar] [CrossRef]
- Zhou, Z.; Kong, D.; Zhu, H.; Wang, N.; Wang, Z.; Wang, Q.; Liu, W.; Li, Q.; Zhang, W.; Ren, Z. Preparation and Adsorption Characteristics of an Ion-Imprinted Polymer for Fast Removal of Ni(II) Ions from Aqueous Solution. J. Hazard. Mater. 2018, 341, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Al-Saydeh, S.A.; El-Naas, M.H.; Zaidi, S.J. Copper Removal from Industrial Wastewater: A Comprehensive Review. J. Ind. Eng. Chem. 2017, 56, 35–44. [Google Scholar] [CrossRef]
- Zhou, T.; Zhao, M.; Zhao, X.; Guo, Y.; Zhao, Y. Simultaneous Remediation and Fertility Improvement of Heavy Metals Contaminated Soil by a Novel Composite Hydrogel Synthesized from Food Waste. Chemosphere 2021, 275, 129984. [Google Scholar] [CrossRef]
- Andreazza, R.; Morales, A.; Pieniz, S.; Labidi, J. Gelatin-Based Hydrogels: Potential Biomaterials for Remediation. Polymers 2023, 15, 1026. [Google Scholar] [CrossRef]
- Britton, L.N. Surfactants and the Environment. J. Surfactants Deterg. 1998, 1, 109–117. [Google Scholar] [CrossRef]
- Ivanković, T.; Hrenović, J. Surfactants in the Environment. Arch. Ind. Hyg. Toxicol. 2010, 61, 95–110. [Google Scholar] [CrossRef] [PubMed]
- Rosen, M.J.; Li, F.; Morrall, S.W.; Versteeg, D.J. The Relationship between the Interfacial Properties of Surfactants and Their Toxicity to Aquatic Organisms. Environ. Sci. Technol. 2001, 35, 954–959. [Google Scholar] [CrossRef]
- Pérez-Moral, N.; Mayes, A.G. Comparative Study of Imprinted Polymer Particles Prepared by Different Polymerisation Methods. Anal. Chim. Acta 2004, 504, 15–21. [Google Scholar] [CrossRef]
- Daniel, S.; Prabhakara Rao, P.; Prasada Rao, T. Investigation of Different Polymerization Methods on the Analytical Performance of Palladium(II) Ion Imprinted Polymer Materials. Anal. Chim. Acta 2005, 536, 197–206. [Google Scholar] [CrossRef]
- Chaipuang, A.; Phungpanya, C.; Thongpoon, C.; Watla-iad, K.; Inkaew, P.; Machan, T.; Suwantong, O. Synthesis of Copper(II) Ion-Imprinted Polymers via Suspension Polymerization. Polym. Adv. Technol. 2018, 29, 3134–3141. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, B.; Zhao, P.; Xi, M.; Li, Y. Synthesis of Copper and Lead Ion Imprinted Polymer Submicron Spheres to Remove Cu2+ and Pb2+. J. Inorg. Organomet. Polym. Mater. 2021, 31, 4628–4636. [Google Scholar] [CrossRef]
- Honciuc, A.; Solonaru, A.-M.; Honciuc, M. Pickering Emulsion Polymerization Technology─Toward Nanostructured Materials for Applications in Metal Ion Extractions from Wastewaters. ACS Appl. Polym. Mater. 2023, 5, 8012–8022. [Google Scholar] [CrossRef]
- Croissant, J.G.; Butler, K.S.; Zink, J.I.; Brinker, C.J. Synthetic Amorphous Silica Nanoparticles: Toxicity, Biomedical and Environmental Implications. Nat. Rev. Mater. 2020, 5, 886–909. [Google Scholar] [CrossRef]
- Nworie, F.S.; Nwabue, F.I.; Elom, N.I.; Eluu, S.O. Schiff Bases and Schiff Base Metal Complexes: From Syntheses to Applications. J. Basica Appl. Res. 2016, 2, 295–305. [Google Scholar]
- Younes, A.A.; El-Maghrabi, H.H. Removal of Lead Ions from Wastewater Using Novel Schiff-Base Functionalized Solid-Phase Adsorbent. Sep. Sci. Technol. 2020, 55, 1589–1602. [Google Scholar] [CrossRef]
- Fan, H.-T.; Liu, J.-X.; Yao, H.; Zhang, Z.-G.; Yan, F.; Li, W.-X. Ionic Imprinted Silica-Supported Hybrid Sorbent with an Anchored Chelating Schiff Base for Selective Removal of Cadmium(II) Ions from Aqueous Media. Ind. Eng. Chem. Res. 2014, 53, 369–378. [Google Scholar] [CrossRef]
- Petrova, P.; Chochkova, M.; Veleva, O.; Karadjov, M. Schiff Bases Chelate Sorbents for Separation and Concentration of Pt from Sea Water and Spent Automotive Catalysts. J. Chem. Technol. Metall. 2020, 55, 691–697. [Google Scholar]
- Honciuc, A.; Negru, O.-I. Monitoring the Surface Energy Change of Nanoparticles in Functionalization Reactions with the NanoTraPPED Method. Nanomaterials 2023, 13, 1246. [Google Scholar] [CrossRef]
