Core–Shell Inorganic/Organic Composites Composed of Polypyrrole Nanoglobules or Nanotubes Deposited on MnZn Ferrite Microparticles: Electrical and Magnetic Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation
2.2. Composition and Morphology
2.3. Spectroscopy
2.4. Electrical and Magnetic Properties
3. Results and Discussion
3.1. Composites
3.2. Composition and Morphology
3.3. Spectroscopy
3.4. Electrical Properties of Polypyrrole
3.5. Electrical Properties of Polypyrrole-Coated Ferrites
3.6. Mechanical Properties
3.7. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saraswat, A.; Kumar, S. Cutting-edge applications of polyaniline composites towards futuristic energy supply devices. Eur. Polym. J. 2023, 200, 112501. [Google Scholar] [CrossRef]
- Murillo, N.; Ochoteco, E.; Alesanco, Y.; Pomposo, J.A.; Rodriguez, J.; González, J.; del Val, J.J.; González, J.M.; Britel, M.R.; Varela-Feria, F.M.; et al. CoFe2O4-polypyrrole (PPy) nanocomposites: New multifunctional materials. Nanotechnology 2004, 15, S322–S327. [Google Scholar] [CrossRef]
- Poddar, P.; Wilson, J.L.; Srikanth, H.; Morrison, S.A.; Carpenter, E.E. Magnetic properties of conducting polymer doped with manganese-zinc ferrite nanoparticles. Nanotechnology 2004, 15, S570–S574. [Google Scholar] [CrossRef]
- Xiao, H.M.; Fu, S.Y. Synthesis and physical properties of electromagnetic polypyrrole composites via addition of magnetic crystals. CrystEngComm 2014, 16, 2097–2112. [Google Scholar] [CrossRef]
- Hakeem, A.; Alshahrani, T.; Ali, I.; Alhossainy, M.H.; Khosa, R.Y.; Muhammad, G.; Khan, A.R.; Farid, H.M.T. Synthesis and characterization of composites for microwave devices. Chin. J. Phys. 2021, 70, 232–239. [Google Scholar] [CrossRef]
- Khan, S.A.; Ali, I.; Hussain, A.; Javed, H.M.A.; Turchenko, V.A.; Trukhanov, A.V.; Trukhanov, S.V. Synthesis and characterization of composites with Y-hexaferrites for electromagnetic interference shielding applications. Magnetochemistry 2022, 8, 186. [Google Scholar] [CrossRef]
- Aman, S.; Elsaeedy, H.I.; Alharbi, F.F.; Ejaz, S.R.; Ahmad, N.; Zeshan, M.; Ali, M.; Farid, H.T. Synthesis of composites and their characterization for high-frequency applications. Inorg. Chem. Commun. 2023, 156, 111188. [Google Scholar] [CrossRef]
- Ashraf, A.; Munir, R.; Albasher, G.; Ghamkhar, M.; Muneer, A.; Yaseen, M.; Murtza, T.; Noreen, S. Utilization of ZnFe2O4-polyaniline (PANI), ZnFe2O4-polystyrene (PST), and ZnFe2O4-polypyrrole (PPy) nanocomposites for removal of Red X-GRL and Direct Sky Blue dyes from wastewater: Equilibrium, kinetic and thermodynamic studies. J. Environ. Sci. Health A Toxic/Hazard. Subst. Environ. Eng. 2023, 58, 914–934. [Google Scholar] [CrossRef]
- Aman, S.; Ahmad, N.; Tahir, M.B. Synthesis and characterization of BaGd0.075Fe1.925O4/polypyrrole composites for EMI shielding. J. Mater. Sci. Mater. Electron. 2024, 35, 35. [Google Scholar] [CrossRef]
