Influence of Solid-Phase and Melt-Quenching Na3Fe2(PO4)3 Polycrystal Production Technology on Their Structure and Ionic Conductivity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Samples
2.2. Polycrystal Studies
3. Results of the Study and Their Discussion
3.1. Structural Data of Na3Fe2(PO4)3 Polycrystals
3.2. Crystallizations Results of Na3Fe2(PO4)3 Polycrystals
3.3. Ionic Conductivity of Na3Fe2(PO4)3 Polycrystals
4. Conclusions
- (1)
- Polycrystals (type 2) are better obtained by melt-quenching because the solid-phase crystallization of the crystallites in them occurs better and faster than in samples (type 1) prepared by solid-phase synthesis.
- (2)
- The type 2 α-Na3Fe2(PO4)3 polycrystals formed from glassy precursors consist mainly of small to medium-sized crystallites and are denser than type 1 polycrystals. The probable cause of the higher conductivity of type 2 α-Na3Fe2(PO4)3 polycrystals compared to type 1 samples is the uniaxial compression deformation of the structure, which can partially reduce the existing monoclinic distortions in their structure. The higher conductivities of type 2 samples in the β- and γ-phases are associated with a partial reduction in superstructural distortion under the action of the residual compressive deformation of the sample, as well as an increase in their density.
- (3)
- The advantage of using melt-quenching to obtain Na3Fe2(PO4)3 polycrystals is that the method is simple, less energy-consuming and significantly reduces the number of times that synthesis is performed (four times) compared to the ceramic method. This method can be effective in obtaining ionic conductors with other compositions to improve their conductive properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tan, K.M.; Babu, T.S.; Ramachandaramurthy, V.K.; Kasinathan, P.; Solanki, S.G.; Raveendran, S.K. Empowering smart grid: A comprehensive review of energy storage technology and application with renewable energy integration. J. Energy Storage 2021, 39, 102591. [Google Scholar] [CrossRef]
- Amir, M.; Deshmukh, R.G.; Khalid, H.M.; Said, Z.; Raza, A.; Muyeen, S.; Nizami, A.-S.; Elavarasan, R.M.; Saidur, R.; Sopian, K. Energy storage technologies: An integrated survey of developments, global economical/environmental effects, optimal scheduling model, and sustainable adaption policies. J. Energy Storage 2023, 72, 108694. [Google Scholar] [CrossRef]
- Worku, M.Y. Recent Advances in Energy Storage Systems for Renewable Source Grid Integration: A Comprehensive Review. Sustainability 2022, 14, 5985. [Google Scholar] [CrossRef]
- Chen, Y.; Kang, Y.; Zhao, Y.; Wang, L.; Liu, J.; Li, Y.; Liang, Z.; He, X.; Li, X.; Tavajohi, N.; et al. A Review of lithium-ion battery safety concerns: The issues, strategies, and testing standards. J. Energy Chem. 2021, 59, 83–99. [Google Scholar] [CrossRef]
- Bauer, A.; Song, J.; Vail, S.; Pan, W. The Scale-up and Commercialization of Nonaqueous Na-Ion Battery Technologies. Adv. Energy Mater. 2018, 8, 1702869. [Google Scholar] [CrossRef]
- Niu, Y.; Zhang, Y.; Xu, M.-W. A Review on Pyrophosphates Framework Cathode Materials for Sodium-ion Batteries. J. Mater. Chem. A 2019, 7, 15006. [Google Scholar] [CrossRef]