- Walas, S.; Tobiasz, A.; Gawin, M.; Trzewik, B.; Strojny, M.; Mrowiec, H. Application of a Metal Ion-Imprinted Polymer Based on Salen–Cu Complex to Flow Injection Preconcentration and FAAS Determination of Copper. Talanta 2008, 76, 96–101. [Google Scholar] [CrossRef]
- Monier, M.; Elsayed, N.H. Selective Extraction of Uranyl Ions Using Ion-Imprinted Chelating Microspheres. J. Colloid Interface Sci. 2014, 423, 113–122. [Google Scholar] [CrossRef]
- Monier, M.; Youssef, I.; El-Mekabaty, A. Preparation of Functionalized Ion-Imprinted Phenolic Polymer for Efficient Removal of Copper Ions. Polym. Int. 2020, 69, 31–40. [Google Scholar] [CrossRef]
- Honciuc, A.; Negru, O.-I. NanoTraPPED—A New Method for Determining the Surface Energy of Nanoparticles via Pickering Emulsion Polymerization. Nanomaterials 2021, 11, 3200. [Google Scholar] [CrossRef] [PubMed]
- Honciuc, A.; Negru, O.-I. Role of Surface Energy of Nanoparticle Stabilizers in the Synthesis of Microspheres via Pickering Emulsion Polymerization. Nanomaterials 2022, 12, 995. [Google Scholar] [CrossRef] [PubMed]
- Khorshidifard, M.; Amiri Rudbari, H.; Kazemi-Delikani, Z.; Mirkhani, V.; Azadbakht, R. Synthesis, Characterization and X-Ray Crystal Structures of Vanadium(IV), Cobalt(III), Copper(II) and Zinc(II) Complexes Derived from an Asymmetric Bidentate Schiff-Base Ligand at Ambient Temperature. J. Mol. Struct. 2015, 1081, 494–505. [Google Scholar] [CrossRef]
- Honciuc, A.; Negru, O.-I. Asymmetrically Nanostructured 2D Janus Films Obtained from Pickering Emulsions Polymerized in a Langmuir–Blodgett Trough. Micromachines 2023, 14, 1459. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Kim, D. Effect of Solvent/Monomer Feed Ratio on the Structure and Adsorption Properties of Cu2+-Imprinted Microporous Polymer Particles. Chem. Eng. J. 2011, 166, 435–444. [Google Scholar] [CrossRef]
- Hoai, N.T.; Yoo, D.-K.; Kim, D. Batch and Column Separation Characteristics of Copper-Imprinted Porous Polymer Micro-Beads Synthesized by a Direct Imprinting Method. J. Hazard. Mater. 2010, 173, 462–467. [Google Scholar] [CrossRef]
- Wiberg, N.; Wiberg, E.; Holleman, A.F. Lehrbuch Der Anorganischen Chemie, 102nd ed.; Walter de Gruyter GmbH & Co.: Berlin, Germany, 2007. [Google Scholar]
No. | Monomer/1 mL | NaVBS (mg) | EGDMA (mL) | Complex (mg) | DMSO (mL) | Nanoparticles 5 mg/mL | Water (mL) |
---|---|---|---|---|---|---|---|
A1 | BM | - | 1 | 16 | 0.4 | NP-Gly | 12 |
A2 | BM | - | 1 | 30 | 0.5 | NP-Gly | 12 |
A3 | BM | - | 1 | 52 | 0.6 | NP-Gly | 12 |
B1 | BM | 30 | 1 | 17 | 0.4 | NP-Gly | 12 |
B2 | BM | 30 | 1 | 30 | 0.5 | NP-Gly | 12 |
B3 | BM | 30 | 1 | 52 | 0.6 | NP-Gly | 12 |
C1 | VAc | - | 1 | 16 | 0.4 | NP-C8 | 12 |
C2 | VAc | - | 1 | 30 | 0.5 | NP-C8 | 12 |
C3 | VAc | - | 1 | 50 | 0.6 | NP-C8 | 12 |
D1 | DEAMA | - | 1 | 50 | 0.6 | NP-Gly | 12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Honciuc, A.; Negru, O.-I.; Honciuc, M.; Solonaru, A.-M. Polymer Microspheres Carrying Schiff-Base Ligands for Metal Ion Adsorption Obtained via Pickering Emulsion Polymerization. J. Compos. Sci. 2024, 8, 271. https://doi.org/10.3390/jcs8070271
Honciuc A, Negru O-I, Honciuc M, Solonaru A-M. Polymer Microspheres Carrying Schiff-Base Ligands for Metal Ion Adsorption Obtained via Pickering Emulsion Polymerization. Journal of Composites Science. 2024; 8(7):271. https://doi.org/10.3390/jcs8070271
Chicago/Turabian StyleHonciuc, Andrei, Oana-Iuliana Negru, Mirela Honciuc, and Ana-Maria Solonaru. 2024. "Polymer Microspheres Carrying Schiff-Base Ligands for Metal Ion Adsorption Obtained via Pickering Emulsion Polymerization" Journal of Composites Science 8, no. 7: 271. https://doi.org/10.3390/jcs8070271
APA StyleHonciuc, A., Negru, O. -I., Honciuc, M., & Solonaru, A. -M. (2024). Polymer Microspheres Carrying Schiff-Base Ligands for Metal Ion Adsorption Obtained via Pickering Emulsion Polymerization. Journal of Composites Science, 8(7), 271. https://doi.org/10.3390/jcs8070271