- Alburaih, H.A.; Khan, S.A.; Khosa, R.Y.; Ejaz, S.R.; Khan, A.R.; Muhammad, G.; Waheed, M.S.; Chughtai, A.H.; Manzoor, S.; Aman, S. The electrical, dielectric and magnetic effect of MgFe2O4-polypyrrole and its composites. J. Korean Ceram. Soc. 2022, 60, 357–363. [Google Scholar] [CrossRef]
- Gabal, M.A.; Al-Harthy, E.A.; Al Angari, Y.M.; Awad, A.; Al-Juaid, A.A.; Hussein, M.A.; Abdel-Daiem, A.M.; Sobahi, T.R.; Saeed, A. Synthesis, structural, magnetic and high-frequency electrical properties of Mn0.8Zn0.2Fe2O4/polypyrrole core-shell composite using waste batteries. J. Inorg. Organomet. Polym. Mater. 2022, 32, 1975–1987. [Google Scholar] [CrossRef]
- Guo, J.; Li, X.; Chen, Z.R.; Zhu, J.F.; Mai, X.M.; Wei, R.B.; Sun, K.; Liu, H.; Chen, Y.X.; Naik, N. Magnetic NiFe2O4/polypyrrole nanocomposites with enhanced electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 108, 64–72. [Google Scholar] [CrossRef]
- Pyatakovich, F.A.; Mevsha, O.V.; Yakunchenko, T.I.; Makkonen, K.F.; Uvarov, V.M. Introducing a polypyrrole (PPy)-manganese ferrite (MnFe2O4) nanocomposite based microwave absorber for studying the effect of the radiation on the modification of the patient’s functional state. J. Nanostruct. 2022, 12, 245–253. [Google Scholar] [CrossRef]
- Darwish, K.A.; Hemeda, O.M.; Ati, M.I.A.; Abd El-Hameed, A.S.; Zhou, D.; Darwish, M.A.; Salem, M.M. Synthesis, characterization, and electromagnetic properties of polypyrrole-barium hexaferrite composites for EMI shielding applications. Appl. Phys. A Mater. Sci. Proc. 2013, 129, 460. [Google Scholar] [CrossRef]
- Gabal, M.A.; Al-Harthy, E.A.; Al Angari, Y.M.; Awad, A.; Al-Juaid, A.A.; Saeed, A. Synthesis, characterization and electrical properties of polypyrrole/Mn0.8Zn0.2Fe2O4/GO ternary hybrid composites using spent Zn-C batteries. J. Sol-Gel Sci. Technol. 2023, 15, 781–792. [Google Scholar] [CrossRef]
- Silva, E.C.; Soares, V.R.; Fajardo, A.R. Removal of pharmaceuticals from aqueous medium by alginate/polypyrrole/ZnFe2O4 beads via magnetic field enhanced adsorption. Chemosphere 2023, 316, 137734. [Google Scholar] [CrossRef]
- Han, H.; Lou, Z.C.; Wang, Q.Y.; Xu, L.; Li, Y.J. Introducing rich heterojunction surfaces to enhance the high-frequency electromagnetic attenuation response of flexible fiber-based wearable absorbers. Adv. Fiber Mater. 2024, 6, 739–757. [Google Scholar] [CrossRef]
- Jin, R.Y.; Liu, J.P.; Qiu, H.F.; Xu, C.; Weng, L.G.; Liu, C.B.; Zeng, Y. Synthesis of porous nanosheet-assembled ZnFe2O4@polypyrrole yolk-shell microspheres as anode materials for high-rate lithium-ion batteries. J. Electroanal. Chem. 2020, 863, 114038. [Google Scholar] [CrossRef]
- Stejskal, J.; Trchová, M. Conducting polypyrrole nanotubes: A review. Chem. Pap. 2018, 72, 1563–1595. [Google Scholar] [CrossRef]
- Stejskal, J.; Prokeš, J. Conductivity and morphology of polyaniline and polypyrrole prepared in the presence of organic dyes. Synth. Met. 2020, 264, 116373. [Google Scholar] [CrossRef]