- Yabuuchi, N.; Komaba, S. Recent research progress on iron- and manganese-based positive electrode materials for rechargeable sodium batteries. Sci. Technol. Adv. Mater. 2014, 4, 043501. [Google Scholar] [CrossRef]
- Kanwade, A.; Gupta, S.; Kankane, A.; Srivastava, A. Phosphate-based cathode materials to boost the electrochemical performance of sodium-ion batteries. Sustain. Energy Fuels 2022, 6, 3114–3147. [Google Scholar] [CrossRef]
- Kalinin, V.B.; Stefanovich, S.Y.; Nogai, A. Crystal chemistry and properties of compounds with rhombohedral frameworks of the composition {[M2(TO4)3]3–}3∞. and solid solutions based on them. Inorg. Mater. 1986, 22, 107–111. [Google Scholar]
- Wang, J.; He, T.; Yang, X.; Cai, Z.; Wang, Y.; Lacivita, V.; Kim, H.; Ouyang, B.; Ceder, G. Design principles for NASICON super-ionic conductors. Nat. Commun. 2023, 14, 5210. [Google Scholar] [CrossRef]
- Efremov, V.A.; Kalinin, V.B. Determination of the crystal structure of Na3Sc2(PO4)3. Crystallography 1978, 20, 703–708. [Google Scholar]
- Ouyang, B.; Wang, J.; He, T.; Bartel, C.J.; Huo, H.; Wang, Y.; Lacivita, V.; Kim, H.; Ceder, G. Synthetic accessibility and stability rules of NASICONs. Nat. Commun. 2021, 12, 5752. [Google Scholar] [CrossRef] [PubMed]
- Nogai, A.S.; Nogai, A.A.; Stefanovich, S.Y.; Solikhodzha, Z.M.; Uskenbaev, D.E. Dipole ordering and ionic conductivity in NASICON-like structures such as Na3Sc2(PO4)3. Phys. Solid State 2019, 61, 2016–2023. [Google Scholar] [CrossRef]
- Sorokin, N.I. Na+-ion conductivity of double phosphate Na3Sc2(PO4)3 in the region of the γ-β transition. Phys. Solid State 2014, 56, 678–681. [Google Scholar] [CrossRef]
- Rettenwander, D.; Redhammer, G.J.; Guin, M.; Benisek, A.; Krüger, H.; Guillon, O.; Wilkening, M.; Tietz, F.; Fleig, J. Arrhenius Behavior of the Bulk Na-Ion Conductivity in Na3Sc2(PO4)3 Single Crystals Observed by Microcontact Impedance Spectroscopy. Chem. Mater. 2018, 30, 1776–1781. [Google Scholar] [CrossRef]
- Ladenstein, L.; Lunghammer, S.; Wang, E.Y.; Miara, L.J. On the dependence of ionic transport on crystal orientation in NASICON–type solid electrolytes. J. Phys. Energy 2020, 2, 035003–035009. [Google Scholar] [CrossRef]
- Nogai, A.S.; Nogai, A.A.; Stefanovich, S.Y.; Solikhodzha, Z.M.; Uskenbaev, D.E. Dipole Ordering and Ionic Conductivity in NASICON-Like Structures of the Na3Fe2(PO4)3 Type. Phys. Solid State 2020, 62, 1370–1379. [Google Scholar] [CrossRef]
- Nogai, A.A.; Salikhodzha, Z.M.; Nogai, A.S.; Uskenbaev, D.E. Conducting and dielectric properties of Na3Fe2(PO4)3 and Na2FePO4F. Eurasian J. Phys. Funct. Mater. 2021, 5, 222–234. [Google Scholar] [CrossRef]
- D’Yvoire, F.; Pintard-Screpel, M.; Bretey, E.; de la Rochère, M. Phase transitions and ionic conduction in 3D skeleton phosphates A3M2(PO4)3: A = Li, Na, Ag, K.; M = Cr, Fe. Solid State Ion. 1983, 9–10, 851–858. [Google Scholar] [CrossRef]
- Pintard–Screpel, M.; D’Yvoire, F.; Remy, E. Polimorphisme et conduction ionique du phosphate Na4Fe2(PO4)3. C. R. Acad. Sci. 1978, 286, 381–383. [Google Scholar]
- Kravchenko, V.V.; Sigaryov, S.E. Structural features of the superionic phase transitions in Na3Fe2(PO4)3. Solid State Commun. 1992, 83, 149–152. [Google Scholar] [CrossRef]