- Kadar, C.H.A.; Faisal, M.; Maruthi, N.; Raghavendra, N.; Prasanna, B.P.; Nandan, K.R.; Manohara, S.R.; Revanasiddappa, M.; Madhusudhan, C.K. Anticorrosive polypyrrole/barium ferrite (PPy/BaFe12O19) composites with tunable electrical response for electromagnetic wave absorption and shielding performance. J. Electron. Mater. 2023, 52, 2080–2093. [Google Scholar] [CrossRef]
- Milakin, K.A.; Taboubi, O.; Hromádková, J.; Bober, P. Magnetic polypyrrole-gelatin-barium ferrite cryogel as an adsorbent for chromium (VI) removal. Gels 2023, 9, 840. [Google Scholar] [CrossRef] [PubMed]
- Milakin, K.A.; Taboubi, O.; Acharya, U.; Lhotka, M.; Pokorný, V.; Konefal, M.; Kočková, O.; Hromádková, J.; Hodan, J.; Bober, P. Polypyrrole-barium ferrite magnetic cryogels for water purification. Gels 2023, 9, 92. [Google Scholar] [CrossRef] [PubMed]
- Hosseinabad, T.; Nabiyouni, G.; Hedayati, K. Synthesis and characterization of structural, magnetic, and microwave properties of Ba0.5Sr0.5Fe12O19/Ni0.5Mn0.5Fe2O4/polypyrrole nanocomposite thin films. J. Mater. Sci. Mater. Electron. 2024, 35, 156. [Google Scholar] [CrossRef]
- Mariappan, C.R.; Gajraj, V.; Gade, S.; Kumar, A.; Dsoke, S.; Indris, S.; Ehrenberg, H.; Prakash, G.V.; Jose, R. Synthesis and electrochemical properties of rGO/polypyrrole/ferrites nanocomposites obtained via a hydrothermal route for hybrid aqueous supercapacitors. J. Electroanal. Chem. 2019, 845, 72–83. [Google Scholar] [CrossRef]
- Chamani, S.; Sadeghi, E.; Peighambardoust, N.S.; Doganay, F.; Yanalak, G.; Eroglu, Z.; Aslan, E.; Asghari, E.; Metin, O.; Patir, I.H. Photocatalytic hydrogen evolution performance of metal ferrites/polypyrrole nanocomposites. Int. J. Hydrogen Energy 2022, 47, 32940–32954. [Google Scholar] [CrossRef]
- Ishaq, S.; Moussa, M.; Kanwal, F.; Ayub, R.; Van, T.N.; Azhar, U.; Losic, D. One step strategy for reduced graphene oxide/cobalt-iron oxide/polypyrrole nanocomposite preparation for high performance supercapacitor electrodes. Electrochim. Acta 2022, 427, 140883. [Google Scholar] [CrossRef]
- Tang, D.L.; Zhitomirsky, I. Pseudocapacitive properties of polypyrrole—ferrimagnetic CoFe2O4 composites. Electrochim. Acta 2024, 475, 143671. [Google Scholar] [CrossRef]
- Thu, T.V.; Nguyen, T.V.; Le, X.D.; Le, T.S.; Thuy, V.V.; Huy, T.Q.; Truong, Q.D. Graphene-MnFe2O4-polypyrrole ternary hybrids with synergistic effect for supercapacitor electrode. Electrochim. Acta 2019, 314, 151–160. [Google Scholar] [CrossRef]
- Alharbi, F.F.; Dahshan, A.; Ali, M.; Zeshan, M.; Henaish, A.M.A.; Ahmad, Z.; Farid, H.M.T. Study of manganese spinel ferrite/polypyrole composites for high-frequency applications. J. Sol-Gel Sci. Technol. 2024, 109, 849–858. [Google Scholar] [CrossRef]
- Yavuz, Ö.; Ram, M.K.; Aldissi, M.; Poddar, P.; Srikanth, H. Polypyrrole composites for shielding applications. Synth. Met. 2005, 151, 211–217. [Google Scholar] [CrossRef]
- Gabal, M.A.; Al-Harthy, E.A.; Al Angari, Y.M.; Salam, M.A.; Awad, A.; Al-Juaid, A.A.; Saeed, A. Synthesis, characterization and dye removal capability of conducting polypyrrole/Mn0.8Zn0.2Fe2O4/graphite oxide ternary composites. Catalysts 2022, 12, 1624. [Google Scholar] [CrossRef]
- MacDonald, M.; Zhitomirsky, I. Capacitive properties of ferrimagnetic NiFe2O4-conductive polypyrrole nanocomposites. J. Comp. Sci. 2024, 8, 51. [Google Scholar] [CrossRef]
- Das, K.K.; Patnaik, S.; Mansingh, S.; Behera, A.; Mohanty, A.; Acharya, C.; Parida, K.M. Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. J. Colloid Interface Sci. 2020, 561, 551–567. [Google Scholar] [CrossRef] [PubMed]
- Parfimovich, I.D.; Komarov, F.F.; Milchanin, O.V.; Shchegolkov, A.V.; Tkachev, A.G. Radio absorbing composite materials of scattering type based on carbon nanotubes. Inorg. Mater. Appl. Res. 2023, 14, 962–967. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, L.Y.; Jian, M.L.; Liu, Y.J. Recent research progress of ferrite multielement microwave absorbing composites. Adv. Eng. Mater. 2022, 24, 2200526. [Google Scholar] [CrossRef]
- Kim, H.M.; Jeong, J.Y.; Kang, S.H.; Jin, H.J.; Choi, H.J. Dual electrorheological and magnetorheological behaviors of poly(N-methyl aniline) coated ZnFe2O4 composite particles. Materials 2022, 15, 2677. [Google Scholar] [CrossRef]
- Kazantseva, N.E.; Vilčáková, J.; Křesálek, V.; Sáha, P.; Sapurina, I.; Stejskal, J. Magnetic behaviour of composites containing polyaniline-coated manganese-zinc ferrite. J. Magn. Magn. Mater. 2004, 269, 30–37. [Google Scholar] [CrossRef]
- Stejskal, J. Interaction of conducting polymers, polyaniline and polypyrrole, with organic dyes: Polymer morphology control, dye adsorption and photocatalytic decomposition. Chem. Pap. 2020, 74, 1–54. [Google Scholar] [CrossRef]
- Wang, W.L.; Lv, Y.P.; Liu, H.J.; Cao, Z.G. Recent advances in application of polypyrrole nanomaterial in water pollution control. Separ. Purif. Sci. A 2024, 330, 125265. [Google Scholar] [CrossRef]
- Ul-Hoque, M.I.; Holze, R. Intrinsically conducting polymer composites as active masses in supercapacitors. Polymers 2023, 15, 730. [Google Scholar] [CrossRef] [PubMed]
- Mandal, S.; Dasmahapatra, A.K. Hierarchical polyaniline/copper cobalt ferrite nanocomposites for high performance supercapacitor electrode. J. Energy Storage A 2023, 74, 109402. [Google Scholar] [CrossRef]
- Alwadai, N.; Manzoor, S.; Ejaz, S.R.; Khosa, R.Y.; Aman, S.; Al-Buriahi, M.S.; Alomairy, S.; Alrowaili, Z.A.; Somaily, H.H.; Hayat, M. CoFe2O4 surface modification with conducting polypyrrole: Employed as a highly active electrocatalyst for oxygen evolution reaction. J. Mater. Sci. Mater. Electron. 2022, 33, 13244–13254. [Google Scholar] [CrossRef]
- Stejskal, J.; Vilčáková, J.; Jurča, M.; Fei, H.J.; Trchová, M.; Kolská, Z.; Prokeš, J.; Křivka, I. Polypyrrole-coated melamine sponge as a precursor for conducting macroporous nitrogen nitrogen-containing carbons. Coatings 2022, 12, 324. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I. Polyaniline: Thin films and colloidal dispersions (IUPAC technical report). Pure Appl. Chem. 2005, 77, 815–826. [Google Scholar] [CrossRef]