- Lyubutin, I.; Melnikov, O.; Sigaryov, S.; Terziev, V. Phase transitions in Na3Fe2(PO4)3. Solid State Ion. 1988, 31, 197–201. [Google Scholar] [CrossRef]
- Masquelier, C.; Wurm, C.; Rodríguez-Carvajal, J.; Gaubicher, J.; Nazar, L. A Powder Neutron Diffraction Investigation of the Two Rhombohedral NASICON Analogues: γ-Na3Fe2(PO4)3 and Li3Fe2(PO4)3. Chem. Mater. 2000, 12, 525–532. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, Y.; Zhang, J.; Xia, Y.; Chen, T.; Zhang, S. Monoclinic phase Na3Fe2(PO4)3: Synthesis, structure, and electrochemical performance as cathode material in sodium-ion batteries. ACS Sustain. Chem. Eng. 2016, 5, 1306–1314. [Google Scholar] [CrossRef]
- Nogai, A.S.; Nogai, A.A.; Nogai, E.A.; Bush, A.A.; Uskenbaev, D.E. Influence of substitutions on the structure ionic conductivity and phase transition in the system of Na3Fe2(1-x)Sc2x(PO4)3 (0 ≤ x ≤ 0.06) solid solutions. Eurasian J. Phys. Funct. Mater. 2023, 7, 107–114. [Google Scholar] [CrossRef]
- Nogai, A.S.; Uskenbaev, D.E.; Utegulov, A.B.; Nogai, E.A.; Toleugulov, D.D. Features of Structures and Ionic Conductivity of Na3Fe2(PO4)3 Polycrystals Obtained by Solid Phase and Mellte Methods. Ceramics 2023, 6, 2295–2306. [Google Scholar] [CrossRef]
- He, Y.; Li, H. Recent Research Process of Carbon Engineering on Na3V2(PO4)3 for Sodium-Ion Battery Cathodes: A Mini Review. Electron. Mater. 2023, 4, 17–32. [Google Scholar] [CrossRef]
- Wu, X.; Zhong, G.; Yang, Y. Sol–gel synthesis of Na4Fe3(PO4)2(P2O7)/C nanocomposite for sodium ion batteries and new insights into microstructural evolution during sodium extraction. J. Power Sources 2016, 327, 666–674. [Google Scholar] [CrossRef]
- Cao, Y.; Liu, Y.; Chen, T.; Xia, X.; Zhang, L.-C.; Zhang, J.; Xia, Y. Sol-gel synthesis of porous Na3Fe2(PO4)3 with enhanced sodium-ion storage capability. Ionics 2019, 25, 1083–1090. [Google Scholar] [CrossRef]
- Sun, W.; Ceder, G. Induction time of a polymorphic transformation. Cryst.Eng.Comm. 2017, 19, 4576–4585. [Google Scholar] [CrossRef]
- Hu, J.; Wang, X.; Luo, J.; Zhang, Z.; Shen, Z. A general mechanism of grain growth—I. Theory J. Mater. 2021, 7, 1007–1013. [Google Scholar]
- Rohrer, G.S.; Chesser, I.; Krause, A.R.; Naghibzadeh, S.K.; Dayal, K.; Holm, E.A. Grain Boundary Migration in Polycrystals. Annu. Rev. Mater. Res. 2023, 53, 347–369. [Google Scholar] [CrossRef]
- Nitsche, H.; Stanislowski, M.; Sommer, F.; Mittemeijer, E.J. Kinetics of crystallization of amorphous Mg80Cu10Y10. Z. Met. 2005, 96, 1341–1350. [Google Scholar] [CrossRef]
- Shen, Z.; Zhao, Z.; Peng, H.; Nygren, M. Formation of tough inter locking microstructures in silicon nitride ceramics by dynamic ripening. Nature 2002, 417, 266–269. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.-J.L.; Lee, M.-G.; An, S.-M. Microstructural evolution during sintering with control of the interface structure. J. Am. Ceram. Soc. 2009, 92, 1464–1471. [Google Scholar] [CrossRef]
- Adland, A.; Xu, Y.; Karma, A. Unified theoretical framework for polycrystalline pattern evolution. Phys. Rev. Lett. 2013, 110, 265504. [Google Scholar] [CrossRef]
- Ovid’ko, I.A. Theories of Grain Growth and Methods of Its Suppression in Nanocrystalline and Polycrystalline Materials. Mater. Phys. Mech. 2009, 8, 174–199. [Google Scholar]