- Trchová, M.; Stejskal, J. Resonance Raman spectroscopy of conducting polypyrrole nanotubes: Disordered surface versus ordered body. J. Phys. Chem. A 2018, 122, 9298–9306. [Google Scholar] [CrossRef]
- Jurča, M.; Vilčáková, J.; Kazantseva, N.E.; Munteanu, A.; Munteanu, L.; Sedlačík, M.; Stejskal, J.; Trchová, M.; Prokeš, J. Conducting and magnetic hybrid polypyrrole/nickel composites and their application in magnetorheology. Materials 2024, 17, 151. [Google Scholar] [CrossRef]
- Kazantseva, N.E.; Bespyatykh, Y.I.; Sapurina, I.; Stejskal, J.; Vilčáková, J.; Sáha, P. Magnetic materials based on manganese-zinc ferrite with surface-organized polyaniline coating. J. Magn. Magn. Mater. 2006, 301, 155–165. [Google Scholar] [CrossRef]
g, g MnZn Ferrite | Expected (Figure 2) | Water/APS | 0.1 M H2SO4/APS | Water/FeCl3 |
---|---|---|---|---|
1 | 35.9 | 32.6 | 31.7 | – |
2 | 52.9 | 52.5 | 44.6 | 52.0 |
4 | 69.2 | 68.3 | 64.2 | – |
6 | 77.1 | 76.5 | 72.2 | 76.7 |
8 | 81.7 | 81.5 | 78.7 | 81.4 |
Without Methyl Orange | With Methyl Orange | |||||
---|---|---|---|---|---|---|
g, MnZn Ferrite per 200 mL | APS/H2O | APS/0.1 M H2SO4 | FeCl3/H2O | APS/H2O | APS/0.1 M H2SO4 | FeCl3/H2O |
0 a | 1.35 | 1.56 | 6.61 | 2.86 | 3.14 | 23.7 |
2 | 0.371 | 0.310 | 3.64 | 0.630 | 1.49 | 24.6 |
4 | 0.466 | 0.379 | 2.76 | 0.597 | 0.447 | 25.4 |
6 | 0.261 | 0.276 | 2.11 | 0.287 | 0.341 | 17.5 |
8 | 0.177 | 0.168 | 2.01 | 0.411 | 0.413 | 13.0 |
g, g MnZn Ferrite | HC, Oe | MR, emu g−1 | MS, emu g−1 |
---|---|---|---|
2 | 8.85 | 0.36 | 45.8 |
4 | 9.50 | 0.52 | 60.7 |
6 | 9.30 | 0.58 | 70.2 |
8 | 9.16 | 0.59 | 73.1 |
Ferrite | 9.88 | 0.82 | 88.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jurča, M.; Munteanu, L.; Vilčáková, J.; Stejskal, J.; Trchová, M.; Prokeš, J.; Křivka, I. Core–Shell Inorganic/Organic Composites Composed of Polypyrrole Nanoglobules or Nanotubes Deposited on MnZn Ferrite Microparticles: Electrical and Magnetic Properties. J. Compos. Sci. 2024, 8, 373. https://doi.org/10.3390/jcs8090373
Jurča M, Munteanu L, Vilčáková J, Stejskal J, Trchová M, Prokeš J, Křivka I. Core–Shell Inorganic/Organic Composites Composed of Polypyrrole Nanoglobules or Nanotubes Deposited on MnZn Ferrite Microparticles: Electrical and Magnetic Properties. Journal of Composites Science. 2024; 8(9):373. https://doi.org/10.3390/jcs8090373
Chicago/Turabian StyleJurča, Marek, Lenka Munteanu, Jarmila Vilčáková, Jaroslav Stejskal, Miroslava Trchová, Jan Prokeš, and Ivo Křivka. 2024. "Core–Shell Inorganic/Organic Composites Composed of Polypyrrole Nanoglobules or Nanotubes Deposited on MnZn Ferrite Microparticles: Electrical and Magnetic Properties" Journal of Composites Science 8, no. 9: 373. https://doi.org/10.3390/jcs8090373
APA StyleJurča, M., Munteanu, L., Vilčáková, J., Stejskal, J., Trchová, M., Prokeš, J., & Křivka, I. (2024). Core–Shell Inorganic/Organic Composites Composed of Polypyrrole Nanoglobules or Nanotubes Deposited on MnZn Ferrite Microparticles: Electrical and Magnetic Properties. Journal of Composites Science, 8(9), 373. https://doi.org/10.3390/jcs8090373