- Mishra, S.; DebRoy, T. Non-isothermal grain growth in metals and alloys. Mater. Sci. Technol. 2006, 22, 253–278. [Google Scholar] [CrossRef]
Samples | Type 1 | Type 2 | ||
---|---|---|---|---|
Na3Fe2(PO4)3 | 1st Annealing | 2nd Annealing | 1st Annealing | 2nd Annealing |
Firing temperatures T, °C | 600 | 800 | 950 | 800 |
Firing time tF, h | 7 | 7 | 0.013 | 2 |
Cooling time tC, h | 1 | 0.083 | 1 | |
Temperature cooling rate v, °C/h | 48 | 11,445.78 | 48 |
Compound Na3Fe2(PO4)3 | Space Group | Unit Cell Parameters | Ref. | |||||
---|---|---|---|---|---|---|---|---|
Types of Samples | a, Å | b, Å | c, Å | α0 | β0 | γ0 | ||
Polycrystal 1st Type. | C2/m | 15.1230 | 8.7168 | 21.5963 | 90.0 | 90.33 | 90.0 | |
∆ = 0.0214 | ∆ = −0.028 | ∆ = −0.0195 | 0 | ∆ = 0.03 | ||||
Polycrystal 2-nd Type | C2/m | 15.1444 | 8.6840 | 21.5768 | 90.0 | 90.30 | 90.0 | |
Standard values of structural parameters | C2/m | 15.346 | 8.744 | 21.644 | 90.00 | 90.03 | 90.00 | [24]. |
Composition | Atom % | O | P | Fe | Na |
---|---|---|---|---|---|
Type 1 Na3Fe2(PO4)3 | norm % | 61.20 | 15.59 | 9.80 | 15.58 |
fact % | 61.24 | 15.60 | 9.10 | 15.60 | |
Off % | +0.04 | +0.01 | +0.02 | +0.02 | |
Type 2 Na3Fe2(PO4)3 | norm % | 59.02 | 14.51 | 10.02 | 16.48 |
fact % | 59.00 | 14.50 | 10.00 | 16.50 | |
Off % | −0.02 | −0.01 | −0.02 | +0.02 |
Parameters | Phases | Polycrystal Na3Fe2(PO4)3 | |
---|---|---|---|
1 Type | 2 Type | ||
Ionic conductivity σ, (Om ∙ cm)−1 | α (295 K) | 3.8 × 10−7 | 4.8 × 10−7 |
β (373 K) | 5.6 × 10−5 | 6.8 × 10−5 | |
γ (573 K) | 8.8 × 10−3 | 10.0 × 10−3 | |
Activation energy ΔE, eV | α | 0.63 | 0.61 |
β | 0.46 | 0.44 | |
γ | 0.39 | 0.37 | |
Temperatures of phase transitions: Tα→β, Tβ→γ, K | Tα→β = 368 | Tα→β = 368 | |
Tβ→γ = 418 | Tβ→γ = 418 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nogai, A.S.; Nogai, A.A.; Uskenbaev, D.E.; Nogai, E.A.; Utegulov, A.B.; Dunayev, P.A.; Tolegenova, A.S.; Bazarbekuly, B.A.-D.; Abikenova, A.A. Influence of Solid-Phase and Melt-Quenching Na3Fe2(PO4)3 Polycrystal Production Technology on Their Structure and Ionic Conductivity. J. Compos. Sci. 2024, 8, 354. https://doi.org/10.3390/jcs8090354
Nogai AS, Nogai AA, Uskenbaev DE, Nogai EA, Utegulov AB, Dunayev PA, Tolegenova AS, Bazarbekuly BA-D, Abikenova AA. Influence of Solid-Phase and Melt-Quenching Na3Fe2(PO4)3 Polycrystal Production Technology on Their Structure and Ionic Conductivity. Journal of Composites Science. 2024; 8(9):354. https://doi.org/10.3390/jcs8090354
Chicago/Turabian StyleNogai, A. S., A. A. Nogai, D. E. Uskenbaev, E. A. Nogai, A. B. Utegulov, P. A. Dunayev, A. S. Tolegenova, Bazarbek Assyl-Dastan Bazarbekuly, and A. A. Abikenova. 2024. "Influence of Solid-Phase and Melt-Quenching Na3Fe2(PO4)3 Polycrystal Production Technology on Their Structure and Ionic Conductivity" Journal of Composites Science 8, no. 9: 354. https://doi.org/10.3390/jcs8090354
APA StyleNogai, A. S., Nogai, A. A., Uskenbaev, D. E., Nogai, E. A., Utegulov, A. B., Dunayev, P. A., Tolegenova, A. S., Bazarbekuly, B. A. -D., & Abikenova, A. A. (2024). Influence of Solid-Phase and Melt-Quenching Na3Fe2(PO4)3 Polycrystal Production Technology on Their Structure and Ionic Conductivity. Journal of Composites Science, 8(9), 354. https://doi.org/10.3390/jcs8090354